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The compressive strength (CS) of concrete is a critical parameter for the safety and 

longevity of structures as it directly affects the load bearing capacity and durability. 

However, determining the CS by conventional methods is time consuming, costly 

and requires a large amount of sample preparation. This study aims to quickly and 

cost-effectively predict and classify the CS of concrete and determine the influence 

of components on strength using machine learning (ML) algorithms as an alternative 

to traditional methods. Support Vector Machines (SVM), Decision Trees (DT), 

Multilayer Perceptron (MLP) machine learning algorithms and Random Forest (RF), 

Gradient Boosting (GB) and Extreme Gradient Boosting (XGB) ensemble learning 

models were trained on a dataset consisting of 1030 data points of concrete 

containing fly ash (FA) and blast furnace slag (BFS). The dataset was split into 75% 

training and 25% testing, and the Grid Search method and 5-fold cross-validation 

were applied in the training process. According to the results of the study, the XGB 

model showed the most robust performance in the prediction and classification of 

the CS of concrete with an R2 of 0.931 and an accuracy of 0.901. However, SVM 

and DT demonstrated inferior performance relative to the other four models. In 

addition, the models were classified normal strength concrete more successfully than 

low and high strength concrete. It was determined that the two most effective factors 

on CS were concrete age and cement dosage. While the increase in concrete age and 

cement dosage increased the strength, the increase in water content decreased the 

strength. 
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1. Introduction 

Cement, which is used as the main binder in concrete manufacture, is one of the largest sources of carbon 

dioxide (CO2) emissions worldwide. Therefore, it significantly changes the environmental conditions in the 

region where it is produced [1,2]. Greenhouse gases are produced all over the world every year due to cement 

production in the developing construction sector. Moreover, annual cement production worldwide is about 

four billion tons and each ton of cement in this production process causes the same amount of CO2 emissions 

[3,4]. Portland cement production is responsible for about 7% of CO2 emissions. In particular, calcium oxide 

(CaO) has a substantial effect on the amount of CO2 released during PC production [5]. To minimize these 
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harmful effects, the use of different recycled or waste materials in concrete production has been presented as 

a solution [6]. It is recommended to use waste or recycled material in concrete production to minimize the 

impact [6]. This approach will enable the utilization of waste without adversely affecting the suitability of 

concrete for its intended purpose. Currently, industrial waste materials such as FA, ground BFS, and silica 

fume, are used in concrete by replacing Portland cement in production [7]. This substitution enhances the 

mechanical [8,9] and durability [10,11] properties of hardened concrete and reduces CO2 emission. 

 Concrete material, together with steel, is the most widely used material in the world construction industry. 

Concrete is used as a building material worldwide due to the advantages of strength, durability, hardness, 

porosity, density, fire resistance, and various properties [12]. Among these properties, CS is the most 

important property since it affects the strength and durability of concrete more strongly [13]. The CS of 

concrete, which is a heterogeneous material, is affected by the binder, aggregate, water, and admixtures [14].  

All these components and their mixtures significantly affect CS. It is very difficult to accurately determine 

or predict the CS of concrete with complex content. The CS of concrete is usually determined by subjecting 

cylinder and cube samples to axial loading after a certain period (7, 28, 56, 90, and 120 days). This approach 

is globally standardized. However, because laboratory testing is costly and laborious, it is now considered 

inefficient and uneconomical. 

 Recently, with advances in computing and technology, ML algorithms have been utilized to predict many 

mechanical properties in concrete [15-18].  ML methods such as regression, classification, and feature 

extraction are used to determine the mechanical and durability properties of concretes and provide 

information on mix performance. As an example of these studies, Song et al. [19] investigated ML methods 

such as gene expression programming (GEP), artificial neural network (ANN), and DT to predict the CS of 

concrete containing FA. Using 98 experimental data points, they trained the models and evaluated their 

performance by k-fold cross-validation. According to the results, the bagging algorithm showed the best 

prediction performance with 95% accuracy; the R2 values of GEP, ANN, and DT models were found to be 

0.86, 0.81, and 0.75, respectively.  Behnood et al. [20], predicting the CS of silica fume concrete using ANN 

is considered a dual objective problem optimizing accuracy and model complexity. For this purpose, a new 

method, Multi-objective Grey Wolf Optimization, was used and a total of 31 optimized ANN models were 

obtained. The final model has a single hidden layer with only five neurons, with an R2 of 0.961 for all data. 

Furthermore, sensitivity analysis was carried out to examine the trends of the variables affecting the CS. 

Farooq et al. [21] compared RF and GEP algorithms for predicting the CS of high-strength concrete. The 

parameters used included cement dosage, coarse and fine aggregate ratio, water, and superplasticizer. The 

RF model showed outstanding performance using a DT, a weak base learner and achieved high accuracy 

with R2 = 0.96. The GEP algorithm provided an empirical relationship with good agreement between 

predicted and actual values. In addition, comparisons were made with ANN and DT algorithms, and 

permutation calculations were carried out to assess the effect of variables. 

 This study aims to utilize ML to accurately predict the CS of concrete with FA and BFS. Although 

advanced ML techniques have been used in previous research, the need to integrate the SHAP method has 

been largely unaddressed. Therefore, this study applies a two-step approach: firstly, selecting the best-

performing model among various ML algorithms and then applying SHAP methods to improve 

interpretability. In this scope, comprehensive data with 1030 data points was split into 75% training and 25% 

test sets. Then, the best hyperparameters of SVM, DT, RF, GB, XGB, and MLP models were determined 

and trained using the GridSearchCV method. The training was performed for both regression and 

classification. Three classes, Low, Normal, and High, were selected for classification. Finally, property 

analyses were performed for the components that affect the CS of concrete. The effectiveness of FA and BFS 

were compared. The study demonstrates that ML models significantly predicted and classified the 

compressive strength of concrete. 



15   Yılmaz et al. 

 

2. Data description 

2.1. Dataset 

The data used in this study for the prediction and classification of the CS of concretes with fly ash (FA) and 

BFS (BFS) were derived from the UC Irvine Machine Learning Repository [22]. In the dataset, which is 

composed of 1030 data points in total, the input characteristics are cement dosage, FA amount, BFS amount, 

water, superplasticizer, coarse aggregate, fine aggregate, and age. All input variables represent the amount 

of material in kilograms per 1 m³ volume. The CS of concrete was utilized as the output variable. For 

classification, three strength classes are defined based on ACI 318 [23], Eurocode 2 (EN 1992-1-1) [24], and 

TBEC (2018) [25] standards. Concrete with a CS less than 25 MPa and generally used in non-bearing or 

temporary structures are labeled as ‘Low’, concrete with a CS between 25 MPa and 50 MPa and used in 

residential and general building applications are labeled as ‘Normal’, and concrete with a CS above 50 MPa 

and used in engineering structures such as bridges, dams, high-rise buildings are labeled as ‘High’. In the 

data set, 295 data points belong to the Low class, 525 data points belong to the Normal class and 210 data 

points belong to the High class. In this scope, the CS of concrete was estimated and classified according to 

their strength classes. The first 20 data points of the dataset used in the study are presented in Table 1. 

 

Table 1. Head of dataset 20 data points [22] 

 Cem BFS FA W SP Coarse_A Fine_A Age C_Strength 

1 540.0 0.0 0.0 162.0 2.5 1040.0 676.0 28 79.99 

2 540.0 0.0 0.0 162.0 2.5 1055.0 676.0 28 61.89 

3 332.5 142.5 0.0 228.0 0.0 932.0 594.0 270 40.27 

4 332.5 142.5 0.0 228.0 0.0 932.0 594.0 365 41.05 

5 198.6 132.4 0.0 192.0 0.0 978.4 825.5 360 44.30 

6 266.0 114.0 0.0 228.0 0.0 932.0 670.0 90 47.03 

7 380.0 95.0 0.0 228.0 0.0 932.0 594.0 365 43.70 

8 380.0 95.0 0.0 228.0 0.0 932.0 594.0 28 36.45 

9 266.0 114.0 0.0 228.0 0.0 932.0 670.0 28 45.85 

10 475.0 0.0 0.0 228.0 0.0 932.0 594.0 28 39.29 

11 198.6 132.4 0.0 192.0 0.0 978.4 825.5 90 38.07 

12 198.6 132.4 0.0 192.0 0.0 978.4 825.5 28 28.02 

13 427.5 47.5 0.0 228.0 0.0 932.0 594.0 270 43.01 

14 190.0 190.0 0.0 228.0 0.0 932.0 670.0 90 42.33 

15 304.0 76.0 0.0 228.0 0.0 932.0 670.0 28 47.81 

16 380.0 0.0 0.0 228.0 0.0 932.0 670.0 90 52.91 

17 139.6 209.4 0.0 192.0 0.0 1047.0 806.9 90 39.36 

18 342.0 38.0 0.0 228.0 0.0 932.0 670.0 365 56.14 

19 380.0 95.0 0.0 228.0 0.0 932.0 594.0 90 40.56 

20 475.0 0.0 0.0 228.0 0.0 932.0 594.0 180 42.62 
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2.2. Dataset visualization 

It is important for ML applications to determine and visualize the distribution of data. These distributions 

and visualizations contribute to determining the relationships between the data and evaluating the ML results. 

Table 2 shows the statistical data of the input and output features used in the study. Components in the dataset 

such as cement, BFS, and FA have the right shifted distributions and a wide variation, while the distributions 

of components such as water and fine aggregate are more symmetrical and normal. Superplasticizer has high 

skewness and kurtosis, i.e. mostly low values, but some samples show high levels. Age has a fairly wide 

range, shifted to the right, and shows a very pointed distribution. Coarse aggregate and CS, on the other hand, 

were flatter, concentrated on the left, and exhibited symmetrical distributions. These results revealed that the 

constituents in the concrete mix are highly variable, but some of them have more pronounced and regular 

distributions. 

 The correlation matrix, which shows the relationship between the features and how each variable interacts 

with the others, is another important tool used in visualizing the data. The correlation matrix of the data used 

in the study is given in Fig. 1. The correlation matrix shows that the CS of concrete is mostly influenced by 

cement content (Cem, +0.50), water content (W, -0.29), superplasticizer (SP, +0.37) and age (Age, +0.33). 

It was determined that as the amount of cement and superplasticizer increased, the strength increased, while 

the increase in the amount of water decreased the strength. FA (FA, -0.11) and aggregates (Coarse_A, -0.16; 

Fine_A, -0.17) had a weak effect on the strength. A strong negative correlation (-0.66) was observed between 

water and superplasticizer while increasing age increased strength. The results obtained from the correlation 

matrix are in line with previous experimental studies [26,27]. 

 

3. Methodology 

3.1. Machine learning models and implementation 

The machine and ensemble learning models selected within the scope of the study were determined to predict 

and classify the CSs of FA and BFS admixed concretes, considering the complex nonlinear relationships of 

these concrete types. Detailed explanations of these ML models, which have proven their successful 

performance on different data sets in previous studies, are presented in the following. 

 

Table 2. Statistical parameters of the dataset 

Features Abbreviation Mean Min Max Std Skewness Kurtosis 

Cement Cem 281.168 102 540 104.456 0.509 -0.524 

Blast furnace slag BFS 73.896 0 359.4 86.237 0.800 -0.512 

Fly ash FA 54.188 0 200.1 63.966 0.537 -1.328 

Water W 181.567 121.8 247 21.344 0.075 0.116 

Superplasticizer SP 6.205 0 32.2 5.971 0.906 1.399 

Coarse aggregate Coarse_A 972.919 801 1145 77.716 -0.040 -0.602 

Fine aggregate Fine_A 773.580 594 992.6 80.137 -0.253 -0.108 

Age Age 45.662 1 365 63.139 3.264 12.104 

Compressive strength C_Strength 35.832 2.332 85.599 16.777 0.417 -0.112 
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Fig. 1. Correlation matrix of the dataset 

3.1.1. Support vector machines 

SVM is a powerful and flexible ML method used in both classification and regression problems. SVM, 

announced by Cortes and Vapnik [28], aims to determine the optimal boundary that provides maximum 

separation between different classes by separating the data with a hyperplane. This method uses kernel 

functions to work effectively on nonlinear problems and can learn discriminative boundaries by moving the 

data space to higher dimensions. Owing to its robust performance, its ability to generalize well with little 

data, and its robust mathematical foundation, it is widely used in many fields from engineering to biology. 

3.1.2. Decision trees 

DT is an easy-to-understand and effective ML method used in both classification and regression problems. 

This method creates decision rules by branching the data in a tree-like hierarchy. Each node divides the data 

based on a feature, while leaf nodes represent the final class or value prediction.  Introduced by Quinlan [29] 

with the ID3 algorithm, this method was later developed into popular versions such as C4.5 [30] and CART 

[31]. Decision trees offer a highly interpretable model owing to their easily visualizable structure and can 

work effectively on multidimensional datasets. 

3.1.3. Random forest 

RF is a popular ML method used for both classification and regression problems, offering high accuracy and 

robustness [32]. This method, proposed by Leo Breiman [33], builds an ensemble model by combining 

multiple decision trees. Each tree is trained on a random subset of the dataset and the predictions are 

combined by taking the majority vote (classification) or the average (regression) of all trees. This method 

improves generalization performance while reducing the risk of overfitting. RF, which is especially effective 

in large datasets and high-dimensional problems, is preferred in a wide range of applications due to its strong 

prediction capabilities and the fact that it does not require extreme parameter sensitivity. 
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3.1.4. Gradient boosting 

GB is a robust ensemble learning method for both classification and regression problems. Proposed by 

Jerome H. Friedman [34], it aims to build a robust model by progressively correcting the errors of weak 

predictors (usually decision trees). The model uses gradient descent to minimize the errors of the previous 

model at each iteration [35]. This process enables the capture of complex non-linear relationships and high-

accuracy predictions. 

3.1.5. Extreme gradient boosting 

XGB is a speed and accuracy-optimized ensemble learning method that provides high performance in 

classification and regression problems. XGB, announced by Tianqi Chen [36], basically builds an ensemble 

of decision trees by improving the gradient-boosting algorithm. This method improves the accuracy of the 

model step by step, focusing on reducing the error at each iteration. Owing to its ability to deal with missing 

data, scalability, and regularization, XGB avoids overfitting and works effectively on large and complex 

datasets [37]. 

3.1.6. Multilayer perceptron 

MLP is a fundamental building block of artificial neural networks and is a powerful ML method used in both 

classification and regression problems. MLP is a feed-forward network with at least one hidden layer, where 

each neuron is fully connected to the neurons in the next layer [38]. This method uses activation functions 

to learn non-linear relationships and a backpropagation algorithm is usually used to update the weights [39]. 

MLP, which can work effectively on high-dimensional and complex datasets, is considered the pioneer of 

deep learning and is nowadays used in many application areas [40]. 

3.1.7. Data preprocessing and splitting 

Data preprocessing is the process of making data suitable for use in the analysis or training of ML models 

[41]. Data normalization is done to eliminate scale differences between features. In this study, Z-score 

normalization is used; the value of each feature is brought to the same scale by subtracting the mean and 

dividing by the standard deviation [42]. Therefore, training or analyzing the model could be done in a more 

balanced way. The separation of the data set into training and test sets is important to assess the accuracy 

and generalizability of the model [43]. Commonly, 70-80% of the data is used for training and 20-30% for 

testing. The training set is used for learning the model and the test set is used to measure the performance of 

the model with independent data. In this study, previous studies were analyzed, and the data were randomly 

allocated as 75% training and 25% test data. 

3.1.8. Hyperparameter fine-tuning 

Grid Search [44] is a hyperparameter fine-tuning method often used in ML applications. This optimization 

technique is used to determine the hyperparameters of a model and aims to find the one that will provide the 

best performance by trying different combinations of hyperparameters. Cross-validation (CV) [45] is a 

technique used to test the generalization ability of the model. In this method, the data set is divided into 

training and validation subsets, and the model is evaluated in both subsets. This process can be repeated on 

different subsets of the data set to ensure a reliable evaluation of the model. In this study, Grid Search and 

CV are used together to determine the best hyperparameters. GridSearchCV evaluates the performance of 

the model for hyperparameter combinations and selects the best combination by applying a 5-fold CV (Fig. 

2). For each combination, the data set is divided into five equal parts and each part is used for validation. As 

a result of the optimization, the best hyperparameters of the models for prediction and classification 

applications are given in Table 3. 
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Fig. 2. 5-fold cross-validation method in study 

 

Table 3. Optimal hyperparameter combination in classification and prediction 

Model Parameters Range 
Best Parameter 

Classification Prediction 

SVM 

C [1, 2,10,100,300] 10 100 

epsilon [0.5, 0.1, 0.01, 0.001] 0.01 0.5 

kernel ['linear', 'rbf', 'poly'] 'rbf' 'rbf' 

DT 

min_samples_split [2, 5, 10] 5 2 

min_samples_leaf [1, 2, 4,10] 1 10 

max_depth [None, 10, 20] None 20 

RF 

n_estimators [50, 100, 200] 200 200 

max_depth [None, 10, 20] None None 

min_samples_split [2, 5] 5 2 

min_samples_leaf [1, 2] 1 1 

XGB 

n_estimators [50, 100, 200,500] 200 500 

learning_rate [0.05, 0.1, 0.2] 0.1 0.1 

max_depth [3, 6, 10] 3 3 

subsample [0.8, 1.0] 0.8 - 

GB 

n_estimators [50, 100, 200,500] 50 500 

learning_rate [0.01, 0.1, 0.2] 0.2 0.1 

max_depth [3, 6, 10] 3 3 

MLP 

hidden_layer_sizes [(50,), (100,), (200,)] (50,) (100,) 

activation ['relu', 'tanh'] 'tanh' 'relu' 

solver ['adam', 'sgd'] 'adam' 'adam' 

learning_rate ['constant', 'adaptive'] 'constant 'constant 
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3.1.9. Performance criteria 

In this study, the performance of the models was evaluated with different metrics for prediction and 

classification tasks. In the prediction task, R-square (R^2), Mean Absolute Error (MAE), and Root Mean 

Square Error (RMSE) metrics were used.  R^2 is a metric that measures how well the model explains the 

data in the prediction task. MAE is used to evaluate the average size of the prediction errors, while RMSE 

measures the performance of the model at large deviations by penalizing large errors more. 

 In the classification task, several metrics were used to assess how well the model was able to discriminate 

between classes. Accuracy gives the overall proportion of correct predictions, while precision measures how 

many of the predicted positives are correct. Recall measures how accurately the model detects all true 

positives. The F1 Score balances precision and sensitivity and is particularly useful in situations with class 

imbalance. Finally, the AUC (Area Under the ROC Curve) measures the ability of the model to distinguish 

between positive and negative classes. The performance metrics used in the prediction and classification of 

concrete compressive strength were determined by analyzing previous studies and the equations of these 

metrics are given in Eq. 1-Eq. 3, and the mathematical expressions of the classification metrics are given in 

Eqs. (4)-(6) [15,17,46,47,48]. 

R2 = 1 −
∑ (yk

′ − yk)2n
k=1

∑ (yk
′ − y̅)2n

k=1

 (1) 

MAE =
∑ |yk

′ − yk|n
k=1

n
 (2) 

RMSE = √
∑ (yk

′ − yk)2n
k=1

n
 (3) 

Precision =  
TP

TP + FP
 

(4) 

Recall =  
TP

TP + FN
 

(5) 

F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall
 

(6) 

3.2. Application of the SHAP method 

The SHAP (SHapley Additive exPlanations) method, derived from Shapley values introduced by Lloyd 

Shapley [49], is widely used to interpret ML model predictions. SHAP values quantify each feature's 

contribution to the prediction by averaging its marginal contribution across all possible combinations of 

features. This ensures an equitable distribution of the overall prediction value among the features [50]. Once 

the model is trained, SHAP values are computed using the formula in Eq. 7, where ϕi represents the 

contribution of feature i. The equation is: 

ϕi = ∑
|S|! (|N| − |S| − 1)!

|N|!
(v(S ∪ {i}) − v(S))

S⊆N\{i}
 (7) 

where N is the set of all features, |S| is a subset excluding feature i, |S|is the size of S, and v(S) denotes the 

model output when only using features in S. By averaging over all subsets S, the Shapley value provides 

insight into how each feature influences the model's predictions. 
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 SHAP analysis offers several visualization techniques to improve model explainability. The SHAP 

summary plot, which shows the impact of features on the prediction, visually reveals the importance of each 

feature in the model. SHAP dependence plot helps to understand the effect of a feature on model prediction 

by showing its relationship with other features and helps to understand interactions. The SHAP force plot 

visually presents the contribution of each feature to the prediction while explaining the prediction of a 

particular sample. Furthermore, the SHAP waterfall plot shows the contribution of each feature in more 

detail, which allows us to focus specifically on the prediction of a single instance. One of the key advantages 

of SHAP is that it provides a better understanding of how the model makes decisions. This feature increases 

the transparency of the model, especially in complex models. However, SHAP calculations can lead to high 

computational costs on large datasets, as the impact of each feature has to be calculated over all subsets. 

Moreover, SHAP works more efficiently for some models, while others may experience computational 

difficulties. However, the most important contribution of SHAP is that it allows us to clearly understand the 

contribution of each feature to the model's prediction, thus increasing the reliability and accuracy of the 

model. 

 

4. Results 

4.1. Regression results 

The results of predicting the CS of FA and BFS with concretes are given in Table 4. According to the 

performance metrics in Table 4, the GB and XGB models have the best accuracy and minimum error values 

on the test data. XGB has a high generalization capacity with an \ R^2 value of 0.931 and minimizes the 

prediction errors with an MAE of 2.924 and RMSE of 4.325. Similarly, XGB performed effectively with an 

R^2 value of 0.928 and low error margins with 3.024 MAE and 4.425 RMSE. RF showed slightly lower 

accuracy compared to GB and XGB with an \ R^2 of 0.888 but still performed strongly with an MAE of 

3.750 and RMSE of 5.512. MLP provided a good fit on the test data with an\ R^2 value of 0.911, but the 

values of 3.563 MAE and 4.894 RMSE were behind GB and XGB, indicating that the prediction accuracy 

of the model was slightly lower. SVR showed low accuracy in the test phase with an R^2 of 0.873 but 

produced larger prediction errors with MAE of 4.377 and RMSE of 6.300. The DT model, on the other hand, 

achieves lower accuracy in the test phase with an \ R^2 value of 0.855, but its generalization capacity is 

limited with high error values of 4.462 MAE and 6.877 RMSE. GB and XGB are the strongest models in 

terms of accuracy and generalization, whereas SVR and DT have lower performance due to their high error 

margins. 

 

Table 4. CS prediction performance metrics 

Models 
Train Test 

𝐑𝟐 𝐌𝐀𝐄 𝐑𝐌𝐒𝐄 𝐑𝟐 𝐌𝐀𝐄 𝐑𝐌𝐒𝐄 

SVR 0.932 3.731 5.388 0.873 4.377 6.300 

DT 0.897 3.888 5.993 0.855 4.462 6.877 

RF 0.985 1.345 2.023 0.888 3.750 5.512 

GB 0.985 1.379 2.060 0.928 2.924 4.325 

XGB 0.982 1.535 2.236 0.931 3.024 4.425 

MLP 0.958 2.532 3.449 0.911 3.563 4.894 
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Fig. 3. Actual-predicted plots for the test set 

 

 The prediction performance of the ML models is presented in Fig. 3 with the slopes of the regression 

lines and the y-axis cut-off points. 3. These values reveal the accuracy and generalization capacity of the 

models. The GB and XGB models demonstrated a very close linear relationship to the y=x ideal line with 

slope values of 0.92 and 0.91, respectively, and low y-axis cut-off points (2.77 and 2.90, respectively), 

indicating that systematic errors in predictions are minimal. The SVR and DT models, on the other hand, 

indicated a systematic deviation compared to the actual values with lower slope values (0.87 and 0.86). This 

indicated that the accuracy of the models in predicting the load-carrying capacity was limited. Although the 

RF model showed a more balanced performance with a slope value of 0.88, it has a lower generalization 

capacity compared to GB and XGB. The MLP model performed close to GB and XGB with a slope value of 

0.91, but the slight increase in the y-axis cut-off point (3.20) indicates that the bias in the predictions should 

be improved. 
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Fig. 4. Error distributions 

 

 Fig. 4 gives the distribution of the prediction errors of the models in detail. The GB and XGB models 

provided the highest accuracy and stability, with the error distribution concentrated in the range of -5 to +5, 

while at the same time minimizing the prediction bias with a symmetric distribution. The MLP model 

performed similarly, but the error distribution was slightly wider at the extremes, indicating an increase in 

bias in some cases. The RF model provided a balanced performance by concentrating most of its errors 

between -10 and +10, but it did not reach the accuracy level of GB and XGB. On the other hand, the SVR 

and Decision Tree DT models have a wider error distribution, with significant deviations between -20 and 

+20 for SVR and between -20 and +50 for DT, indicating that these models have low generalization capacity 

and produce inconsistent results in predictions. 

4.2. Classification results 

The preferred criteria for evaluating the performance of models in classification problems are confusion 

matrixes, Eqs. (4)-(6), and ROC curves. Fig. 5 shows the confusion matrixes of the test sets of all models in 

the study. According to the confusion matrixes, it was determined that the performance of the models differed 

between the classes. SVM performed quite well in the Low and Normal classes, but made a significant error 

in the High class, classifying most of the samples as Normal. DT, on the other hand, showed a balanced 

performance in general, but made significant misclassifications in the High class, indicating that the model's 

capacity to discriminate complex classes is limited. The RF model provided superior accuracy compared to 

the other models, especially in the Normal class, and obtained more balanced results between the classes. 

XGB stood out with its low error rate in the Normal and High classes and performed well in the Low class. 

Although the GB model provided balanced accuracy in general, it misclassified some samples as Normal in 

the High class. MLP achieved the highest accuracy in the Low class but showed more errors in the High 

class. In general, the High class was the class with the most errors for all models, while the Normal class was 
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best distinguished by XGB and RF. The results obtained revealed the importance of model selection, 

especially depending on the data distribution and class balance. 

 

 

Fig. 5. Confusion matrices of the test set of the models 

 

Table 5. Test set performance criteria for classification 

Models Accuracy Recall Precision F1 Score 
AUC 

Low Normal High 

SVM 0.842 0.832 0.835 0.829 0.980 0.920 0.958 

DT 0.849 0.829 0.829 0.827 0.930 0.857 0.855 

RF 0.881 0.871 0.879 0.869 0.975 0.928 0.970 

XGB 0.901 0.887 0.892 0.886 0.981 0.939 0.976 

GB 0.887 0.867 0.871 0.866 0.976 0.925 0.969 

MLP 0.873 0.864 0.867 0.862 0.981 0.926 0.964 

 

 The performance metrics obtained from the confusion matrix are presented in Table 5. For the selection 

of metrics, AUC is separately reported for low, medium, and high-strength segments. The main reason for 

reporting Accuracy and F1-Score over the whole dataset is to provide a more comprehensive assessment of 

model performance. AUC is an important metric that measures the discrimination power between classes 

and has shown how sensitive the model is to a particular class, especially in unbalanced data distributions. 

Therefore, reporting it separately for each strength class (Low, Normal, High) revealed how accurately the 

model was able to classify different strength levels. According to the performance metrics, XGM is the most 

successful model with the highest accuracy (90.14%), recall (88.67%), precision (89.15%), and F1 Score 

(88.59%). RF performed particularly strongly in terms of accuracy (88.06%) and F1 Score (86.88%), second 

only to XGB. Although GB provided similarly high accuracy (88.73%), it lagged behind RF in terms of 

recall (86.73%) and precision (87.09%). MLP provided a satisfactory result with accuracy (87.31%) and F1 
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Score (86.22%) but was not as successful as RF and XGB. SVM and DT showed limited discrimination 

between classes with lower accuracy and F1 Score than the other models. SVM, in particular, showed a 

relatively balanced performance in terms of precision (83.51%) but was the weakest model in the overall 

results. 

 The ROC curves of the models are given in Fig. 6. The ROC curves show the comparative performance 

of the models at low, normal, and high data levels. At the low data level, the AUC values of all models are 

high (generally around 0.98), indicating that classification tasks are relatively easier at low density. While 

SVM and DT showed strong performance at low data levels, their performance decreased significantly at 

normal and high data levels. In particular, DT showed limited discrimination power at complex data levels 

with a lower AUC value (0.86). On the other hand, RF and XGB stood out as the most powerful models at 

low and high data levels and managed to maintain AUC values as high as 0.93 and 0.94 even at normal data 

levels. It is observed that RF generally offers a balanced performance between the classes, while XGB stands 

out, especially at high data levels. Although GB shows similar trends with RF and XGB, the slightly lower 

AUC value at normal data level suggests that it may be more inaccurate than the others in complex data 

structures. MLP performed very well at the low data level (AUC = 0.98) and showed a similarly strong 

performance at the high data level. However, the AUC value decreased to 0.93 at the normal data level, 

indicating that this model makes more errors in medium-density data scenarios. 

 

 

 

Fig. 6. ROC curves of the model 
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4.3. SHAP analysis results 

The effect of the properties on the CS was determined using the SHAP method.  Since the XGB model 

exhibits good accuracy in predicting the CS of concrete containing FA and BFS, this model was used in the 

SHAP analysis. The SHAP technique provides various graphical representations showing the influence of 

input characteristics on the estimation of output characteristics, the calculations in predicting the output 

variable, and the correlation between input attributes. In the average SHAP value plot given in Fig. 7, Age 

has the largest effect with an average SHAP value of 8.12 and thus is the factor that affects the output 

characteristic the most. This is closely trailed by Cem with 6.91, W with 4.11 and BFS with 3.13. The less 

important traits are SP, Fine_A, Coarse_A, and FA with SHAP values below 3. 

 Fig. 8, the SHAP summary plot summarizes the overall influence of characteristics on model predictions 

across the entire dataset. The SHAP values shown on the horizontal axis represent the positive or negative 

impact of a feature on the prediction, while the features listed on the vertical axis represent the inputs used 

in the model. The color of every dot shows the magnitude of the attribute, with red indicating high values 

and blue showing low values. In particular, traits such as Age and Cem have a wide SHAP distribution and 

have strong effects on the predictions in both positive and negative directions. On the other hand, the SHAP 

values of features such as Coarse_A were generally close to zero, indicating that their impact on the forecasts 

was limited. The SHAP dependence plot given in Fig. 9 analyses the interactions between the features in the 

model in detail. The increase in the amount of Cem has a positive effect on the SHAP values, indicating that 

the amount of binder material plays a positive role in predictions. Similarly, the increase in FA Fine 

Aggregate has a small but consistent positive effect. On the other hand, an inverse relationship was observed 

between W and SHAP values; as the water content increased, the model prediction decreased. Age, on the 

other hand, generally had a positive effect on the model predictions, leading to an increase in the prediction 

values with increasing age. In addition, complex interactions between some attributes were also observed; 

for example, the effect on prediction varied as SP values increased, reflecting the sensitivity of the model to 

the relationships between such attributes. In conclusion, these analyses provide important insights into the 

prediction mechanism of the model, clearly showing that some characteristics (Cem and Age) have a 

dominant effect on the model, while others (Coarse_A) have a limited effect. 

 

 
 

Fig. 7. SHAP importance plot 
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Fig. 8. SHAP summary plot 

 

 
Fig. 9. SHAP dependence plot 

 

5. Conclusions 

 In this study, prediction classification and feature attribute analyses were performed on the CS of FA and 

BFS admixed concretes using ML. The performance of the models was improved, and overfitting was 

prevented by using GridSearchCV optimization technique. The properties affecting the CS were analyzed in 

detail by SHAP analysis. Important results of the study are given: 

• Ensemble learning models outperformed classical ML models in both prediction and classification. 
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• GB and XGB models stood out with the most robust accuracy and lowest error rates compared to 

other models in predicting concrete CS. XGB model was determined as the most successful model 

with an R² value of 0.931 and attracted attention with its low error rates. 

• It was determined that the most effective factors on the CS of concrete were concrete age, cement 

dosage, water quantity, and BFS content. While the increase in the amount of cement and concrete 

age increased strength, the increase in the amount of water decreased strength. 

• The XGB model showed the most successful performance in correctly classifying the strength classes 

and reached an accurate rate of 90.14%. However, the high-strength class was the most difficult class 

to classify for all models. This was attributed to the imbalance in data distribution. 

• In the error analysis, most of the prediction errors of the GB and XGB models were concentrated in 

a narrow range, indicating that the models provided robust accuracy and stability. In contrast, models 

such as DT and SVR showed lower generalization performance with wider error ranges. 

 In this study, CS of concretes containing FA and BFS were predicted and classified with robust accuracy. 

The results obtained show that the developed model can reliably predict the CS of concrete. In addition, 

SHAP analysis revealed that the three most influential factors on the compressive strength of concrete are 

concrete age, cement content, and water content. The two critical methods performed contributed to a better 

interpretation of the CS of concretes containing FA and BFS. Although several ML strategies have been 

established for predicting concrete compressive strength, a gap persists regarding the transparent and 

interpretable nature of these models, which is crucial for practical engineering applications. Future research 

can design decision support systems using larger datasets to realize optimum mix design and predict concrete 

CS in less time and with less effort. In addition, the prediction classification and property identification 

analyses performed in this study can be applied to other mechanical and durability properties. In future 

studies, mixed designs can be made for different concrete types with larger data sets. In these aspects, this 

study is a comprehensive resource that can guide future research. 
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