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1. Introduction

In a material with triple porosity, the body displays three distinct levels of pore structures, each representing
a different scale of porosity within the material. The first level is termed macro porosity, indicating the largest
visible pores within the material that are typically observable to the naked eye or through macroscopic
imaging techniques. The second level is referred to as meso porosity, corresponding to an intermediate scale
of porosity with pores smaller than macro porosity but larger than micro porosity. The final level is known
as micro porosity, representing the smallest scale of pores within the material, characterized by microscopic
dimensions that may require high-resolution imaging techniques or advanced microscopic analysis for direct
observation.

The existence of these three levels of porosity facilitates a more comprehensive characterization of the
material's permeability, transport properties, and mechanical behavior, taking into account variations in pore
sizes and their distribution throughout the material. The research of Svanadze [1], Straughan [2], and Kansal
[3] has significantly contributed to establishing governing equations in the field of elasticity and
thermoelasticity, specifically addressing the concept of triple porosity. Svanadze [4-9] further delved into
investigating boundary value problems related to elastic solids and thermoelastic solids with triple porosity.
In his book, Straughan [10] discussed various applications of multiple porosities, shedding light on the
practical significance of these theories across different disciplines.

Grot [11] expanded the theory of thermodynamics for elastic bodies with microstructure by considering
microelements with different temperatures. The Clausius-Duhem inequality was modified to incorporate
microtemperatures, and first-order moment of energy equations were introduced into the basic balance laws.
These modifications were aimed at determining the microtemperatures of a continuum. Iesan and Quintanilla
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[12] developed a linear theory for elastic materials with an inner structure that includes microtemperatures,
in addition to the classical displacement and temperature fields. Their focus was on the existence of solutions
for initial boundary value problems, employing semigroup theory. They successfully proved an existence
theorem and established the continuous dependence of solutions on the initial data and body loads. Aouadi
et al. [13] developed a nonlinear theory of thermoelastic diffusion materials with microtemperatures and
microconcentrations, alongside a linear theory for the same materials. The well-posedness of the linear
anisotropic problem was proven using semigroup theory, and the asymptotic behavior of solutions was
studied. Chiril and Marin [14] derived the field equations and consecutive equations of the linear theory of
microstretch thermoelasticity for materials with particles having microelements equipped with
microtemperatures and microconcentrations.

The utilization of elementary functions in constructing fundamental solutions enables the development
of analytical and numerical methods for solving boundary value problems in elasticity and thermoelasticity.
These methods are valuable for providing accurate and efficient solutions across a broad spectrum of
engineering and scientific applications. By employing fundamental solutions, researchers gain the capability
to explore the behavior of complex systems and analyze the effects of various parameters, boundary
conditions, and material properties on the system's response. In the specific context of elasticity and
thermoelasticity with triple porosity or microtemperatures, Svanadze [1,15-17] and Kansal [3] have made
significant contributions by constructing fundamental solutions using elementary functions. These
contributions enhance the understanding and modeling of materials with intricate pore structures or
temperature distributions, facilitating advancements in the field and enabling the study of diverse
phenomena.

The current paper is structured into several sections, each addressing specific aspects of the study. The
constitutive relations and field equations for anisotropic thermoelastic diffusion bodies with triple porosity,
microtemperatures, and microconcentrations are derived in Section 2. The system of linearized equations for
steady oscillations in the theory of thermoelastic diffusion solids with triple porosity, microtemperatures,
and microconcentrations is obtained in Section 3. In Section 4, the fundamental solutions of the basic
governing equations are constructed using elementary functions. Some basic properties of the fundamental
matrix in the case of steady oscillations are discussed in Section 5. Finally, in Section 6, the fundamental
solutions of the basic governing equations in equilibrium conditions are constructed as a particular case.
These properties provide information about the behavior of the solutions and can be used to analyze and
interpret the results obtained from the fundamental solutions. These sections provide a comprehensive
framework for studying and solving boundary value problems in this field and contribute to a deeper
understanding of the underlying phenomena.

2. Basic equations

The law of conservation of energy for an arbitrary material volume V bounded by a surface A at time t can
be written as

f [0l + 1 V1V + 10,0, + k3V3V5 + U] dV = J p[Fiu; + Ajv;] dV + j [fi0; + Qyw;v; + qiw] dA (1)
v v A

where p is the density, u; are the components of the displacement vector u, F; are the components of the
external forces per unit mass, U is the internal energy per unit mass, f; are the components of the surface
traction vector f occurring on the surface A,v;are the volume fraction fields corresponding to macro-, meso-
and micro-pores respectively, k; are the coefficients of equilibrated inertia, A; are extrinsic equilibrated body
forces per unit mass associated with macro-, meso-, and micro-pores, respectively, €);; are the components

of equilibrated stress vectors corresponding to v; measured per unit area of surface A, respectively, q; are
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the components of the heat flux vector, ®; are the components of the outward unit normal vector @ to the
surface A.
The components f; are related to the stress vectors by the relation

fi = 0jiw; (2)
Utilizing Eq. 2 within Eq. 1 and employing the divergence theorem, we obtain

f p[ Wil + 1,91V + KaV5V; + K3V3V5 + U] dV
\%

3)
= J-p[Flul + Alvl] dv + f [O_ji,jui + O_jiui,]' + Q‘l],]Vl + ‘Q‘l]VL] + qi,i] dv
\'4 A

As Eq. 3 holds for every segment of the body, thus, the local expression of the conservation of energy is
derived as follows:
p[ulul + Kl\')liil + Kz\)z‘jz + K3\./3i}3 + U = p[Flul + A1V1] + O-ji,jui + O-jiui,j + 911,)V1 + ‘Q‘l]Vl.] + qi,i (4)

Eq. 4 remains valid upon substituting ; with 0; + ;, where §; are arbitrary constants, while keeping all
other terms unchanged. Therefore, from Eq. 4, we obtain:

p[ (W + ) + Ky V1 V; + KyV,U; + kgV5¥5 + U

= : . . : . (%)
= p[Fi(; + 1) + Apvi] + o1 (0 + 03) + o5t + Qigv; + Qv + qy e
By subtracting Eq. 4 from Eq. 5, we derive:
@iloj; +pFi—pe ] =0 (6)
Since the quantities within the square brackets are independent of %; according to Eq. 6, we deduce:
oji; + pF; = p 2 iy @)
With the aid of Eq. 7, Eq. 4 leads to a simplified form of the conservation of energy:
p @ U= oyl +qi; + Qv — Ay (®)

where h;,i = 1,2,3 satisfy the relation

Qlivi + hl + pA1 = pKlvl,
'QZ],] + flz + pAz = pK2V2, (9)
Q3]"]' + h3 + pA3 = pK3V3

Let g;, Q; denote the first moments of energy vector and mass diffusion, respectively. The balances for
the first moment of energy and mass diffusion are given by:

P& = Qjij + i — G (10)

pQy; = Njij + Ni — Oj (11)

where 1; are the components of mass flux vectors, gy, ny; are, respectively, the first heat flux and mass
diffusion moment tensors, §;, 0; are, respectively, the microheat flux and micromass flux averages.
The local form of the principle of entropy is typically represented by the following expression:

. (Y qjiTi> <PT]j pT]jiTi>
§— (2 RAUBMSEL ) I
P (T+ 1), \7 1) ®

which implies
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q] J q]1]T1+jS.jTiTi
T T

Pn;T; Pn;i Ty
7 L. >
3+ Py + T( > >,,- >0 (12)

pST — q;; + — ;i Ty + Pjm; —

where S, P are the entropy and chemical potential per unit mass, respectively, T is the absolute temperature,
and T;j is the microtemperature vector.
The local form of the mass concentration law is

n;; =€ (13)

where C is the concentration of the diffusion material in the elastic body. For each micro element, the mass
conservation law becomes

C=(n+ Ciﬂji)_j =M + Cijmji + Cimij (14)
Eq. 8 with the help of Egs. 10, 11, 14, and the inequality in Eq. 12 becomes
o , , 1 1 . )
PITS — U = Ti& — Cilli] + 03555 + Qi — Ayv; + TqiT,i + TT,jqjiTi —q;iTi; + PC+ (q; —S)T

1 P (15)
— PCinji; — PCymyi + Pymy — fpan,j +T (Tiji)_ + 153G + (i — o) G 2
j

where ej; = 2 (uy; + u;;) are the components of the strain tensor. Introducing the function ¢ = U + Tig; +
) 2 )) ],

C;Q; — TS, the inequality in Eq. 15 in the context of linear theory can be expressed as:

o . . 1 . i
—p[ + ST — Tig; — Gilli] + o355 + Qyjviy — Ay + 74T — ;T + PC+ (@i = S)Ti + Pjm;
+(Mi—0)C=0

The function { can be written in terms of independent variablese;;, v;, v, T, T;, T, T, C,Cj, C; and Ci]..

+1iiCi (1)

Therefore, we obtain:

oy A oy 0y . Op. Oy . Oy . Ov,
= Nt — Vi — T —T +—T 4+ —T +—
V=gt an t au, Wt ar T Tar Tt an Tt o Tt 5 C o, Gt ag O
o (a7
aC;;

Inequality in Eq. 16 with the help of Eq. 17 becomes

], o, oy oy . aw].

[O'ij paeij]eij+[ﬂ pa [h +p6 ]v1+p[.s1 Ti]Ti+p[Qi ac, G;
oy . oy . oy .
_p[s+ﬁ]T+[P pac]c_ a1, i i~ P T T Pac; i Pac, G

1
+ TqiT,i —q;iTij + (i —S)Ti + P,jnj + 151G + (M —0;)C; = 0

Let us introduce the notations ¢ = v — VO, 0 =T—T,, where @ = (@1, ®,,@3), Ty is the reference

are the volume fraction fields in the reference

configuration. In the linear theory, the mdependent variables are e;5, @;, 913, 0,0, T;, Ty, C, Cj, CiandC; ;. The
above inequality must hold for all rates &;5, ;, @5, 0, 9 T T”, C C C; and C . Therefore, the coefﬁc1ents
of the aforementioned variables must equate to zero, indicating:
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L T A v o
Gi]' - paei]" ij — paq)i‘jf i— pa(pi! Si - aTiJ i aci'
o ou ou o o o
_—— = — _—= _— _— —:O, 18
=% PTPic 5,70 ot O T aC,; (18)

1 -
T_qie,i = q;iTi; + (q; — $)T + Pym; + ;G + (M —0)C; = 0
0

In the linear theory of materials possessing a centre of symmetry, we can take { in the form:

pCc6?
To

Zplp = Ci]'plei]'epl + Zai]-eil-e + 2b1]e1]C + ZCijei]-(pl + Zdi]-ei]-(pz + Zfi]-ei]-(p3 - 211<ple - 2ni(pi -

—2aBC + bC? + i} + 20,9107 + 205903 + 206 3P1 + AjjP1,i Py

+ Bij2,i®2; + Cij@3i@3; + 2Djj01 025 + 2Ejj2 1935 + 255931015 — o Ti T

= BijCiCy = 2vyTiCy — 2Py 5 T; — 2U559025 Ty — 2Q45035 Ty — 2Mj59045C; — 2Tp25C;

= 2X3593,;C;
where cjjp; is the tensor of elastic constants, aj;, by; are, respectively, the tensors of thermal and diffusion
expansions. Ay, By, Cjj, Dyj, Eyj, Fij, Sjand o, i = 1,...... ,6 are functions which are typical in porous theories.
l;, j are coupling constants. ajj, Bj; are, respectively, the tensors of microtemperature and microconcentration

effects. vjj, By, Uyj, Qij, Myj, Ty, Xij are coupling tensors. The consecutive coefficients have the following
symmetries:

Cijpl = Cjipl = Cplji> &jj = &ji, byj = by, ¢ = ¢55, dyy = dy, fiy = £, Ay = Ay,
Bij = By, Gy = Cji, Dy = Dy, Eyj = Eji, Sij = Sy o5 = i, By = Byis
Yii = Vi B = B Uy = Uji, Qi = Qji, Myj = My, Ty = Ty, X5 = X;i
Using the above equation in the system of Eq. 18, the following consecutive equations are obtained:

Ojj = Cijpiepl T Cij@1 + dyj@, + i3 + a6 + by,
Qyj = Ajj@1i + Dij@a; + Si3; — PByTy — MG,
Q5 = Djj@1,i + Byj@ai + Ejjoz; — UyTy — Ty G,
Q3j = Sjj@1i + Ejj@; + Gz — QiTy — x35C;,
hy = —Cjjej — A Q1 — APy — A3 + 1,6 + 0y C,
hy = —djjey; — a1 — W@, — asP3 + 1,0 + nyC,

(19)
hs = —fije; — g1 — AP, — 33 + 130 + 13C,
pe; = =By — U@z — Qi35 — ayTy — v45C;,
Py = —My@1; — Ty@2; — X393, — Vi T; — ByiCj
pC.H
pS = —ai]-ei]- + li(Pi + T + aC, P= bi]-ei]- — njQ; — ab + bC,
0
The linear expressions for g, qjj, $;, Ni, N;j, 0; are
q; = ky6; + k7T, qij = —myjpg T p, §i = (kyy — Kyy) 05 + (15 — Lip T, 20)

Mi = hyPj + hyCjmy = —nyjpeCop, 0 = (hy — Hy)P; + (hy — Hy)G

where the constitutive coefficients kjj, k;j, Kjj, Lij, hj, ﬁi]-, Hj;, ﬁi]-, mjj,. and Ny, satisfy the inequality
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kl]e 9 + (Kl] + — T K]i 9 T + LI]TT + mllpgT ,pTi,j + hl]P.lp.] + (Hll + h]l)P,]Cl + Hl]CIC]
0
— NjipgCg piCi = 0
and the following symmetries
kij = kji' K] = K] K] = Kji' L” = L]'i' hl] = hji' Hl] = Bji' Hl] = H]'i'
Hj; = Hj, Mijpg = Mijpg, Nijpg = Njipg
The linearized form of inequality in Eq. 12 is
pToS = qij (21)

Considering Egs. 19 and 20, Egs. 7, 9-11, 13, and 21 can be reformulated as:

Cl]plepl] + Cl]‘-plj + dl](le + fl](P3] + al]e] + bijcj + pF = Pﬁi,
Mjipg Tg pj — auT YlJC Pyjdrj — Uiz — Qi3 = K;8 + LIJTJ'
NjipgCgpj = ViiTy = BijC — Mijoj — Ty@2 — Xijps; = HyPj + Hy G,
—cjiej; — PyTij — MjiCij + Ajji + Dij@25 + Sij@35 — 0101 — Qs @,
_0(6(93 +1,6 +n;,C+ pAy = pry Py,
_dijeij - Ul T C + Dl]‘Pl ij + Bl]‘PZ ij + El]‘P3 ij — Qg1 — Q20 (22)
_0‘5(93 + 1,0 + 1n,C + pA; = pr Py,
el] Ql] ij Xl]cl] + Sl]‘-P1 ij + El](Pz ij + Cu(P3 ij = AP — APy
=033 +130 + n3C + pA3 = pi3 s,
To[—ayjéy; + lip; + aC] + pCq 6= k;;0 5 + KUT] "
hjj[bpiep — ngg —ab + bC];; + h,]C]l =C

For an isotropic and homogeneous materlal, the subsequent equations are simplified to:

oij = Aepp8i; + 2uey; + [A, 0, — B16 — B2C]65;,
gy = A1¢015 + Ayaj + Aspz; — BiTj — B4Cj,
Qoj = Ag@1j + Ay + Asz; — BTy — BsGj,
Q35 = Ag@1j + As@z; + Az@3; — BTy — Be(,
hy = —Repp — 1P — APy — A3 + 1,6 +1n,C,
hy = —Ryepp — A1 — W@, — as@P3 + 1,6 + nyC,
hy = —Azepp — g1 — A5, — 33 + 136 + 13C, (23)
pei = —B1@1; — B2y — B3z — D1 Ty — D3C;,
P = —B4@1; — Bs@,; — Bez; — D3T; — DoC;,

0
pS = Blepp + Lo + PCe +aC,P = Bzepp —n;@; —ab + b(,

di = k0; + KTy, q;5 = =Kk, T, 5 —ksTij — KeTji, G = (kK —k3)0; + (ky — k)T,
ni = hP; + h,Cy,ny; = —h4cp,p5ij - hSCi,j — heCj, 07 = (h = h3)P; + (hy — hy)G

where

Cijp1 = A8y;8p1 + 1818 + 16y 8;p, @y = —B1 8y, by = —Ba8yy, ¢y = Ay 85, dyj = X8y, fy = A58y,
Ajj = A, 8, By = A,8;, Cyj = A8y, Dy = A48y, Byj = A8y, Sy = A68U,P = B,
Uy = B8y, Qy = B3Sy, My = B481],T = Bs8yj, Xij = Be8ij, i = D185, By = D8y, vij = D38y,
kij = k8, 165 = ky 8y, Lyj = K8y, Ky = ks, hy = hdyy, by = hy 8, Fy = h,85, Hyj = hy 8y,

mi]'p] = k481]8p] +k 81p8]1 + k561161p, ni]'p] = h481]8p1 + h661p8]l + h58i18ip
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where &;; is Kronecker’s delta and A, p, By, B2, 44, A3, A3, Ay, Ag, By, Bg, D1, D3, D3, K, h, ky, kg and hy, hg are
material constants. Therefore, utilizing Eq. 22 in conjunction with the support of Eq. 23, we establish the
governing equations for homogeneous isotropic thermoelastic diffusion. These equations incorporate
considerations for microtemperatures, microconcentrations, and triple porosity, under the assumption of the
absence of heat and mass diffusive sources:

pAu + (A + wV(V - u) + 4;Ve; — B,V6 — B,VC = pij,
(kgA —ky)v+ (ky + ks)V(V - v) —k3VO = D;v + Dyw + B;Vp;,
(hgA —hy)w + (hy + hg)V(V - w) —h3VP = D3v + D,w + B 3V @5,
=X (V-u) = B1(V-v) = Bo(V-w) + (A14 — ap) @1 + (Al — o) Pz + (A — a6) @3
+1,0 + n,C = px; @,
—%2(V-u) = B3 (V- v) = Bs(V-w) + (A2 — au) @y + (A4 — a2) 2 + (AsA — a5) 3 (24)
+1,0 + n,C = pry @,
—A3(V-u) = B3(V-v) = B(V: W) + (A6l — ats) 1 + (AsA — as5) @, + (Azd — a3) @3
+130 + n3C = pr3P3,
To[B1(V - &) + Li; + aC] + pCeh = kAB + ky(V - v),
hA[—B,(V - u) — nj; —ab + bC] + hy (V- w) = C
where v = (T, T,, T) and w = (C4,C,, C3) are, respectively, microtemperature and microconcentration
vectors, A and V are, respectively, Laplacian and Del operators.
In the following sections, the chemical potential has been adopted as a state variable rather than
concentration. From the 11" equation of Eq. 23, we get

1
C= E[P + Bzepp + n;Q; + ae]
Hence, the system of Eq. 24, with the assistance of the above equation, is transformed into

pAu + (X + V(Y - u) + A;Ve; — 9,V0 — 9,VP = pii,
(koA — k)v + (kg + K)V(V - v) — ksV8 = Dy ¢ + Dyw + BV,
(hgA —hy)w + (hy + hg)V(V - w) —h3VP = D3V + D,w + B, 3V,
=& (V-u) =By(V-v) = B4(V-w) + (A1A — )1 + (A4A — Cu) @z + (Asd — T3
B +8.0 + v, P = pr; 94,
—(V-u) = B3 (V- v) = Bs(V-w) + (A2 — 01 + (A28 — G) @z + (AsA — Ts5) @3 (25)
B +8,0 + v, P = pr, @,
—A3(V-u) = B3(V-v) = Bg(V- W) + (AsA — Go) 1 + (AsA — G5) @z + (AzA — T3) @3
+830 + v3P = pK3 s,
—To[9,(V - 1) + §@p; + sP] —nTy0 + k, (V- v) + kAB =0,
—[9,(V- ) + vi¢; + 66 + @P| + hy (V- w) + hAP = 0

where

— K1 — — X = -
’CJ—b ) 192 —‘(ISBZ, '81 - Bl‘}‘aaz, 7\1 —Xi_ni‘SZ, A —)\_'8282,
¢ =aw,V; = 0y, § =0 — Ny, G4 = Q4 —NyVy, (s = a5 —NyV3,

_ _ _ pCe .
{6 = Qg —N3Vy, & =1 + nyg, n= T +aci=123
0

3. Steady oscillations

The displacement vector, microtemperature, microconcentration, volume fraction fields, temperature
change, and chemical potential functions are presumed as
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[u(x t), v(x t), w(x, 1), (x, 1), 0(x,t), P(x,£)] = Re[ (u*, v*, w*, @*, 8%, P*)e™'®t] (26)

where, o is the oscillation frequency. By employing Eq. 26 in the system of Eq. 25 and omitting asterisks
(*) for simplicity, we derive the system of equations for steady oscillations as

[MA + pw?]u+ N + WV(V - u) + A;Vep; — 9,V0 — 9,VP = 0,

[kGA - kz + l(l)Dl]V + (k4 + ks)V(V . V) + l(l)DgW + l(l)BlV(pl - k3V9 = 0,
l(l)D3V + [hGA - hz + l(L)Dz]W + (h4 + hs)V(V . W) + l(l)Bi+3V(pi - h3VP = 0,
=X (V-u) =By(V-v) = By(V-w) + (A4 — v1) @1 + (AsA — T) @y + (AsA — L) @3
+Ele + V]_P = O,

_iz(v “u) = Ba(V-v) = Bs(V-w) + (A48 — 3 @1 + (A2 — v2) @, + (AsA — G5) s (27)
B +Eze + Vzp = O,
—A3(V-u) = B3(V-v) = Bg(V-w) + (AgA — Cg) @1 + (AsA — G5) @, + (AzA —y3)@3
+E3e + V3P = 0,

Ty [0, (V - u) + &@; + ¢P] + k{1 (V- v) + [KA + 1wnTy]6 = 0,
w[9, (V- u) + v;; + 0] + hy (V- w) + [hA + www]|]P =0

where, v; = {; — pkjw?,i = 1,2,3. We introduce the second-order matrix differential operators with constant

coefficients
(1) F(Dx) = (Fgl(Dx))14X14
where Fg(Dy), g 1=1,...... ,14 are given in Appendix A.
(i1) F(Dx) = (Fgl(Dx))H_X“_
where Fgl(DX), gl=1,...... ,14 are given in Appendix A. The system of Eq. 27 can be represented as

F(D)U(x) = 0

where U = (u,v,w, @, 0, P) is a fourteen-component vector function for E*. The matrix F(Dy) is called the

principal part of the operator F(Dy).

DEFINITION 1: The operator F(Dy) is said to be elliptic if |I~*‘(m)| # 0, where m = (m;, m,, m3). Since
|F(m)| = u2Akkek,hhgh,9Im[3%, X = X' + 2p, k; =k, + ks + kg, h; =h, + hs + hg

A1A4Aq

AsAzAs

AgAsAs

where § = , therefore operator F(Dy) is an elliptic differential operator if

uAkk¢k,hhgh,9 # 0 (28)
DEFINITION 2: The fundamental solution of the system of Eq. 27 (the fundamental matrix of operator F)

is the matrix G(x) = (Gg(x)) ,Satisfying condition

14x1
F(Dy)G(x) = 8(x)1(x) (29)
where 8(x) is the Dirac delta, I(x) = (84)

terms of elementary functions.

Lax1a is the unit matrix and x € E3. Now, we construct G(x) in

4. Construction of G(x) in terms of elementary functions

Let us consider the system of non-homogeneous equations

(MA + poP)u + (X' + WV(V - u) — 4Ve; + 1wTy9,V60 + 1wd,VP = H (30)
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(koA + kg)v + (ky + ks)V(V - V) + wDsw — B;Vep; + k,VO = V 31)
D5V + (heA + hg)w + (h, + he)V(V - w) — B,sVe; + h,VP = W (32)

7~‘1(V ‘u) + 1B (V- v) + 1B, (V- W) + (A1A — v1)@1 + (ALA — Q) @, + (Asd — o) @3 (33)
+1w&; Ty + wv, P = X;

X, (V- u) + By (V- v) + 1wBs (V- W) + (AsA — 3) @1 + (A4 — v2)@, + (AsA — )3 (34)
+1ws, Ty + wwv,P =X,

Z3(V-u) + wB3(V - v) + 10Bs (V- W) + (A — 36) @1 + (AsA — L5, + (AzD — v3) @3 (35)
+1w&;Te0 + 1wv;P = X,

—9:(V-u) = kz(V-v) + §@; + [kKA + wwTyn]0 + wwsP =Y (36)

—9,(V-u) —h3(V-w) + vi@; + wTy60 + [hA + wwwm]|P =Z (37

where H, V, W are three-component vector functions on E3; X;, Y and Z are scalar functions on E3. The
system of Egs. 30—37 may be written in the form

Fr(DUE) = Q(x) (38)
where F' is the transpose of matrix F,Q = (H,V, W, X;,Y,Z), x € E3. Applying operator (V) to the Egs. 30-
32, we obtain

(AA + pw?)V - u — XA@; + wTy9;A0 + 1wd,AP =V - H (39)
(kA +kg)V-v+ 1wD;3V-w—BjAg; + kA6 =V -V (40)
wD3V - v+ (h,A + hg)V - w — Biy3A@; + hyAP =V - W (41)

Egs. 33-37 and 39-41 may be expressed in the form

N@A) @2 S=Q (42)
where S, Q, N(A) are defined in Appendix B. Eq. 42 may also be written in determinant form as

(A)S =¥ (43)

where W = (¥,,.......... W), ¥, = 2 8, Nipw; T3 (A) = 'N%A)' A = Xkk,hh,9p = 1,...... 8and N7 is
the cofactor of the elementN;,of the matrix N. On expanding I (4), We see that
i=81

N(d)=M@A+2)
where A%,i=1,..... ,8 are the roots of the equation I'; (—m) = 0, for m. Applying operator I} (A) to Eq. 31
with the assistance of Eq. 43, we obtain

LA)A+B)u=Y (44)
where A2, T; (A) and W' are given in Appendix C. Multiplying Egs. 31 and 32 by hgA+hg and wDy

respectively, we obtain

(heA + hg)[(keA + kg)v + (ky + ks)V(V - V)] + (heA + hg)wDsw =

(heA + hy)[V + B.Vep; — k, V6] (45)
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(wD3)?v + wD3[(hgA + hg)w + (hy + hs)V(V - w)] = 1wD3[W + B, 3Ve; —h,;VP] (46)
Employing Eq. 46 in Eq. 45, we get

(heA + hg)[(keA + kg)v + (k4 + ks)V(V - v)] — (wD3)?v =

Applying I; (A) to the above equation with the assistance of Eq. 43, we get
L (ML) =" (47)

where I, (A) and $” are mentioned in Appendix C. It can be seen that I, (A) = (A + A%)) (A + A%,), where
A%,i = 10,11 are the roots of the equation I (—m) = 0, with respect to m. Multiplying Egs. 31 and 32 by
wD; and kgA + kg respectively, we obtain

wD;[(keA + kg)v + (kg + ks)V(V - v)] + (wD3)*w = wDs5[V + B;Ve; — k,V80] (48)
D3 (kgA + kg)v + (kgA + kg)[(hgA + hg)w + (hy + hs)V(V-w)] = (49)
(ke + kg)[W + Biy3Ve; —h, VP]
Using Eq. 48 in Eq. 49, we get

(keA + kg)[(hgA + hg)w + (hy + hs)V(V - w)] — (lwD3)*w =

Applying I3 (A) to the above equation with the help of Eq. 43, we get

[ (AT, (A)w = ¥ (50)
where W"is defined in Appendix C. From Egs. 43, 44, 47 and 50, we have

0(A)U(x) = P(x) (51)
where P (x) and®(A) are mentioned in Appendix C. The expressions for ¥/, W", W, ¥,,p = 4,..... ,8 can

be rewritten in the form

8
¥ = %H(A)]H + w1 (A)V(V - H) + wp (Q)V(V - V) + w3 (A)V(V - W) + Z wi1(4) Vw;,

i=4

Y = wy,(A)V(V - H) +% (heA + hg)I; (A)JV + wy, (A)V(V - V)

8
—% (D3 Ty (A)JW + wap (A)V(V - W) + Z Wiy (8) Vw;,

1 i=4 (52)
¥ = wig(A)V(V - H) = = D3y ()IV + W ()V(V - V)

8
+% (KA + kg)T3 (AW + was (A)V(V - W) + Z wis(A) Vw;,

i=4
8
Wy = Wiy (V- H o+ Wy ()7 V + wip (DT - W+ " wip (B) w,
i=4
where | = (8pq)3><3 is the unit matrix and w;;(4),1,j = 1,...,8 is given in Appendix D. From Eq. 52, we

have

P) = RT(D)QX) (53)
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where R(Dy) = (qu (DX)) . is given in Appendix D. From Egs. 38, 51, and 53, we obtain

14%X1
F(D)R(Dy) = ©(4) (54)
We assume that A3 # A% # 0, p,q=1,..... 11,
Let
9
Y0 = (500), 0y Yon0D = D a6,
=1
8,10,11 g 8
Yp+3;p+3(X) = Yp+6;p+6(x) = Z r2g gg(x)!Yll(X) = Z r3g Qg(X),
g=1 g=1
Y0 =0, p=123 1=10,...... 14, iLj=1........ 14, Q%]
where
eAglxl i:1éi$p , - 18=11(')1T1q 5 oy
gg(X) = _lel: ip = I 0\1 _)\p) ’ Iyq = I (Al _)\q) ’
i=1i%2 (55)

rsg;= I A2 -1 g=1,..,11, p=1,..)9,
q=1,....,8,10,11, z=1,....,8

LEMMA 1: The matrix Y is the fundamental matrix of the operator O(A) i.e.

0(A)Y(x) = s(x)1(x) (56)
PROOF: To establish the lemma, it is adequate to prove that
[ (8)(A + 238) Y11 (%) = 8(x) (57)
[ (A2 (A)Yas (%) = 6(%) (58)
[ (8)Y10;10(%) = 8(%) (59)
Consider ¥{_, ry; = %Z?ﬂ(—l)j“ z;, where zy,....,2;9 are mentioned in Appendix E. Upon
10

simplifying the R.H.S. of the above relation, we obtain

irli = 0. (60)

Similarly, we find

9 9 j=1 9 j=1
Y-y =0, ey - Af)] =0, > w|10¢- A%)l =0,
) i=2 i =3 i = i
Y |03 —A%)l =0, e ne —A%)] =0, ey R —A%)l =0, (6D
i=5 i=6 i=7

Also, we have
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(A +23)55(x) = 8(x) + (A5 — A3)5g(X), pg=1,..... 11 (62)

Now, let us consider

i=1 9 i=2 9
LAY +29)Y100 = TA+R) Y 16,00 = TA+) ) 1[50 + O = sy (9)]
g=1 g=1

Using Eqs. 60-62 in the above relation, we obtain
I (A)(A +23 )Yll(x)

i=2

ﬁm+m§}ﬁm m@>IHNMGan?Amaw+%—@m@ﬂ

. -
= M(A+22) Z rg | 122 - )l 55(x)
g 3
T > i Aﬁw®+%—@gm
1:4 j_
= A+ Z rg| T (22 - )l 6(%)
= ﬁ (A+2?) Z Iig ﬁ )] [6(x) + (A% — A2)ge(x)]
135 9 '=1
= T(A+22 Z rig | (22 Ag)l 6(%)
0 e 4b®+w 225, (0]
136 j_
T+ N )Zrlg oz - )l 6(%)
= ﬁ (A + 22 rlg )] [8(x) + (A2 — A2)g,(%)]
- i=1
= T (A+22) Z rg | T2 - )l 65(%)
?9 9 '=1_
=1 - 7\;2;)] [6(x) + (A2 — A2)g,(%)]
=
=8 9 j=1
n(A+A)Zr1g I ( )]cg(X)

- (A+7\9)Zr1g ﬁ Y l[&(x) + (02 - )5, )]

= (A +23)5o(x) = 8(x)
Egs. 58 and 59 can be proved similarly.
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We introduce the matrix
G() = R(D,)Y(X) (63)
From Egs. 54, 56 and 63, we obtain
F(D,)G(x) = F(DYR(D,)Y(x) = 0(A)Y(X) = 8()1(x)

Therefore, G(x) is a solution to Eq. 29.

THEOREM 1: If the condition in Eq. 28 is satisfied, then the matrix G(x) defined by Eq. 63 is the
fundamental solution of the system of Eq. 27, and each element of the matrix G(x) is represented in the
following form:

Ggl(x) = Rgl(Dx)YII(X)' Ggq(X) = qu(Dx)YM-(X)I ng x) = jo (Dx)Y10;10(%),
g=1,....,14, 1=1,2,3, q=4,....,9, j=10,..... ,14

5. Basic properties of matrix G(x)

THEOREM 2: Each column of the matrix G(x) is a solution of the system of Eq. 27 at every point x €
E3except at the origin.
THEOREM 3: If the condition in Eq. 28 is satisfied, then the fundamental solution of the system

F(DYU®X) =0

is the matrix G(x) = (Ggl (x)) , Where Ggl x),gl=1,..... ,14 are given in Appendix F.

14x14

6. Fundamental solution of a system of equations in equilibrium theory

If we substitute w = 0 into the system of Eq. 27, we derive the system of equations for the equilibrium theory
of thermoelastic diffusion with microtemperatures, microconcentrations, and triple porosity as:

uAu + (X + WV(V - u) + XVe; —9,V8 —9,VP = 0,
(kA — kv + (kg + ks)V(V - v) —k;VO =0,
(hgA — hy)w + (hy + hs)V(V - w) —hyVP = 0,

—X1(V-uw) = By(V-v) = By(V-w) + (A1A — )@y + (AyA — L)@y + (Agh — L) s

~ +§,0+v,P =0,
~F2(V 1) = By(V - v) = Bs(V - W) + (A2 — 1) @1 + (AA — )@, + (Ash — L)@ (64)
B +Eze + Vzp = 0,
—K3(V-u) = B3(V-v) = Be(V-w) + (AgA — Gg) @1 + (AsA — (5)py + (AzA — (3) @3
+&;0 +v;P =0,

ky (V- v) + kAB = 0,
h, (V- w) + hAP = 0

We introduce the second-order matrix differential operators with constant coefficients as
E(Dy) = (Egl(Dx))H_X“_

where matrix E(Dy) can be obtained from F(D,) by takingw = 0. The system of Eq. 64 can be represented
as

E(D,)U(x) =0
DEFINITION 3: The operator E(Dy) is an elliptic differential operator iff Eq. 28 is satisfied.
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DEFINITION 4: The fundamental solution of the system of Eq. 64 is the matrix G'(X) = (G'gl(x))

satisfying the following condition.

14%x14

E(D,)G (%) = 8(x)I(x) (65)
We consider the system of non-homogeneous equations
pAu + (N + V(- u) — 4V, = H (66)
(keA —ky)v+ (k4 + k5)V(V-v) = B;Vo; + k VO =V’ (67)
(hgA —hy)w + (hy + hs)V(V-w) — Bi;3Ve; + h,P =W’ (68)
(V- w) + (A1D = 3) @1 + (Asd — 3@, + (Ash — L6) @3 = X1, (69)
T (V) + (A4A = T)@; + (A28 — 3) @ + (AsA — 35)@s = Xy, (70)
X3 (V- 1) + (AsA — 3)@1 + (AsA — 35) @, + (A3A — 33)@3 = X3, (71)
=9 (V-u) = k3(V-v) + §p; + kAB =Y’ (72)
—9,(V-u) —hg(V-w) +vj@; + hAP =7’ (73)

where H', V', W'are three-component vector functions on E*; X;, Y’, Z'are scalar functions on E*. The Egs.
66—73 can also be expressed in the following form:

EY(DUX) = Q' (%) (74)
where E' is the transpose of matrix E,Q’ = (H',V',W’,X{,Y’,Z"), x € E3. Applying the operator (V -)to the
Egs. 66-68, we obtain

AV -u) — LA =V - H’ (75)
(k;A —k,)V-v—BAp; + kKA =V -V’ (76)
(h7A - hz)v W — Bi+3A(pi + hlAP = V . W’ (77)

Egs. 69-71 and 75 may be expressed in the form
NS =0 (78)
where S, Q’and N’ (A) are defined in Appendix G. Eq. 78 can also be expressed in determinant form as:
I;(A)S' =@ (79)
where ® = (..., D), P = 23, Mipw;, T3 (8) = 'N'éA“,C -
the elementNi'p of the matrix N’. On expanding I';(A), we see that

A9, p=1,...,4and Mi*p is the cofactor of

i=1
3
L;(4) = AT (A+ )
where fiZ,i = 1,2,3are the roots of the equation |N(—m)| = 0 (with respect to m). From Eq. 72, we get
AB = i[Y' +9:(V-u) + k3(V-v) —&p;]. Use it in Eq. 76 and then apply the operator I3(A) to the

resulting equation, we get
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kik; —kyk 80
LAY + DV v = g, ] = 202 =0
Kk,
where ®sis given in Appendix G. From Eq. 73, we get AP = % [Z"+9,(V-u) + h3(V-w) —vjgi]. Use it
in Eq. 77 and then apply the operator I';(A) to the resulting equation, we get

h;h; —hyh 81
Lo (A)(A + )V - w = B, i = 2 e
hh,
where ®gis given in Appendix G. Applying operators I3 (A) (A + fif) and I3(A)(A + {ig) to Egs. 72 and 73
and using Eqgs. 80 and 81, we get

igt (82)
A2TI (A + {i2)6 = @,

isd (83)
A2TI (A + fi2)P = by

i=1 i=1
4 3,5
where @, and ®gare defined in Appendix G. Applying operatorsI3(A), A2 T1 (A + {i?) and A% I1 (A + fi?)
to Egs. 66-68 respectively and using Eqs. 79-83, we obtain

AT;(A)u = @/,

i=1
2T A+ v = & 2=
A s = ”, = - —
( Ui )v Ue ké (84)
=) h,
AT (A+iPHw=d", fii=-—

where @', ®", ®" are mentioned in Appendix G. From Egs. 79 and 82-84, we get
AQM)U(x) = D(x) (85)
where ®(x) and A(A) are defined in appendix G.
The expressions for @', ®", d", &,, &5, d,, D,, Dg can be rewritten as
P(x) =Z"(D)Q' ()

(86)
where Z(D,) = (Zgl(Dx))

14X1

4is given in Appendix H. From Eqgs. 74, 85, and 86, we get

E(D)R(Dx) = A(d) (87)
Let

3
V60 = (%09) o Yap00 = riasi00 + TS 00 + ) ige G,

g=1
4,6
Virapes () = 1100 + 6500 + D 105 G5()
g=1
3,5,7
>

s (9 = 6100 + 156300 + ) gz G500,

=1
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3
Y;')+9;p+9(x) =13:61(x) + Z r:};g+1 ég(x)'

g=1

4
Vi3 (9 = 1516109 + 156300 + ) gz G,
g=1
3,5
Via1s (9 = Tr6100 + 1626300 + ) gz Ga(9)
g=1
Yx) =0 p=123 ij=1..,14  i#]

where §(x),g = 1,...,7 and ryy, ..., Tg; are given in Appendix I.
LEMMA 2: The matrix Y'is the fundamental matrix of the operator A(A) i.e.

ALY’ (x) = §()1(x) (88)

PROOF: To prove the lemma, it is sufficient to prove that

A3 (8)Y1; (x) = 8(x),

AT (A)(A + ) (A + [ig) Yaa (%) = 8(X),
AL (A)(A + R5)(A + 7)) Y77 (X) = 8(%),
I3 (A)Y{o;w(x) =8(x),

AT (A)(A + ﬁ4)Y1’3;13 x) = 6(x),
AT (8)(A + [i5)Yi414(X) = 8(x)

(89)

It is much easier to prove the system of Eq. 89. It has been left for the reader. We introduce the matrix

G'(x) = Z(D)Y' (%) (90)

From Egs. 87, 88 and 90, we obtain E(D,)G'(x) = §(x)I(x). Hence, G(x) is a solution to Eq. 65.
THEOREM 4: If the condition in Eq. 29 is satisfied, then the matrix G'(x) defined by Eq. 90 is the
fundamental solution of the system of Eq. 64.

7. Conclusions

The paper makes significant contributions to the field of thermoelasticity through the following key aspects:

Derivation of linear theory: The paper introduces a linear theory that incorporates triple porosity,
microtemperatures, and microconcentrations. This theoretical framework expands the understanding
of thermoelastic behavior in materials by considering multiple intricate factors simultaneously.
Analysis of fundamental matrix: The study includes an analysis of the fundamental matrix
associated with the resulting system of equations. This analysis is conducted under different scenarios,
including oscillatory and equilibrium conditions. Understanding the fundamental matrix provides
insights into the dynamic and static behavior of the thermoelastic system.

Enhanced understanding of thermoelastic behavior: By considering triple porosity,
microtemperatures, and microconcentrations in the derivation of the linear theory, the paper
contributes to a deeper and more nuanced understanding of thermoelastic behavior in complex
materials. This holistic approach enables researchers and practitioners to model and analyze materials
with a higher degree of accuracy.

Practical insights: The derived linear theory and the analysis of the fundamental matrix offer
practical insights that can be applied in real-world scenarios. Understanding how thermoelastic
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materials behave under various conditions is crucial for designing and optimizing materials in
engineering and scientific applications.
In summary, the paper's contributions provide a valuable foundation for advancing the field of
thermoelasticity, offering a more comprehensive theoretical framework and insights that can be practically
applied in the analysis and design of materials with complex thermoelastic properties.
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Appendix A
2
qu(Dx) = [nA + pwz]qu + A+ % ox.’ Foq+3 (Dy) = Fp+3;q(Dx) =0,
Xp 0Xq
. 0
Fp;q+6(Dx) = Fp+6;q(Dx) =0, Fp;q+9(DX) = _Fq+9;p(Dx) = 7&q E

p
d
FP;lS(Dx) = -9, Q'Fp;u(Dx) = -9, a:

2

Fpi3,q+3(Dx) = [KeA + kg]8pq + (K4 +ks) 0x, 0%q’

Fp+3:q+6(Dx) = Fp+6:q+3(DX) = 1wD36, Fp+3;q+9(Dx) = wBy ER
P

d
Fp+3;13(DX) = —k; X'Fp+3;14(Dx) = F14;p+3 (Dx) =0,
p
2
Fpt6,q+6(Dx) = [heA + hg]8,q + (hy + hs)

0xp, 0xq’

d d
Fp+6;q+9(Dx) = lOOBq+3 ale+6;13(Dx) = F13;p+6(Dx) =0, Fp+6;14(Dx) = —h; a,

ad
Fp+9;q+3(Dx) = _Bp Ev Fp+9;q+6(Dx) = _Bp+3 6_xq’ Fp+9;p+9(Dx) = ApA ~ Yp

F10;11(Dx) = F11;10(Dx) = A4 — Ty, Fro12 (Dy) = F12;10(Dx) = AgA — G,
F11;12(Dx) = F12;11(Dx) = AsA =g, Fp+9;13(DX) = Ep! Fp+9;14(DX) = Vp,

a d
Fi3,4(Dy) = w9, Ty EE Fi3,4+3(Dx) = Ky 57—, F13,919(Dy) = w0y To,
Xq 0Xq
a
F13;13(Dx) = kKA + 1N Ty, Fy3;14(Dy) = wwgTy, Fr4,4(Dy) = wd, P
q

Fia,q+6(Dx) =y ax.’ Fi4,q+9(Dx) = 10vg, F14,13(Dy) = 106,
q

F1414(Dy) = hA +wwm,p,q = 1,2,3, kg = wD; —k,, hg = wD; —h,
2 2

Fpi3qra(Dx) = keASpq + (ks + k) 0xp, 0xg’

F..(D,) = HAS,, + (A" + )
2

Fp+6;q+6(Dx) = l'16A8pq + (hy + hs)m' Fp+6;p+6(Dx) = ApA: F‘10;11(Dx) =

Fll;lO(Dx) = A44, l~:10;12(]:&) = F‘12,-10(Dx) = Ag4, F11;12(Dx) = F‘12,-11(Dx) = AsA,
F13;13(Dx) = kA, F14;14(Dx) = hA, sz(Dx) = sz(Dx) =0,

F‘p+3;y(DX) = F‘y;p+3(Dx) =0, Fp+6;i(DX) = F‘i;p+6(Dx) =0, ﬁp+9;j(Dx) = 1~:j;p+9(Dx) =0,
F13;14(DX) = F14;13(DX) = 0, p, q = 1,2,3, 7= 4, - ,14‘, y = 7, . .,14,i = 10, . ,14,j = 13,14‘
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Appendix B

S=W-u,V-v,V-w,9,6,P), Q= (wy,...,wg)=(V-HV-V,V-W,X,Y,Z)
AA + pw?00 — XA — XA — XAl T, 9; Alwd, A
0k,A + kgiwD; — B;A — B,A — B3Ak; AO
OwD3h,A + hg — B,A — BsA — B4AOh; A

0B lwB A A — Y1 ALA — (A — LiwToE 1w,
8x8 ZolwBLlwBsA A — {ALA — YA — Lo TyE 1wV,
Z31wB3lwBgAGA — (AA — (A A — V31w TyEs 1wV
—9; — k308, &,85KA + 1w Tynwg

—9,0 — h3v;v,v3lwTychA + wwm

N(2) = (Ng (1)

8x8
Appendix C
,  pw? .1 ) -
A5 = Tv ¥ = _{Fl(A)H'V[O\ + WY1 = A4z + wd; Toyy + L001921]18]}
_ 1keA+ kSLu)D3 =
[2(8) = 5 |ioDsheA + hy|* B = Kehs
W = _{(h 60+ hg)[[1(A)V = (K4 + ks) Vi, + BV 3 — k1VlIJ7]}
B (—wD;3[I7 (AW — (hy + hs)Vs + Biy Vi3 — hy Vijig]
yr — i{(keA + kg)[[1(A)W — (hy + hs) Vs + By 3 Vs — hlquB]}
B (=D [I1(A)V — (k4 + ks) VU, + BiViyz — Ky V]
Px) = (W, ¢, ¥"Y,,...,.¥%), 0(A) = (egI(A))Mm,
i=1 =1
9 0,11
Opp(d) =L(A)A+23) = TQA+2A),  Opizpis(d) = Opygprs(d) = H(AL(A) = “n (A+2D),

i=1
8

Bqq(8) =Ty (A) = T (A+22),04(8) =0,p=123,q=10,...,14,g1=1,..,14,g # |

Appendix D

1 -
wp1(8) = == [(7\' + N1 () = [AiNGi43(8) — w93 ToNp (A) — 19,Np5(2)]],

@) = {(h 68 +hg)[(ks +Ks)Npz(A) — BiNpjii3(A) + ki Ny (A)]}
W2 ~ AB (~1wDs[(hy +h5)Nja(4) = BiyaNpi43(8) + hyNpa(d)] J7

wos(d) = — 1 {—thg[(k4 + ks)Np2(8) — BiNp;i45(4) + ki Np7 (8)] + }
p3 AB (kA + kg)[(hy + hs)Np3(A) — Biy3Npi43(4) + hyNig(A)] )
A
wpy;(A) = p’( ) =1..8j=4,...,8

2 2

Rii13(Dy) = A ,
9% 6X 1,]+3( x) W12( )6Xi an

1
Rij(Dx) - Fl(A)SIJ + Wll(A)
2 d
aXi aX]- , Ri;p+6(DX) = Wlp(A) a_Xi,

2 2

1
% 6x Ri+3;j+3(DX) = E (hGA + hs)rl (A)Sij + WZZ(A) aXi an ’

Ri;j+6(DX) = wy3(4)

l+3](DX) - W21(A)
1 02 0
Rit3;j46(Dx) = — 5 =1wD3I (A) 655 + Wz (A) -——— 9%, 0%, Riy3p+6(Dx) = sz(A)a—X].
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2 2

1
Rit6;j(Dx) = w31 () 7—— 3%, 0%, Rit6;j+3(Dx) = — El‘DD 311 (8) 855 + w3y (A) -——— 3%, 0%,
2

Rit6;j+6(Dx) = ~(k A+ kg)[; (A)855 + Wiz (A) s—— 9%, 0%,

d
Ri+6;p+6(Dx) = W3p(A) %’
i

d d a
Rp+6;i(Dx) = Wp1 (4) 6_Xi' Rp+6;i+3(DX) = Wp2 (A)O_Xi’ Rp+6;i+6(Dx) = Wp3 (A)a_xl:
Rp+6;e+6(Dx) = Wpe(A),i,j =123,pe=4,...8

Appendix E
i=3 1'=g4 PgS q;6 g§7 1=8

2= TA -3 -A) 05 —2) 0 AZ—23) I (AZ—2) T AF —A)(A3 —23),
i=3 1'14 PES qgﬁ g§7 138

= N =2A)TA =) T Q-2 T AE -2 A -2 TR -A)A3 —29),
:; 1'=94 pES q§6 g§7 1=8

z3= ;-2 DA —A) TG —2) T AZ—23) T (A2 —2) T AF —A)(A3 —A9),
i= j=3
i;;t 1';;4 pES q§6 g§7 1=8

2= ;-2 DA5-A) T3 —2) T AZ—23) T (A2 —2) T AF —A)H(A3 —29),
i=2 J=3 p=4
i£5 1=;5 pf;S qzﬁ g§7 138

zs= M=) DA =) T Q-2 T A5 -2 T A -2 TR -A)A3 —29),
i=2 j=3 p=4 q=5
i¢96 1;;6 p3:6 qjﬁ g§7 l=8

Ze= A =2A)TA; =) T A3 —2A3) T (A5 —2A3) IT (A% —2A3) m W =) -2,
i=2 j=3 p=4 q=5 g=6
i=;7 i=;7 p§7 q§7 g=9=7 138

;= N =2)TA-2) T A5 -2) T Q5 -2 A -2 T A -A)A3 —29),
i=2 j=3 p=4 q=5 g=6 1=7
i£8 1';;8 p3;8 qj;B g=;8 1£8

zg= M =2A)TA;=2A) T A3 -23) I A5 —2A3) T (A2 -2 T A% —A)(A3 - 2P),
i=2 i§3 p§4 q§5 g§6 1=7

2o=TTQAF AT —-A) 03— I (AF—23) I (A2 —23) m A=) -2,
i=2 1'—3 p;4 qgs g§6 157 es8

250 = (A — ) m M- T A2 0 Q-2 T AZ-2AD T AZ—A) T (3 -2 (AZ —13)
Appendix F
~ 1 1 ~ 1 1
Gy(x) = iV(V "62(X) ==V X (VX6(x),  Girgjas(x) = k—V(V "62(¥) — VX (VX6 (x)),
[ 7 6

_ 1 1 _ A Ay —AZ
Gitgj+6(X) = V(V 6 (X)) — _V X (VX 63(x)), G1o;10(%) = T%(X):
A4 - _ _ AjAs — AjAg

~ ~ AzAq

G10,11 (%) = Gi1;10(%) = T 61 (%), G10;12(X) = Gyp.00(X) = 3 G (%),
e 3 — A% ~ ~ AsAg — AAs |

Giy1a (%) = 9 61 (%), Gi1;12(%) = Gi2;11 (%) = f 61(x),

. AA, = A . GE G
G12;12(X)=%91(X)' Gy3;3(%) = 1k , G414(X) = 1h ’
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1p(X) - pl(X) 1+3 q(X) - Gq 1+3(X) - G1+6 y(X) - y1+6(X) - 1+9 r(X) - 0

~ ~ - X |X|
Griito(X) = G13;14(X) = Gyg;13(X) =0, G(x) = _lel: (X)) =—o=
i,j=123,p=4,...,14,9q=7,...,14,y = 10,...,14,r = 13,14
Appendix G
= (V-u,9),Q = (wi,wy,wz,wy) = (V-H',X])

(A o A
RO = (), = | A = bbb =LA =L |

\szztA — GaAA — (G AzA — <5/

steA - ZGASA - ZsAsA - <3 4x4
N'@) = (Ny@), , = Afg®),,,
1
o = E{k [(B A+ E‘kl) @,y + T3(A)V - v'] C Ky [T A)Y + slcbl]}
7

1 vih
oy = ﬁ{h [(Bi+3A + T1> ;1 + T3(A)V - W’] —hy[[3(A)Z + schl]}
7
1
D, =— [(A + iD)[A)Y +9;P; — §Pipq] + k3 Ps]
Dg [(A +i [F3 (DZ' +9,®; — vi®iyq] + h3P]

o = —[l“g(A)H’ — (N + VP, + AV,
i—1

ol A2 i (A + AV’ — A(ky + ks)VDs + BA(A + [i5) VD, — k VD,

i=1

" = A2 n (A + fHW’ — Ah, + hg)VDg + Bi,3A(A + [iZ)Vd;,; —h, Vg

d(x) = (cb', D", D", Dy, Dy, Dy, Dy, D), AA) = (Agi (D))

14x14°
i3t e
App(D) = AT3(A) = A2 TN (A + 2),  Apyaprs(d) = A2 TN (A +i?),
:1 i=1
3,57 3
Apreiprs(D) = A2 T (A+ i), Apropro(d) =T3(A) = AT (A + i),
ig1 i

Aq343(8) = A? H (A +7P), Aqa;14(8) = A2 T1 (A + fif),
Ag(B)=0,p=123,gl=1,..14,g#]

Appendix H
1 62 92
Zij(Dx) = Fs(A)81] + m11(A) 1]+3(Dx) my,(A) 57— %, @
X;' X;’
62
Zij16(Dy) = m13(A) +Ziprg(Dy) = my; p+2(A)

]
i=1 2

1
l+3](DX) - 0 Zl+3]+3(DX) - _AZ H (A + i‘llz)sl] + mZZ(A) M aX
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Zi+3;]'+6(DX) = Zi+3;q(Dx) =0, Zi+3;13(Dx) m27(A) 1+6](DX)
1 i=1 2
1+6]+3(Dx) - 0 Zl+6]+6(DX) - _AZ H (A + )81] + m33(A) AX: 9% )
Xj OX;

d
1+6 e(Dx) =0, Z1+6 14(Dx) - m38(A) y+81(Dx) - y+2;1(A)£'

i
d
Zy+8;i+3 (Dx) = My, Z(A) y+81+6(Dx) - y+2;3(A)£;
1
Zy+8;p+8(Dx) = y+2;p+2(A)'Zl3;1(DX) = Zl3;i+6(DX) = Zl3;q(Dx) =0,
d
Zl3;i+3(Dx) = my,(4) a’ Z13;13(Dx) = mjy,(4),
1
d
Z14;(Dx) = Z14;143(Dx) = Z14,(Dx) =0, Zy4;i+6(Dy) = mg3(4) I

1 ~
Z14;14(Dy) = mgg(d), my4(4) = _E{O\’ + WMi;(4) — XiMI;Hl(A)}t

A + uz * *
myp(8) = - = [Ka91Mi3 (8) + (Bikd + ks §)My 111 (8)],
7
+ Fl% * *
my3(4) = m [-h19;M7;(A) + (Biy3hA + hyvi)M7 ;.4 (A)],
7
M;y(A) 1
My, (4) = g my;(4) = K [(k A —Kk;)(0:Mj;(8) — §M; 144 () + K3 BiAMT, 4 (A)],
7C
myg(4) = ¢ [(h A —hy)(9, M1 (A) — viM;i44 (D)) + h3Bi+3AMI;i+1(A)]:
m,,(A) =0 my,(4) = — F:(8) [(ks + ks)KA + kq k3] m,,(4) = EF3(A)
z ’ Kk k, ’ Kk, 37
Mae(®) =0, Mys() = — 20 [(hy +hhd +hyhal,  mg(8) = 1Ty (4)
s ’ hhgh, ’ hh, 3
1 -
my,,,(4) = ——~{(7\' + M, (A) — KMy, (D)},
A+ig . .
my,,,(4) = m[ k19;Myq(8) + (BikA + Ky §)Myi.4 (A)],
7
+ fif . My (4)
my+2:3(A) = hh C [—hy9,M 1(A) + (Bi;3hA + hlvi)My;i+1(A)]fmy+2;r+2(A) = T'
7
my,,.;(4) = [(k A —ky)[9; My (A) — &M;,i41 (A)] + k3BidAM;,i44 (A)],
my,5(4) = [(h7A hy)[9,My,(8) — My, (A)] + h3Bi3AMy 4 (A)],
kT3 (A) (A + jiz (A (k,A —ky)
m;,(4) = mgs(4) = 0,m;,(A) = —M,mw@) = #.
Kk, Kk,
h; T3 (8) (A + fi% [3(4)(h;A —hy)
mg;(A) = _h—h7rm88(A) = h—h7

L,j=123,p=2..6q=10,12,14,e = 10,...,13,y,r = 2,4,z = 1,3,6,8,s = 1,24,7
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Appendix I
elﬁg|x|
e (x) = — o
gg( ) 41T|X| )
3 3
r —
ryj; = _z
p=1 \j=1j#p
4,6 4.6
! —
Iy, = _z
p=1 \j=1j#p
3,57 / 3,57
! —
r3; = —
p=1 \j=1j#p
3
o ~—2
Iy = | | K~
i=1
4 4
! —
1831 _Z
p=1 \j=1j#p
3,5 3,5
! —

j=1j#p

p
1,23,q=146,z=157r=1,...,4,s=13,5

g=1
3
~2
By
L
4,6
~2
Hy
i=1
3,5,7
~2
b
i=1
! —
Tgy1 =
4
~2
i=1
3,5
~2

i=1

'I7I
3
~—4 [ ~=2
Hi ISV} K~
i
4,6
~—4 I ~=2
My Iz Ki
i=1
3,5,7
~—4 I ~—2
K I3y Ky
i=1
3
-1
~—2 | | ~2 _ ~2
Hy (ui — Hy ’
i=1,izy
4
~—4 - ~=2
My r5z—| | K=
i=1
3,5
~—4 o ~—2
Hi r62—| | K=

i=1

! -
Iiy+2 =

! —_
2942 =

! —
I3,242 =

!
r5;r+2

! —
Fo;s42 =

= iy

—4
i=1,i#r
3,5

i

i=1,i#s

(Fllz - Fllz')_li

(OHETR



