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1. Introduction

The compressive strength (CS) of concrete is a critical parameter for the safety and
longevity of structures as it directly affects the load bearing capacity and durability.
However, determining the CS by conventional methods is time consuming, costly
and requires a large amount of sample preparation. This study aims to quickly and
cost-effectively predict and classify the CS of concrete and determine the influence
of components on strength using machine learning (ML) algorithms as an alternative
to traditional methods. Support Vector Machines (SVM), Decision Trees (DT),
Multilayer Perceptron (MLP) machine learning algorithms and Random Forest (RF),
Gradient Boosting (GB) and Extreme Gradient Boosting (XGB) ensemble learning
models were trained on a dataset consisting of 1030 data points of concrete
containing fly ash (FA) and blast furnace slag (BFS). The dataset was split into 75%
training and 25% testing, and the Grid Search method and 5-fold cross-validation
were applied in the training process. According to the results of the study, the XGB
model showed the most robust performance in the prediction and classification of
the CS of concrete with an R? of 0.931 and an accuracy of 0.901. However, SVM
and DT demonstrated inferior performance relative to the other four models. In
addition, the models were classified normal strength concrete more successfully than
low and high strength concrete. It was determined that the two most effective factors
on CS were concrete age and cement dosage. While the increase in concrete age and
cement dosage increased the strength, the increase in water content decreased the
strength.

Cement, which is used as the main binder in concrete manufacture, is one of the largest sources of carbon
dioxide (CO,) emissions worldwide. Therefore, it significantly changes the environmental conditions in the
region where it is produced [1,2]. Greenhouse gases are produced all over the world every year due to cement
production in the developing construction sector. Moreover, annual cement production worldwide is about
four billion tons and each ton of cement in this production process causes the same amount of CO, emissions
[3,4]. Portland cement production is responsible for about 7% of CO, emissions. In particular, calcium oxide
(Ca0) has a substantial effect on the amount of CO; released during PC production [5]. To minimize these
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harmful effects, the use of different recycled or waste materials in concrete production has been presented as
a solution [6]. It is recommended to use waste or recycled material in concrete production to minimize the
impact [6]. This approach will enable the utilization of waste without adversely affecting the suitability of
concrete for its intended purpose. Currently, industrial waste materials such as FA, ground BFS, and silica
fume, are used in concrete by replacing Portland cement in production [7]. This substitution enhances the
mechanical [8,9] and durability [10,11] properties of hardened concrete and reduces CO, emission.

Concrete material, together with steel, is the most widely used material in the world construction industry.
Concrete is used as a building material worldwide due to the advantages of strength, durability, hardness,
porosity, density, fire resistance, and various properties [12]. Among these properties, CS is the most
important property since it affects the strength and durability of concrete more strongly [13]. The CS of
concrete, which is a heterogeneous material, is affected by the binder, aggregate, water, and admixtures [14].
All these components and their mixtures significantly affect CS. It is very difficult to accurately determine
or predict the CS of concrete with complex content. The CS of concrete is usually determined by subjecting
cylinder and cube samples to axial loading after a certain period (7, 28, 56, 90, and 120 days). This approach
is globally standardized. However, because laboratory testing is costly and laborious, it is now considered
inefficient and uneconomical.

Recently, with advances in computing and technology, ML algorithms have been utilized to predict many
mechanical properties in concrete [15-18]. ML methods such as regression, classification, and feature
extraction are used to determine the mechanical and durability properties of concretes and provide
information on mix performance. As an example of these studies, Song et al. [19] investigated ML methods
such as gene expression programming (GEP), artificial neural network (ANN), and DT to predict the CS of
concrete containing FA. Using 98 experimental data points, they trained the models and evaluated their
performance by k-fold cross-validation. According to the results, the bagging algorithm showed the best
prediction performance with 95% accuracy; the R? values of GEP, ANN, and DT models were found to be
0.86, 0.81, and 0.75, respectively. Behnood et al. [20], predicting the CS of silica fume concrete using ANN
is considered a dual objective problem optimizing accuracy and model complexity. For this purpose, a new
method, Multi-objective Grey Wolf Optimization, was used and a total of 31 optimized ANN models were
obtained. The final model has a single hidden layer with only five neurons, with an R2 of 0.961 for all data.
Furthermore, sensitivity analysis was carried out to examine the trends of the variables affecting the CS.
Farooq et al. [21] compared RF and GEP algorithms for predicting the CS of high-strength concrete. The
parameters used included cement dosage, coarse and fine aggregate ratio, water, and superplasticizer. The
RF model showed outstanding performance using a DT, a weak base learner and achieved high accuracy
with R2 = 0.96. The GEP algorithm provided an empirical relationship with good agreement between
predicted and actual values. In addition, comparisons were made with ANN and DT algorithms, and
permutation calculations were carried out to assess the effect of variables.

This study aims to utilize ML to accurately predict the CS of concrete with FA and BFS. Although
advanced ML techniques have been used in previous research, the need to integrate the SHAP method has
been largely unaddressed. Therefore, this study applies a two-step approach: firstly, selecting the best-
performing model among various ML algorithms and then applying SHAP methods to improve
interpretability. In this scope, comprehensive data with 1030 data points was split into 75% training and 25%
test sets. Then, the best hyperparameters of SVM, DT, RF, GB, XGB, and MLP models were determined
and trained using the GridSearchCV method. The training was performed for both regression and
classification. Three classes, Low, Normal, and High, were selected for classification. Finally, property
analyses were performed for the components that affect the CS of concrete. The effectiveness of FA and BFS
were compared. The study demonstrates that ML models significantly predicted and classified the
compressive strength of concrete.
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2. Data description

2.1. Dataset

The data used in this study for the prediction and classification of the CS of concretes with fly ash (FA) and
BFS (BFS) were derived from the UC Irvine Machine Learning Repository [22]. In the dataset, which is
composed of 1030 data points in total, the input characteristics are cement dosage, FA amount, BFS amount,
water, superplasticizer, coarse aggregate, fine aggregate, and age. All input variables represent the amount
of material in kilograms per 1 m* volume. The CS of concrete was utilized as the output variable. For
classification, three strength classes are defined based on ACI 318 [23], Eurocode 2 (EN 1992-1-1) [24], and
TBEC (2018) [25] standards. Concrete with a CS less than 25 MPa and generally used in non-bearing or
temporary structures are labeled as ‘Low’, concrete with a CS between 25 MPa and 50 MPa and used in
residential and general building applications are labeled as ‘Normal’, and concrete with a CS above 50 MPa
and used in engineering structures such as bridges, dams, high-rise buildings are labeled as ‘High’. In the
data set, 295 data points belong to the Low class, 525 data points belong to the Normal class and 210 data
points belong to the High class. In this scope, the CS of concrete was estimated and classified according to
their strength classes. The first 20 data points of the dataset used in the study are presented in Table 1.

Table 1. Head of dataset 20 data points [22]
Cem BFS FA W SP Coarse_A Fine_A Age C_Strength

1 540.0 0.0 0.0 162.0 25 1040.0 676.0 28 79.99
2 540.0 0.0 0.0 162.0 2.5 1055.0 676.0 28 61.89
3 3325 142.5 0.0 228.0 0.0 932.0 594.0 270 40.27
4 3325 142.5 0.0 228.0 0.0 932.0 594.0 365 41.05
5 198.6 132.4 0.0 192.0 0.0 978.4 825.5 360 44.30
6 266.0 114.0 0.0 228.0 0.0 932.0 670.0 90 47.03
7 380.0 95.0 0.0 228.0 0.0 932.0 594.0 365 43.70
8 380.0 95.0 0.0 228.0 0.0 932.0 594.0 28 36.45
9 266.0 114.0 0.0 228.0 0.0 932.0 670.0 28 45.85
10 475.0 0.0 0.0 228.0 0.0 932.0 594.0 28 39.29
11 198.6 132.4 0.0 192.0 0.0 978.4 825.5 90 38.07
12 198.6 132.4 0.0 192.0 0.0 978.4 825.5 28 28.02
13 427.5 475 0.0 228.0 0.0 932.0 594.0 270 43.01
14 190.0 190.0 0.0 228.0 0.0 932.0 670.0 90 42.33
15 304.0 76.0 0.0 228.0 0.0 932.0 670.0 28 47.81
16 380.0 0.0 0.0 228.0 0.0 932.0 670.0 90 5291
17 139.6 209.4 0.0 192.0 0.0 1047.0 806.9 90 39.36
18 342.0 38.0 0.0 228.0 0.0 932.0 670.0 365 56.14
19 380.0 95.0 0.0 228.0 0.0 932.0 594.0 90 40.56
20 475.0 0.0 0.0 228.0 0.0 932.0 594.0 180 42.62




Journal of Structural Engineering & Applied Mechanics 16

2.2. Dataset visualization

It is important for ML applications to determine and visualize the distribution of data. These distributions
and visualizations contribute to determining the relationships between the data and evaluating the ML results.
Table 2 shows the statistical data of the input and output features used in the study. Components in the dataset
such as cement, BFS, and FA have the right shifted distributions and a wide variation, while the distributions
of components such as water and fine aggregate are more symmetrical and normal. Superplasticizer has high
skewness and kurtosis, i.e. mostly low values, but some samples show high levels. Age has a fairly wide
range, shifted to the right, and shows a very pointed distribution. Coarse aggregate and CS, on the other hand,
were flatter, concentrated on the left, and exhibited symmetrical distributions. These results revealed that the
constituents in the concrete mix are highly variable, but some of them have more pronounced and regular
distributions.

The correlation matrix, which shows the relationship between the features and how each variable interacts
with the others, is another important tool used in visualizing the data. The correlation matrix of the data used
in the study is given in Fig. 1. The correlation matrix shows that the CS of concrete is mostly influenced by
cement content (Cem, +0.50), water content (W, -0.29), superplasticizer (SP, +0.37) and age (Age, +0.33).
It was determined that as the amount of cement and superplasticizer increased, the strength increased, while
the increase in the amount of water decreased the strength. FA (FA, -0.11) and aggregates (Coarse_A, -0.16;
Fine_A, -0.17) had a weak effect on the strength. A strong negative correlation (-0.66) was observed between
water and superplasticizer while increasing age increased strength. The results obtained from the correlation
matrix are in line with previous experimental studies [26,27].

3. Methodology

3.1. Machine learning models and implementation

The machine and ensemble learning models selected within the scope of the study were determined to predict
and classify the CSs of FA and BFS admixed concretes, considering the complex nonlinear relationships of
these concrete types. Detailed explanations of these ML models, which have proven their successful
performance on different data sets in previous studies, are presented in the following.

Table 2. Statistical parameters of the dataset

Features Abbreviation Mean Min Max Std Skewness  Kurtosis
Cement Cem 281.168 102 540 104.456 0.509 -0.524
Blast furnace slag BFS 73.896 0 359.4 86.237 0.800 -0.512
Fly ash FA 54.188 0 200.1 63.966 0.537 -1.328
Water w 181.567 121.8 247 21.344 0.075 0.116
Superplasticizer SP 6.205 0 32.2 5.971 0.906 1.399
Coarse aggregate Coarse_A 972.919 801 1145 77.716 -0.040 -0.602
Fine aggregate Fine_A 773.580 594 992.6 80.137 -0.253 -0.108
Age Age 45.662 1 365 63.139 3.264 12.104

Compressive strength C_Strength 35.832 2,332  85.599 16.777 0.417 -0.112
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Fig. 1. Correlation matrix of the dataset

3.1.1. Support vector machines

SVM is a powerful and flexible ML method used in both classification and regression problems. SVM,
announced by Cortes and Vapnik [28], aims to determine the optimal boundary that provides maximum
separation between different classes by separating the data with a hyperplane. This method uses kernel
functions to work effectively on nonlinear problems and can learn discriminative boundaries by moving the
data space to higher dimensions. Owing to its robust performance, its ability to generalize well with little
data, and its robust mathematical foundation, it is widely used in many fields from engineering to biology.

3.1.2. Decision trees

DT is an easy-to-understand and effective ML method used in both classification and regression problems.
This method creates decision rules by branching the data in a tree-like hierarchy. Each node divides the data
based on a feature, while leaf nodes represent the final class or value prediction. Introduced by Quinlan [29]
with the 1D3 algorithm, this method was later developed into popular versions such as C4.5 [30] and CART
[31]. Decision trees offer a highly interpretable model owing to their easily visualizable structure and can
work effectively on multidimensional datasets.

3.1.3. Random forest

RF is a popular ML method used for both classification and regression problems, offering high accuracy and
robustness [32]. This method, proposed by Leo Breiman [33], builds an ensemble model by combining
multiple decision trees. Each tree is trained on a random subset of the dataset and the predictions are
combined by taking the majority vote (classification) or the average (regression) of all trees. This method
improves generalization performance while reducing the risk of overfitting. RF, which is especially effective
in large datasets and high-dimensional problems, is preferred in a wide range of applications due to its strong
prediction capabilities and the fact that it does not require extreme parameter sensitivity.
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3.1.4. Gradient boosting

GB is a robust ensemble learning method for both classification and regression problems. Proposed by
Jerome H. Friedman [34], it aims to build a robust model by progressively correcting the errors of weak
predictors (usually decision trees). The model uses gradient descent to minimize the errors of the previous
model at each iteration [35]. This process enables the capture of complex non-linear relationships and high-
accuracy predictions.

3.1.5. Extreme gradient boosting

XGB is a speed and accuracy-optimized ensemble learning method that provides high performance in
classification and regression problems. XGB, announced by Tiangi Chen [36], basically builds an ensemble
of decision trees by improving the gradient-boosting algorithm. This method improves the accuracy of the
model step by step, focusing on reducing the error at each iteration. Owing to its ability to deal with missing
data, scalability, and regularization, XGB avoids overfitting and works effectively on large and complex
datasets [37].

3.1.6. Multilayer perceptron

MLP is a fundamental building block of artificial neural networks and is a powerful ML method used in both
classification and regression problems. MLP is a feed-forward network with at least one hidden layer, where
each neuron is fully connected to the neurons in the next layer [38]. This method uses activation functions
to learn non-linear relationships and a backpropagation algorithm is usually used to update the weights [39].
MLP, which can work effectively on high-dimensional and complex datasets, is considered the pioneer of
deep learning and is nowadays used in many application areas [40].

3.1.7. Data preprocessing and splitting

Data preprocessing is the process of making data suitable for use in the analysis or training of ML models
[41]. Data normalization is done to eliminate scale differences between features. In this study, Z-score
normalization is used; the value of each feature is brought to the same scale by subtracting the mean and
dividing by the standard deviation [42]. Therefore, training or analyzing the model could be done in a more
balanced way. The separation of the data set into training and test sets is important to assess the accuracy
and generalizability of the model [43]. Commonly, 70-80% of the data is used for training and 20-30% for
testing. The training set is used for learning the model and the test set is used to measure the performance of
the model with independent data. In this study, previous studies were analyzed, and the data were randomly
allocated as 75% training and 25% test data.

3.1.8. Hyperparameter fine-tuning

Grid Search [44] is a hyperparameter fine-tuning method often used in ML applications. This optimization
technique is used to determine the hyperparameters of a model and aims to find the one that will provide the
best performance by trying different combinations of hyperparameters. Cross-validation (CV) [45] is a
technique used to test the generalization ability of the model. In this method, the data set is divided into
training and validation subsets, and the model is evaluated in both subsets. This process can be repeated on
different subsets of the data set to ensure a reliable evaluation of the model. In this study, Grid Search and
CV are used together to determine the best hyperparameters. GridSearchCV evaluates the performance of
the model for hyperparameter combinations and selects the best combination by applying a 5-fold CV (Fig.
2). For each combination, the data set is divided into five equal parts and each part is used for validation. As
a result of the optimization, the best hyperparameters of the models for prediction and classification
applications are given in Table 3.
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Fig. 2. 5-fold cross-validation method in study

Table 3. Optimal hyperparameter combination in classification and prediction

Best Parameter

Model Parameters Range
Classification Prediction
C [1,2,10,100,300] 10 100
SVM epsilon [0.5,0.1,0.01, 0.001] 0.01 0.5
kernel ['linear’, 'rbf', 'poly'] 'rbf’ 'rbf’
min_samples_split [2, 5, 10] 5 2
DT min_samples_leaf [1,2,4,10] 1 10
max_depth [None, 10, 20] None 20
n_estimators [50, 100, 200] 200 200
max_depth [None, 10, 20] None None
RF min_samples_split [2, 5] 5 2
min_samples_leaf [1,2] 1 1
n_estimators [50, 100, 200,500] 200 500
learning_rate [0.05,0.1,0.2] 0.1 0.1
XGB
max_depth [3, 6, 10] 3 3
subsample [0.8, 1.0] 0.8 -
n_estimators [50, 100, 200,500] 50 500
GB learning_rate [0.01,0.1,0.2] 0.2 0.1
max_depth [3, 6, 10] 3 3
hidden_layer_sizes [(50,), (100,), (200,)] (50,) (100,)
activation ['relu’, 'tanh’] ‘tanh’ relu’
MLP
solver ['adam’, 'sgd'] ‘adam’ ‘adam’
learning_rate ['‘constant’, 'adaptive'] ‘constant ‘constant
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3.1.9. Performance criteria

In this study, the performance of the models was evaluated with different metrics for prediction and
classification tasks. In the prediction task, R-square (R*2), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE) metrics were used. R”2 is a metric that measures how well the model explains the
data in the prediction task. MAE is used to evaluate the average size of the prediction errors, while RMSE
measures the performance of the model at large deviations by penalizing large errors more.

In the classification task, several metrics were used to assess how well the model was able to discriminate
between classes. Accuracy gives the overall proportion of correct predictions, while precision measures how
many of the predicted positives are correct. Recall measures how accurately the model detects all true
positives. The F1 Score balances precision and sensitivity and is particularly useful in situations with class
imbalance. Finally, the AUC (Area Under the ROC Curve) measures the ability of the model to distinguish
between positive and negative classes. The performance metrics used in the prediction and classification of
concrete compressive strength were determined by analyzing previous studies and the equations of these
metrics are given in Eq. 1-Eqg. 3, and the mathematical expressions of the classification metrics are given in
Egs. (4)-(6) [15,17,46,47,48].

Yk=1(yx — Vi)?

R?=1- - ()
Yk=1(yx — ¥)?
n I
MAE — Zk=1|yri( Ykl (2)
n I 2
RMSE = 2k=1VKx — Y1) @)
n
TP
Precision = TP + FP “)
TP (5)
Recall = ——
= TPrFN
F1S ) Precision * Recall (6)
core = 2 *

Precision + Recall

3.2. Application of the SHAP method

The SHAP (SHapley Additive exPlanations) method, derived from Shapley values introduced by Lloyd
Shapley [49], is widely used to interpret ML model predictions. SHAP values quantify each feature's
contribution to the prediction by averaging its marginal contribution across all possible combinations of
features. This ensures an equitable distribution of the overall prediction value among the features [50]. Once
the model is trained, SHAP values are computed using the formula in Eq. 7, where ¢; represents the
contribution of feature i. The equation is:

_ [S|!' (IN] = |S| = 1)! o
b= ZSQN\{i} IN]! (VS U {i}h) —v(S) )

where N is the set of all features, |S| is a subset excluding feature i, |S|is the size of S, and v(S) denotes the
model output when only using features in S. By averaging over all subsets S, the Shapley value provides
insight into how each feature influences the model's predictions.
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SHAP analysis offers several visualization techniques to improve model explainability. The SHAP
summary plot, which shows the impact of features on the prediction, visually reveals the importance of each
feature in the model. SHAP dependence plot helps to understand the effect of a feature on model prediction
by showing its relationship with other features and helps to understand interactions. The SHAP force plot
visually presents the contribution of each feature to the prediction while explaining the prediction of a
particular sample. Furthermore, the SHAP waterfall plot shows the contribution of each feature in more
detail, which allows us to focus specifically on the prediction of a single instance. One of the key advantages
of SHAP is that it provides a better understanding of how the model makes decisions. This feature increases
the transparency of the model, especially in complex models. However, SHAP calculations can lead to high
computational costs on large datasets, as the impact of each feature has to be calculated over all subsets.
Moreover, SHAP works more efficiently for some models, while others may experience computational
difficulties. However, the most important contribution of SHAP is that it allows us to clearly understand the
contribution of each feature to the model's prediction, thus increasing the reliability and accuracy of the
model.

4, Results

4.1. Regression results

The results of predicting the CS of FA and BFS with concretes are given in Table 4. According to the
performance metrics in Table 4, the GB and XGB models have the best accuracy and minimum error values
on the test data. XGB has a high generalization capacity with an \ R"2 value of 0.931 and minimizes the
prediction errors with an MAE of 2.924 and RMSE of 4.325. Similarly, XGB performed effectively with an
R”2 value of 0.928 and low error margins with 3.024 MAE and 4.425 RMSE. RF showed slightly lower
accuracy compared to GB and XGB with an \ R"2 of 0.888 but still performed strongly with an MAE of
3.750 and RMSE of 5.512. MLP provided a good fit on the test data with an\ R"2 value of 0.911, but the
values of 3.563 MAE and 4.894 RMSE were behind GB and XGB, indicating that the prediction accuracy
of the model was slightly lower. SVR showed low accuracy in the test phase with an R*2 of 0.873 but
produced larger prediction errors with MAE of 4.377 and RMSE of 6.300. The DT model, on the other hand,
achieves lower accuracy in the test phase with an \ R"2 value of 0.855, but its generalization capacity is
limited with high error values of 4.462 MAE and 6.877 RMSE. GB and XGB are the strongest models in
terms of accuracy and generalization, whereas SVR and DT have lower performance due to their high error
margins.

Table 4. CS prediction performance metrics

Train Test
Models

R2 MAE RMSE R? MAE RMSE

SVR 0.932 3.731 5.388 0.873 4.377 6.300
DT 0.897 3.888 5.993 0.855 4.462 6.877
RF 0.985 1.345 2.023 0.888 3.750 5.512
GB 0.985 1.379 2.060 0.928 2.924 4.325
XGB 0.982 1.535 2.236 0.931 3.024 4.425

MLP 0.958 2.532 3.449 0.911 3.563 4.894
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Fig. 3. Actual-predicted plots for the test set

The prediction performance of the ML models is presented in Fig. 3 with the slopes of the regression
lines and the y-axis cut-off points. 3. These values reveal the accuracy and generalization capacity of the
models. The GB and XGB models demonstrated a very close linear relationship to the y=x ideal line with
slope values of 0.92 and 0.91, respectively, and low y-axis cut-off points (2.77 and 2.90, respectively),
indicating that systematic errors in predictions are minimal. The SVR and DT models, on the other hand,
indicated a systematic deviation compared to the actual values with lower slope values (0.87 and 0.86). This
indicated that the accuracy of the models in predicting the load-carrying capacity was limited. Although the
RF model showed a more balanced performance with a slope value of 0.88, it has a lower generalization
capacity compared to GB and XGB. The MLP model performed close to GB and XGB with a slope value of
0.91, but the slight increase in the y-axis cut-off point (3.20) indicates that the bias in the predictions should

be improved.
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Fig. 4 gives the distribution of the prediction errors of the models in detail. The GB and XGB models
provided the highest accuracy and stability, with the error distribution concentrated in the range of -5 to +5,
while at the same time minimizing the prediction bias with a symmetric distribution. The MLP model
performed similarly, but the error distribution was slightly wider at the extremes, indicating an increase in
bias in some cases. The RF model provided a balanced performance by concentrating most of its errors
between -10 and +10, but it did not reach the accuracy level of GB and XGB. On the other hand, the SVR
and Decision Tree DT models have a wider error distribution, with significant deviations between -20 and
+20 for SVR and between -20 and +50 for DT, indicating that these models have low generalization capacity
and produce inconsistent results in predictions.

4.2. Classification results

The preferred criteria for evaluating the performance of models in classification problems are confusion
matrixes, Eqs. (4)-(6), and ROC curves. Fig. 5 shows the confusion matrixes of the test sets of all models in
the study. According to the confusion matrixes, it was determined that the performance of the models differed
between the classes. SVM performed quite well in the Low and Normal classes, but made a significant error
in the High class, classifying most of the samples as Normal. DT, on the other hand, showed a balanced
performance in general, but made significant misclassifications in the High class, indicating that the model's
capacity to discriminate complex classes is limited. The RF model provided superior accuracy compared to
the other models, especially in the Normal class, and obtained more balanced results between the classes.
XGB stood out with its low error rate in the Normal and High classes and performed well in the Low class.
Although the GB model provided balanced accuracy in general, it misclassified some samples as Normal in
the High class. MLP achieved the highest accuracy in the Low class but showed more errors in the High
class. In general, the High class was the class with the most errors for all models, while the Normal class was
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best distinguished by XGB and RF. The results obtained revealed the importance of model selection,
especially depending on the data distribution and class balance.
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Fig. 5. Confusion matrices of the test set of the models

Table 5. Test set performance criteria for classification

AUC
Models Accuracy Recall Precision F1 Score

Low Normal High

SVM 0.842 0.832 0.835 0.829 0.980 0.920 0.958
DT 0.849 0.829 0.829 0.827 0.930 0.857 0.855
RF 0.881 0.871 0.879 0.869 0.975 0.928 0.970
XGB 0.901 0.887 0.892 0.886 0.981 0.939 0.976
GB 0.887 0.867 0.871 0.866 0.976 0.925 0.969
MLP 0.873 0.864 0.867 0.862 0.981 0.926 0.964

The performance metrics obtained from the confusion matrix are presented in Table 5. For the selection
of metrics, AUC is separately reported for low, medium, and high-strength segments. The main reason for
reporting Accuracy and F1-Score over the whole dataset is to provide a more comprehensive assessment of
model performance. AUC is an important metric that measures the discrimination power between classes
and has shown how sensitive the model is to a particular class, especially in unbalanced data distributions.
Therefore, reporting it separately for each strength class (Low, Normal, High) revealed how accurately the
model was able to classify different strength levels. According to the performance metrics, XGM is the most
successful model with the highest accuracy (90.14%), recall (88.67%), precision (89.15%), and F1 Score
(88.59%). RF performed particularly strongly in terms of accuracy (88.06%) and F1 Score (86.88%), second
only to XGB. Although GB provided similarly high accuracy (88.73%), it lagged behind RF in terms of
recall (86.73%) and precision (87.09%). MLP provided a satisfactory result with accuracy (87.31%) and F1
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Score (86.22%) but was not as successful as RF and XGB. SVM and DT showed limited discrimination
between classes with lower accuracy and F1 Score than the other models. SVM, in particular, showed a
relatively balanced performance in terms of precision (83.51%) but was the weakest model in the overall
results.

The ROC curves of the models are given in Fig. 6. The ROC curves show the comparative performance
of the models at low, normal, and high data levels. At the low data level, the AUC values of all models are
high (generally around 0.98), indicating that classification tasks are relatively easier at low density. While
SVM and DT showed strong performance at low data levels, their performance decreased significantly at
normal and high data levels. In particular, DT showed limited discrimination power at complex data levels
with a lower AUC value (0.86). On the other hand, RF and XGB stood out as the most powerful models at
low and high data levels and managed to maintain AUC values as high as 0.93 and 0.94 even at normal data
levels. It is observed that RF generally offers a balanced performance between the classes, while XGB stands
out, especially at high data levels. Although GB shows similar trends with RF and XGB, the slightly lower
AUC value at normal data level suggests that it may be more inaccurate than the others in complex data
structures. MLP performed very well at the low data level (AUC = 0.98) and showed a similarly strong
performance at the high data level. However, the AUC value decreased to 0.93 at the normal data level,
indicating that this model makes more errors in medium-density data scenarios.
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Fig. 6. ROC curves of the model
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4.3. SHAP analysis results

The effect of the properties on the CS was determined using the SHAP method. Since the XGB model
exhibits good accuracy in predicting the CS of concrete containing FA and BFS, this model was used in the
SHAP analysis. The SHAP technique provides various graphical representations showing the influence of
input characteristics on the estimation of output characteristics, the calculations in predicting the output
variable, and the correlation between input attributes. In the average SHAP value plot given in Fig. 7, Age
has the largest effect with an average SHAP value of 8.12 and thus is the factor that affects the output
characteristic the most. This is closely trailed by Cem with 6.91, W with 4.11 and BFS with 3.13. The less
important traits are SP, Fine_A, Coarse_A, and FA with SHAP values below 3.

Fig. 8, the SHAP summary plot summarizes the overall influence of characteristics on model predictions
across the entire dataset. The SHAP values shown on the horizontal axis represent the positive or negative
impact of a feature on the prediction, while the features listed on the vertical axis represent the inputs used
in the model. The color of every dot shows the magnitude of the attribute, with red indicating high values
and blue showing low values. In particular, traits such as Age and Cem have a wide SHAP distribution and
have strong effects on the predictions in both positive and negative directions. On the other hand, the SHAP
values of features such as Coarse_A were generally close to zero, indicating that their impact on the forecasts
was limited. The SHAP dependence plot given in Fig. 9 analyses the interactions between the features in the
model in detail. The increase in the amount of Cem has a positive effect on the SHAP values, indicating that
the amount of binder material plays a positive role in predictions. Similarly, the increase in FA Fine
Aggregate has a small but consistent positive effect. On the other hand, an inverse relationship was observed
between W and SHAP values; as the water content increased, the model prediction decreased. Age, on the
other hand, generally had a positive effect on the model predictions, leading to an increase in the prediction
values with increasing age. In addition, complex interactions between some attributes were also observed,;
for example, the effect on prediction varied as SP values increased, reflecting the sensitivity of the model to
the relationships between such attributes. In conclusion, these analyses provide important insights into the
prediction mechanism of the model, clearly showing that some characteristics (Cem and Age) have a
dominant effect on the model, while others (Coarse_A) have a limited effect.

Feature Importance (SHAP Values)

FA 4 0.60
Coarse_A 0.87
Fine_A 1 1.53

SP

Features

BFS

Cem

Age

0 1 2 3 ) 5 6 7 8
Mean SHAP Value (Feature Importance)

Fig. 7. SHAP importance plot
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Fig. 9. SHAP dependence plot

5. Conclusions

In this study, prediction classification and feature attribute analyses were performed on the CS of FA and
BFS admixed concretes using ML. The performance of the models was improved, and overfitting was
prevented by using GridSearchCV optimization technique. The properties affecting the CS were analyzed in
detail by SHAP analysis. Important results of the study are given:

» Ensemble learning models outperformed classical ML models in both prediction and classification.
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» GB and XGB models stood out with the most robust accuracy and lowest error rates compared to
other models in predicting concrete CS. XGB model was determined as the most successful model
with an R? value of 0.931 and attracted attention with its low error rates.

It was determined that the most effective factors on the CS of concrete were concrete age, cement
dosage, water quantity, and BFS content. While the increase in the amount of cement and concrete
age increased strength, the increase in the amount of water decreased strength.

» The XGB model showed the most successful performance in correctly classifying the strength classes
and reached an accurate rate of 90.14%. However, the high-strength class was the most difficult class
to classify for all models. This was attributed to the imbalance in data distribution.

« In the error analysis, most of the prediction errors of the GB and XGB models were concentrated in
a narrow range, indicating that the models provided robust accuracy and stability. In contrast, models
such as DT and SVR showed lower generalization performance with wider error ranges.

In this study, CS of concretes containing FA and BFS were predicted and classified with robust accuracy.
The results obtained show that the developed model can reliably predict the CS of concrete. In addition,
SHAP analysis revealed that the three most influential factors on the compressive strength of concrete are
concrete age, cement content, and water content. The two critical methods performed contributed to a better
interpretation of the CS of concretes containing FA and BFS. Although several ML strategies have been
established for predicting concrete compressive strength, a gap persists regarding the transparent and
interpretable nature of these models, which is crucial for practical engineering applications. Future research
can design decision support systems using larger datasets to realize optimum mix design and predict concrete
CS in less time and with less effort. In addition, the prediction classification and property identification
analyses performed in this study can be applied to other mechanical and durability properties. In future
studies, mixed designs can be made for different concrete types with larger data sets. In these aspects, this
study is a comprehensive resource that can guide future research.
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