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While numerous methodologies for identifying structural damages through finite 

element (FE) model updating and optimization algorithms have been developed and 

validated for accuracy, certain unresolved issues necessitate further investigation. 

The establishment of a numerical model is imperative for damage assessment 

through model updating, particularly for complex engineering structures with 

numerous elements, such as trusses, which demand substantial effort. Utilizing 

commercial software can offer significant convenience in this context. To cope with 

this challenge, we propose a FE model update strategy employing the SAP2000 

Open Application Programming Interface (OAPI) and Teaching-Learning-Based 

Optimization (TLBO) for evaluating damages in complex truss structures. The FE 

model of the monitored structure is, first, constituted via SAP2000 software. 

Subsequently, the damage assessment of the structure is formulated as an 

unconstrained optimization problem. An objective function is defined as a weighted 

linear combination of three modal parameters: frequency, Coordinate Modal 

Assurance Criterion (COMAC), and flexibility. For the identification and 

quantification of stiffness degradation induced by damage, the optimization problem 

is addressed through TLBO. The iterative optimization process is automated by 

establishing a linkage between MATLAB and SAP2000 through the OAPI feature 

of SAP2000. The efficacy of the proposed approach is demonstrated through two 

numerical test examples, accounting for measurement noise and sparse measured 

data. 
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1. Introduction 

Engineering structures may be subject to various types and levels of damage throughout their service lives. 

If these damages are not early diagnosed, they may develop over time and lead to catastrophic failure of the 

structure to fulfill its function or even its complete collapse. Therefore, effective monitoring of structures is 

essential to ensure their integrity and safety. In this regard, a considerable amount of research has been 

devoted to the development of structural damage detection techniques which have played an essential role 

in structural health monitoring (SHM) in recent years. Among them, vibration-based damage identification 

techniques have become more popular [1]. They have been first developed and applied in aerospace, 

mechanical, and civil engineering communities since the early 1980s [2]. The fundamental principle behind 
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vibration-based damage detection is that the presence of damage will change the physical properties of a 

structure such as mass, stiffness, and damping, which causes changes in the modal parameters such as 

frequencies and mode shapes [3]. Tracking these changes provides information about the damage to the 

structure. 

 Vibration-based methodologies for detecting structural damage can be broadly classified into two 

categories: (i) non-model-based or data-driven methods and (ii) model-based methods. Model-based 

techniques have attracted increased attention and preference owing to their high precision in identifying 

structural damage. These approaches necessitate the formulation of a numerical model corresponding to the 

structure under investigation. For numerical modeling, the finite element (FE) method has been generally 

preferred along with model updating strategies [4].  

 FE model updating provides an effective manner of structural damage detection [4–11]. In this strategy, 

the numerical model of the structure is updated by gradually adjusting its parameters and assumptions to 

ensure a good match between the parameters of the damaged structure. Once the agreement is achieved, the 

local modification of the FE model indicates the damage [1, 4, 12].  

 The process of damage identification through finite element (FE) model updating can be conceptualized 

as an optimization problem, where the design variables correspond to the damaged elements. In comparison 

to numerous alternative approaches, there is a noticeable trend towards the growing utilization of 

metaheuristic optimization methods in the FE model updating. [4, 13]. Over the past decade, researchers 

have used various metaheuristic optimization methods to solve the damage detection problem by FE model 

updating and have achieved quite successful results. Genetic algorithm (GA) [14–17], harmony search (HS) 

algorithm [18, 19], particle swarm optimization (PSO) algorithm [20–23], teaching–learning-based 

optimization (TLBO) algorithm [24–27], Jaya algorithm [28–30], lightning attachment procedure 

optimization (LAPO) algorithm [31], and further improved/ hybrid optimization algorithms [32–39] are 

representative examples successfully applied by researchers in solving the problem. 

 Recent scientific investigations have been prominently directed towards the development of hybrid 

methodologies, wherein the integration of commercial software packages with MATLAB is employed to 

elevate the sophistication of FE modeling and speed up structural damage identification. The cohesive 

incorporation of commercial software packages with MATLAB demonstrates substantial potential in 

refining and advancing FE model updating techniques for structural damage identification. These hybrid 

methodologies capitalize on the distinctive strengths inherent in both software platforms, effectively 

harnessing advanced optimization algorithms embedded in MATLAB and leveraging the formidable 

simulation capabilities intrinsic to commercial software. Numerous scholarly contributions have advocated 

and proposed the adoption of such hybrid methodologies within the scientific community. Sanayei and 

Rohela [40] introduced the Parameter Identification System (PARIS) program, an Optimization Toolbox 

available in MATLAB. This program interfaces with the Finite Element (FE) analysis solver of SAP2000 

software through the Open Application Programming Interface (OAPI) to autonomously update FE models 

for full-scale structures. In a separate study, Nozari et al. [41] proposed a framework for FE model updating, 

combining a gradient-based least-squares optimization approach with SAP2000 software for modal 

identification and damage detection in a 10-story building using ambient vibration measurements. Recently, 

Dinh-Cong et al. [42] introduced an FE model updating approach utilizing the SAP2000-OAPI and an 

enhanced symbiotic organism's search (ESOS) algorithm for assessing damages in full-scale structures. Their 

study involved the analysis of an industrial steel frame and a 3D two-story full-scale building, considering 

various hypothetical damage scenarios for numerical investigation.  

 While numerous methodologies for identifying structural damage through finite element (FE) model 

updating and optimization algorithms have been developed and validated for accuracy, there is still limited 

research on damage identification and quantification in large complex engineering structures with numerous 
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elements, such as trusses. Since establishing a numerical model is imperative for damage assessment in such 

structures, utilizing commercial software can offer significant convenience in this context. Inspired by this 

need, an FE model update strategy is proposed for evaluating damages in complex truss structures. The 

technique uses the commercial software SAP2000 Open Application Programming Interface (OAPI) and the 

TLBO algorithm. In the damage detection strategy, the SAP2000 FE models of the considered trusses are, 

first, constructed to extract the natural frequencies and mode shapes. The TLBO algorithm is, then, used to 

minimize a novel objective function dependent on frequency, flexibility matrix, and coordinate modal 

assurance criterion (COMAC). TLBO algorithm is executed using MATLAB and establishes communication 

with SAP2000 via OAPI for bidirectional data exchange. The efficacy of the proposed method is assessed 

through experimentation on two numerical examples: a plane truss and a space truss structure, each subjected 

to diverse damage scenarios. Furthermore, the study delves into the examination of the influence of 

measurement noise and sparse data on the performance of the proposed technique. 

 

2. Methods 

2.1. Iterative improved reduction system (IIRS) 

One of the practical challenges of model-based techniques is the limited number of sensors available for 

collecting measurement information. To overcome this challenge, previous studies have proposed using 

modal expansion or reduction techniques [43, 44]. The simplest method for the latter was proposed by Guyan 

[45], which ignores the inertia effects, and it is reliable only at zero frequency. According to the Guyan 

method (or static reduction), the static transformation between the full state vector and the master coordinates 

can be expressed as 

𝐱 = 𝐓𝐺𝐱𝑚 (1) 

where 

𝐱 = {
𝐱𝑚

𝐱𝑠
},     𝐓𝐺 = [

𝑰
−𝐊𝑠𝑠

−1] (2) 

 The reduced mass and stiffness matrices are then given by 

𝐌𝑅 = 𝐓𝐺
𝑇𝐌𝐓𝐺 ,     𝐊𝑅 = 𝐓𝐺

𝑇𝐊𝐓𝐺  (3) 

In the above expressions, 𝐱 denotes the state vector, 𝐌 and 𝐊 are the mass and stiffness matrices, respectively. 

Subscripts m and s denote master and slave DOFs, respectively. 

 O’Callahan [46] introduced inertia terms as pseudo-static forces to eliminate the drawback of static 

reduction. This technique is known as the Improved Reduced System (IRS) method. The IRS transformation 

may be conveniently written as 

𝐓𝐼𝑅𝑆 = 𝐓𝐺 + 𝐒𝐌𝐓𝐺𝐌𝑅
−1𝐊𝑅 (4) 

where 

𝐒 = [
𝟎 𝟎
𝟎 𝐊𝑠𝑠

−1] (5) 

and the reduced mass and stiffness matrices are represented by 

𝐌𝐼𝑅𝑆 = 𝐓𝐼𝑅𝑆
𝑇 𝐌𝐓𝐼𝑅𝑆,     𝐊𝐼𝑅𝑆 = 𝐓𝐼𝑅𝑆

𝑇 𝐊𝐓𝐼𝑅𝑆 (6) 

 The IRS method has a significant error in calculating higher-order frequencies. Friswell [47] improved 

the precision of the IRS through an iterative process called the iterative improved reduced system (IIRS), 

which aims to create a simplified version of a complex dynamic system while retaining its essential 
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characteristics. The IIRS method starts by developing an initial reduced-order model, which is then 

iteratively improved by incorporating additional information from the full-order model. The first iteration of 

the IIRS is computed by Eq. (4), and the subsequent iterations are given by 

𝐓𝐼𝑅𝑆,𝑖+1 = 𝐓𝐺 + 𝐒𝐌𝐓𝐼𝑅𝑆,𝑖𝐌𝐼𝑅𝑆,𝑖
−1 𝐊𝐼𝑅𝑆,𝑖       𝑖 = 2,3, … (7) 

 This iterative process results in a reduced model that captures the dynamic behavior of the original system 

while requiring significantly fewer computational resources. In the present study, the number of iterations is 

set to ten for all examples considered. 

2.2. Teaching-learning-based optimization (TLBO) 

Teaching-Learning-Based Optimization (TLBO), initially proposed by Rao et al. [48], is a population-based 

metaheuristic algorithm designed for solving optimization problems. This algorithm draws inspiration from 

the dynamics of the teaching and learning process observed in a classroom setting. Functioning as a nature-

inspired approach, TLBO simulates the exchange of knowledge and skills within a collective of individuals, 

where each individual signifies a prospective solution to the given optimization problem. This collective is 

bifurcated into two distinct groups: the teachers and the learners. 

 During the teaching phase, the preeminent individuals, denoted as the teachers, extend assistance to the 

less proficient individuals, identified as the learners, to enhance their respective solutions. The spatial 

configuration of the learner in the ith iteration, characterized by 𝐷 number of decision variables, is denoted 

as 𝒙𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷). The mean of the class with 𝑁𝑃 number of learners (population) in the 𝑖th iteration 

is 𝒙𝑚𝑒𝑎𝑛 =
1

𝑁𝑃
∑ 𝒙𝑖

𝑁𝑃
𝑖=1 . The learner with the optimal solution within the population is chosen as the teacher, 

denoted as 𝒙𝑡𝑒𝑎𝑐ℎ𝑒𝑟  for the 𝑖th iteration. The positions of each learner are then updated based on the following 

criteria: 

𝒙𝑖,𝑛𝑒𝑤 = 𝒙𝑖,𝑜𝑙𝑑 + rand(0,1)(𝒙𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ⋅ 𝒙𝑚𝑒𝑎𝑛) (8) 

𝑇𝐹 = round[1 + rand(0,1){2 − 1}] (9) 

where the teaching factor 𝑇𝐹  takes on a value of either 1 or 2 for each iteration, and " rand" represents a 

random number between 0 and 1. If the newly computed solution 𝒙𝑖,𝑛𝑒𝑤  yields a lower objective function 

value than the previous solution 𝒙𝑖,𝑜𝑙𝑑, the individual's old position is replaced with the new position. This 

updated position is then utilized as input in the subsequent learner phase. 

 In the learning phase, individuals designated as learners’ endeavor to acquire knowledge from one 

another, aiming to enhance their respective solutions. Here, another learner 𝒙𝑗 different from 𝒙𝑖 is randomly 

selected, and the following criterion is applied: 

𝒙𝑖,𝑛𝑒𝑤 = {
𝒙𝑖,𝑜𝑙𝑑 + rand(0,1)(𝐱𝑖 − 𝒙𝑗),    if 𝑓(𝐱𝑖) ≤ 𝑓(𝒙𝑗)

𝒙𝑖,𝑜𝑙𝑑 + rand(0,1)(𝐱𝑗 − 𝒙𝑖),   if 𝑓(𝐱𝑖) > 𝑓(𝒙𝑗)
 (10) 

 If the newly computed learner 𝒙𝑖,𝑛𝑒𝑤 exhibits a lower objective function value compared to the existing 

learner 𝒙𝑖,𝑜𝑙𝑑, the new learner supplants the old one. Conversely, if the objective function value of the new 

learner is not superior to the old learner, the position of the learner remains unchanged. 
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3. Damage detection strategy 

3.1. Modeling damage 

Damage is modeled by assigning a stiffness loss parameter (or damage index) e ranging from the value of 

zero to one to any element of the structure. To do this, for the 𝑖th-damaged element, Young’s modulus is 

assumed as 

𝐸𝑖
𝑑 = (1 − 𝛼𝑖)𝐸𝑖

𝑢     (0 ≤ 𝛼𝑖 ≤ 1)  (𝑖 = 1,2, ⋯ , 𝑛𝑒) (11) 

where the superscripts 𝑑 and 𝑢 denote damaged and undamaged states, respectively, and 𝑛𝑒 is the number 

of elements in the FE model. In this assumption, the mass of the structure remains unchanged [49]. The 

boundaries of the parameter 𝛼𝑖 represent two limiting cases such as a fully damaged element and an intact 

element. By considering the damage condition of each element, it is possible to update their respective 

stiffness matrices. These updated stiffness matrices are then combined globally to form the overall stiffness 

matrix of the structure. 

3.2. Modeling noise 

Noise is an inevitable component in experimental modal testing due to various factors, reflecting real-life 

situations. Therefore, it is crucial to evaluate the effectiveness of the proposed approach using noisy data. To 

simulate real-world scenarios, the frequencies and mode shapes acquired through numerical analysis from 

the FE model are intentionally contaminated with noise. The addition of noise to the frequencies and mode 

shapes are, respectively, accomplished by the following expressions [49]: 

𝑓𝑖
noise = (1 +

𝜂

100
× 𝑟𝑎𝑛𝑑𝑛) 𝑓𝑖 

(12) 

𝜙𝑖𝑗
noise = (1 +

𝜂

100
× 𝑟𝑎𝑛𝑑𝑛) 𝜙𝑖𝑗 

where, 𝑓𝑖 is the 𝑖th frequency, 𝜙𝑖𝑗 is the 𝑗th component of the 𝑖th mode shape vector, the superscript noise is 

the related value contaminated by noise, 𝜂 is the noise level in percentage, and randn is a random scalar 

drawn from the standard normal distribution. Given that frequencies are generally less susceptible to 

measurement noise and can be measured with greater accuracy in comparison to mode shapes; unless 

explicitly mentioned otherwise, standard errors of ±0.15% and ±3% are assumed for the frequencies and 

mode shapes, respectively. 

3.3. Optimization-based damage detection 

The endeavor to detect damage through FE model updating is cast as an unconstrained optimization problem, 

wherein the identification of the location and extent of structural damage constitutes unknown parameters to 

be ascertained. This problem is mathematically formulated as follows: 

Find 𝐱 = {𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛𝑒} 

minimize 𝑓(𝐱) 

subject to 0 ≤ 𝛼𝑖 ≤ 1 (𝑖 = 1,2, … , 𝑛𝑒) 

(13) 

where 𝑓(𝐱) is the objective function, and 𝐱 is the design variable vector including the stiffness loss 

parameters of each element. 

 A novel objective function is considered in this study, which is a weighted linear combination of residuals 

depending on vibration parameters (frequencies, mode shapes, and modal flexibility), as in the following: 
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𝑓(𝐱) = 𝑤1√
1

𝑛𝑚
∑ (

𝑓𝑖
𝐸 − 𝑓𝑖

𝐶

𝑓𝑖
𝐸 )

𝑛𝑚

𝑖=1

2

+ 𝑤2√∑[1 − COMAC(𝑖)]2

𝑛𝑚

𝑖=1

+ 𝑤3

‖𝐅𝐸 − 𝐅𝐶(𝐱)‖𝐹𝑟𝑜

‖𝐅𝐶‖𝐹𝑟𝑜

 (14) 

where 𝑓𝑖 is the 𝑖th frequency (in Hz), COMAC(𝑖) is the Coordinate Modal Assurance Criterion, 𝐅 is the 

flexibility matrix, and the notation ‖ ‖𝐹𝑟𝑜 denotes the Frobenius norm of a matrix. The Coordinate Modal 

Assurance Criterion is given by [50] 

COMAC(𝑖) =
∑ |(𝜙𝑖𝑗

𝐸 )
𝑇

𝜙𝑖𝑗
𝐶 |

2
𝑛𝑝
𝑗=1

∑ (𝜙𝑖𝑗
𝐸 )

2𝑛𝑝
𝑗=1

∑ (𝜙𝑖𝑗
𝐶 )

2𝑛𝑝
𝑗=1

  (𝑖 = 1,2, … , 𝑛𝑚) (15) 

and the flexibility matrix of a structure is defined as [51] 

𝐅 = ∑
1

𝜔𝑖
2 𝚽𝑖𝚽𝑖

𝑇

𝑛𝑚

𝑖=1

 (16) 

In Eqs. (14-16), 𝑛𝑚 is the number of modes considered, 𝑛𝑝 is the number of locations where the 

measurements are taken, 𝜔𝑖is the 𝑖th natural frequency (in rad/sec), 𝚽𝑖 = {𝜙11  𝜙12   ⋯  𝜙1𝑛𝑝} is the 𝑖th 

mode shape vector, 𝑤1, 𝑤2 and 𝑤3 are the weighting coefficients, and the superscripts 𝑇, 𝐸, and 𝐶 denote 

the transpose of a matrix, the measured and calculated values of the related quantity, respectively. The 

weighting coefficients signify the relative significance of each residual in the objective function as defined 

in Eq. (14), and their values are established through trial-and-error and/or engineering judgment. For the 

current investigation, based on a trial-and-error study, these coefficients are unity for which the best results 

are obtained. 

 In the optimization process, the set of stiffness loss parameters (design variables), denoted by 𝐱 that 

minimizes the objective function 𝑓(𝐱), i.e., 𝑓(𝐱) = 0 theoretically, represents the sought-after damage status 

of the structure. In each iteration of updating the vector 𝐱, a SAP2000 model of the monitored structure 

functions as a slave program for FE analyses. Through the OAPI feature, a connection is established between 

MATLAB and SAP2000, facilitating two-way data exchange. This seamless integration enables the 

automated execution of the iterative optimization process. The flowchart illustrating the proposed 

methodology is presented in Fig. 1. 

 

4. Test examples and numerical results 

In this section, the proposed methodology is utilized for damage assessment of truss structures. Two 

numerical examples compromising a 31-bar planar truss and a 52-bar space truss are chosen to demonstrate 

the effectiveness of the proposed method as shown in Fig. 2. Various possible damage scenarios are 

considered for each example under noise-free and noisy conditions. As mentioned earlier, structural damage 

is designated as a reduction in the Young's modulus of the relevant truss members. The assumption is made 

that the structures under consideration exhibit linear elastic behavior both before and after the occurrence of 

damage. Given the stochastic nature of the optimization process, five independent runs are conducted for 

each damage scenario. The best results from these runs are subsequently presented for damage assessment. 

Unless otherwise stated, the optimization parameters of the TLBO algorithm are assumed as follows: the 

population size 𝑁𝑝 = 35 for the 31-bar truss and 𝑁𝑝 = 60 for the space truss, respectively, the maximum 

number of iterations 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 100, and the stop criterion 𝑡𝑜𝑙 = 1 × 10−4. 
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Fig. 1. The flowchart of the proposed damage detection methodology 

4.1. 31-bar planar truss 

The first example is a 31-bar planar truss [27, 49]. The geometry of the structure and the sensor locations are 

shown in Fig. 2. In SAP2000, the finite element model is constituted of 31 planar bar elements, 14 nodes, 

and 28 DOFs. The length of horizontal and vertical bars is 1.52 m. For each truss member, Young's modulus 

𝐸 = 70 GPa, Poisson’s ratio 𝜈 = 0.2, and material density 𝜌 = 2770 kg/m3 are assumed. All truss members 

have a hollow section with an outer diameter of 150 mm and a wall thickness of 5.5 mm. In numerical 

simulations, three damage scenarios given in Table 1 are assumed.  

 For damage detection, the data from the six sensor locations corresponding to node numbers 3, 6, 7, 8, 

10, and 11 are considered (see Fig. 2). Note that the sensors are installed on the same nodes as Das and 

Dhang [49] for comparison. Since each sensor measures the response of two DOFs of the corresponding 

node, the six installed sensors can measure the response of 12 DOFs, representing around 42% of the total 

DOFs of the system. The suitability of the installed sensor positions was confirmed by Das and Dhang [49] 

in which the IIRS method was used for model reduction. 
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a) 31-bar planar truss 

 

 

Plan Elevation 

b) 52-bar space truss 

Fig. 2. Truss models considered in the study (red solid circles show the sensor locations) 

 

 
Fig. 3. Convergence history for scenario 2 of 31-bar planar truss 

 

Table 1. Damage scenarios for 31-bar planar truss example [49] 

Damage scenario 1 2 3 

Damaged element 11 25 16 1 2 

Damage severity 0.25 0.15 0.30 0.30 0.20 
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Table 2. Statistical results of five independent runs for each scenario of Example 1 

Scenario Actual Run 1 Run 2 Run 3 Run 4 Run 5 Average Std. dev. 

Noise-free case 

1 𝛼11 = 0.25 0.249856 0.249656 0.238522 0.24955 0.249608 0.2474384 0.004459 

 𝛼25 = 0.15 0.149498 0.149714 0.121565 0.149349 0.149914 0.144008 0.011223 

2 𝛼16 = 0.30 0.299692 0.299789 0.299897 0.299982 0.299793 0.2998306 0.000099 

3 𝛼1 = 0.30 0.298936 0.299753 0.29929 0.298883 0.300379 0.2994482 0.000559 

 𝛼2 = 0.20 0.20099 0.199861 0.199971 0.201092 0.197521 0.199887 0.001286 

Noisy case 

1 𝛼11 = 0.25 0.250781 0.251368 0.243945 0.248879 0.248651 0.248725 0.002611 

 𝛼25 = 0.15 0.150297 0.144805 0.132958 0.127051 0.14744 0.14051 0.008949 

2 𝛼16 = 0.30 0.296641 0.290905 0.312839 0.302089 0.300403 0.300575 0.007235 

3 𝛼1 = 0.30 0.299372 0.307091 0.297657 0.295844 0.299577 0.299908 0.003836 

 𝛼2 = 0.20 0.172589 0.178869 0.138696 0.086822 0.182632 0.151922 0.036081 

 

 In Fig. 3, the convergence history of the proposed method for the 31-bar planar truss example with 

damage scenario 2 is shown. In the figure, the variations of the average of the best cost values for all runs 

with iteration numbers are given under noisy and noise-free cases. According to the figure, the algorithm 

quickly converges for both cases. In the noise-free case, the curve reaches a value in the order of 10-5 at 80 

iterations, however, the same cannot be seen when the noise is considered. In the noisy case, the curve 

converges to a value in the order of 10-2. The value of the average best cost for the noise-free case is smaller 

than that of the noisy case.  

 Table 2 presents the statistical results of five independent runs for each scenario of Example 1 with and 

without noise, respectively. As seen, damage indices are, in general, determined with small errors, i.e., within 

the range of 1-5%. Further, standard deviations for the damage detection results are relatively small, which 

shows the robustness of the present method. Note that some exceptions have also appeared. For multiple 

damages, the errors in damage indices, as well as standard deviations, are slightly increasing. Due to the 

obtained results being very close to the actual values, it appears possible to further reduce these errors by 

increasing the number of independent runs. However, due to the small error rates, it was not considered 

necessary to increase the number of independent runs in this study. 

 Fig. 4 shows the damage detection results for the 31-bar planar truss under three considered damage 

scenarios with and without noise. These figures showcase the best results obtained from the five runs 

conducted during the damage detection process. An overall analysis reveals that the proposed method 

accurately detects damages for all the scenarios considered. In the presence of noise, it is observed that false 

alarm elements are slightly more pronounced for damage scenarios 2 and 3. However, these false alarms 

have negligible magnitudes and do not significantly affect the correctness of the proposed method. 

 Table 3 compares the damage identification results of the present method and those of Das and Dang [49] 

who obtained their results by four well-established optimization algorithms, e.g., GA, PSO, Jaya, and TLBO, 

with a self-controlled multi-stage strategy (SCMS) for the 31-bar planar truss with and without noise. In the 

work by Das and Dang [49], cross-over percentage = 0.7, mutation percentage = 0.3, roulette wheel selection, 

and selection pressure = 0.8 for GA and 𝑐1 = 𝑐2 = 2.05, 𝑤𝑚𝑎𝑥 = 1.1, and 𝑤𝑚𝑖𝑛 = 0.1 for PSO were assumed 

as the specific control parameters, respectively. The population size was selected as 35 for all algorithms. In 
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the tables, the performance of the algorithms is evaluated by comparing their mean damage indices (𝛼𝑚𝑒𝑎𝑛), 

the standard deviation of the damage indices, and the average number of structural analyses (MNSA). 

 

 
a) Scenario 1 

 

b) Scenario 2 

 
c) Scenario 3 

Fig. 4. Damage detection results for 31-bar planar truss under the scenarios considered 

 

 



229   Özgan et al. 

 

 

Table 3. Comparison of the present method for the 31-bar planar truss with different optimization algorithms using the multi-stage strategy of Ref. [49] 

Scenario 
GA   PSO   Jaya   TLBO   Present   

𝛼𝑚𝑒𝑎𝑛 Std. dev. MNSA 𝛼𝑚𝑒𝑎𝑛 Std. dev. MNSA 𝛼𝑚𝑒𝑎𝑛 Std. dev. MNSA 𝛼𝑚𝑒𝑎𝑛 Std. dev. MNSA 𝛼𝑚𝑒𝑎𝑛 Std. dev. MNSA 

Noise-free case 

1 0.2501 8.4×10-5 27,600 0.2500 0.0 6685 0.2500 3.7×10-5 14,785 0.2500 6.4×10-5 6000 0.2474 4.46×10-3 6587 

 0.1491 1.4×10-3  0.1500 0.0  0.1500 4.0×10-4  0.1500 8.0×10-4  0.1440 1.12×10-2  

2 0.3005 1.5×10-3 12,120 0.3000 0.0 7780 0.2999 9.12×10-5 2150 0.3000 4.0×10-5 1585 0.2998 9.90×10-5 5243 

3 0.3000 4.6×10-4 9650 0.3000 0.0 8260 0.3001 6.3×10-4 5015 0.3000 1.0×10-4 5160 0.2994 5.59×10-4 6083 

 0.1998 7.0×10-4  0.2000 0.0  0.2001 1.5×10-5  0.2000 2.0×10-4  0.1999 1.29×10-3  

Noisy case 

1 0.2506 7.4×10-4 35,900 0.2633 3.16×10-2 12,135 0.2500 6.8×10-4 45,025 0.2500 8.2×10-4 8665 0.2487 2.61×10-3 7035 

 0.1512 5.9×10-3  0.1447 1.41×10-2  0.1464 1.1×10-2  0.1516 6.2×10-3  0.1405 8.95×10-3  

2 0.3006 1.3×10-3 27,985 0.3214 2.84×10-2 15,840 0.2996 8.1×10-4 29,120 0.2996 7.9×10-4 3960 0.3006 7.24×10-3 7035 

3 0.3007 2.4×10-3 19,180 0.2988 4.83×10-3 11,750 0.3016 2.5×10-3 18,395 0.3017 2.3×10-3 4715 0.2999 3.84×10-3 7035 

 0.1994 2.9×10-3  0.2024 8.76×10-3  0.1980 2.5×10-3  0.1979 3.1×10-3  0.1519 3.61×10-2  

MNSA: Mean number of structural analyses 
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 Considering the results without noise, despite being a single-stage strategy, the present method appears 

to perform relatively close to Jaya, while achieving results with fewer structural analyses than GA and PSO. 

In scenarios 1, 2, and 3, the present method required 76.13%, 56.74%, and 36.96% fewer MNSA than GA, 

respectively. Similarly, the present method needed 1.47%, 32.61%, and 26.36% fewer MNSA than PSO for 

scenarios 1, 2, and 3, respectively. The present method exhibited slightly worse performance than TLBO 

with SCMS in terms of MNSA. In terms of the error and standard deviation of the results, the present method 

exhibits similar performance with the other algorithms. 

 Regarding the results in the presence of noise, notably, the present method exhibited superior 

performance compared to the other algorithms in the noisy case except TLBO with SCMS. In terms of 

MNSA, the present method required 80.40%, 74.86%, and 63.32% fewer MNSA than GA, 42.03%, 55.59%, 

and 40.12% fewer MNSA than PSO, and 84.38%, 75.84%, and 61.76% fewer MNSA than Jaya algorithm 

for scenarios 1 to 3, respectively. As mentioned above, it is seen that the present method had a slightly worse 

performance than TLBO with SCMS in terms of MNSA. Moreover, the error in damage prediction and the 

standard deviation of the results exhibited similar patterns across all algorithms and remained within an 

acceptable range. 

4.2. 52-bar planar truss 

In the second example, a 52-bar space truss is considered [27]. The geometry of the structure is given in Fig. 

2. The FE model consists of 52 3D-bar elements, 21 nodes, and 63 DOFs. The material properties of each 

truss member are Young’s modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3, and material density 𝜌 = 7800 

kg/m3. Again hollow-sectioned truss members with an outer diameter of 109.1 mm and a wall thickness of 

3 mm are used in modeling. Three damage scenarios are assumed for numerical simulations as given in Table 

4. Only seven sensors located at nodes 1, 2, 4, 6, 8, 10, and 12 are employed for obtaining the modal data. 

The sensor locations are the same as the work by Dinh-Cong et al. [27]. As a result, the FE model of the 

structure is reduced to a model with 21 DOFs for seven installed sensors, which represents about 33% of the 

total DOFs.  

In Fig. 5, the convergence history of the proposed method for the 52-bar space truss example with damage 

scenario 2 is given. In the figure, the average of the best costs for all runs are given for noise-free and noise-

polluted cases. As seen, the algorithm quickly converges for both cases. Without noise, the curve reaches a 

value in the order of 10-3 at 100 iterations, while it converges to a value in the order of 10-2 with noise. As 

in Example 1, the noise-free case more quickly converges than the noisy case.  

 In Table 5, the statistical results of five independent runs for each scenario of Example 2 are presented 

for both noise-free and noisy cases. As observed, the present method accurately identifies the damaged 

elements with only small errors in severity, specifically average errors of 2.5% in the noise-free case and 

3.5% in the noisy case, respectively. These results indicate the method’s robustness, as evidenced by the 

relatively small standard deviations. Although scenario 3 shows a slight increase in errors for the damage 

indices, they remain within acceptable limits. 

 

 

Table 4. Damage scenarios for 52-bar space truss example [27] 

Damage scenario 1 2  3   

Damaged element 9 10 51 9 10 49 

Damage severity 0.25 0.20 0.30 0.20 0.30 0.30 
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Fig. 5. Convergence history for scenario 2 of Example 2 

 

 

Table 5. Statistical results of five independent runs for each scenario of Example 2 

Scenario Actual Run 1 Run 2 Run 3 Run 4 Run 5 Average Std. dev. 

Noise-free case 

1 𝛼9 = 0.25 0.249709 0.249814 0.249902 0.247851 0.249938 0.249443 0.0008 

2 𝛼10 = 0.20 0.195096 0.202012 0.197932 0.195885 0.19355 0.196895 0.002922 

 𝛼51 = 0.30 0.278426 0.297855 0.299438 0.294443 0.294486 0.29293 0.007506 

3 𝛼9 = 0.20 0.179972 0.188175 0.192325 0.196821 0.192325 0.189924 0.005678 

 𝛼10 = 0.30 0.289009 0.278039 0.287848 0.290622 0.287848 0.286673 0.004435 

Noisy case 

1 𝛼9 = 0.25 0.25 0.242156 0.253588 0.251853 0.237915 0.244667 0.005895 

2 𝛼10 = 0.20 0.196009 0.192942 0.19578 0.191524 0.23068 0.201387 0.014745 

 𝛼51 = 0.30 0.298515 0.273155 0.293699 0.316857 0.255885 0.287622 0.021104 

3 𝛼9 = 0.20 0.190387 0.188724 0.199436 0.1445 0.175856 0.179781 0.019178 

 𝛼10 = 0.30 0.272378 0.293193 0.288663 0.268326 0.287413 0.281995 0.009783 

 

 

 Fig. 6 illustrates the results of damage detection for the 52-bar planar truss across three specific damage 

scenarios, both with and without noise. These figures display the most favorable results achieved from the 

five runs conducted. It is evident that the proposed method successfully identifies damages for all the 

considered scenarios. In the presence of noise, it is noticeable that false alarms are slightly more prominent 

in damage scenarios 2 and 3. Nevertheless, these false alarms are of negligible magnitude and do not 

substantially impact the accuracy of the proposed method. 
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a) Scenario 1 

 

b) Scenario 2 

 

c) Scenario 3 

Fig. 6. Damage detection results for 52-bar planar truss under the scenarios considered 

4.3. Performance of the proposed method 

In this section, we employ the following formulas, originally presented by Hoseini Vaez and Fallah [52] to 

further illustrate the performance of the current method: 
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Table 6. The error indices 𝐼1 and 𝐼2 calculated for each example in noise-free and noisy conditions 

Structure Scenario 
Noise-free case Noisy case 

𝐼1 𝐼2 RMSE* 𝐼1 𝐼2 RMSE 

31-bar planar 

truss 

1   5.019307 0.046224 2.60×10-3   6.836613 0.047632 3.02×10-3 

2   0.056467 0.003076 1.36×10-4   0.1918 0.234604 1.25×10-2 

3   0.240433 0.002919 1.72×10-4 24.0698 0.158867 1.13×10-2 

52-bar space 

truss 

1   0.22288 0.005113 1,55×10-4   1.58568 0.06783 1.91×10-3 

2   3.9093 0.113356 3.31×10-3   4.819433 0.726136 1.72×10-2 

3 10.74127 0.362242 9.84×10-3 24.50623 0.675553 1.80×10-2 

𝑅𝑀𝑆𝐸 = √∑
(𝛼𝑖 − 𝛼̂𝑖)2

𝑛

𝑛

𝑖=1

 

 

𝐼1 = ∑ |
𝛼𝑖 − 𝛼̂𝑖

𝛼𝑖

|

𝑚

𝑖=1

× 100 (17) 

𝐼2 = ∑ 𝛼̂𝑖,𝑚𝑖𝑠

𝑛−𝑚

𝑖=1

 (18) 

where 𝛼𝑖 represents the actual damage of the 𝑖th damaged element, 𝛼̂𝑖 denotes the estimated damage of the 

same element using the algorithm, and 𝛼̂𝑖,𝑚𝑖𝑠 is the estimated damage of the 𝑖th undamaged element. The 

variables 𝑚 and 𝑛 correspond to the number of damaged elements and the total number of elements in the 

structure, respectively. The error-index 𝐼1 quantifies the absolute percent of error in the damaged elements, 

while the index 𝐼2 represents the sum of the values of misidentified elements in each scenario. Therefore, 

smaller values of these indices indicate the more efficient the algorithm. 

 Table 6 shows 𝐼1 and 𝐼2 indices calculated for each example in noise-free and noisy conditions. In the 

table, it is also seen the root-mean-square error (RMSE) for each case as a separate column. Note that the 

calculations were made using the average of five independent runs for damage identification results of each 

scenario. Based on the table, both the 𝐼2 error index and RMSE exhibit reasonable values close to zero across 

all damage scenarios in both considered examples. However, the 𝐼1 error index sometimes shows 

unreasonably large values. Nevertheless, as mentioned in the reference study [52], since this index alone 

cannot provide a definitive assessment of the algorithm’s performance, it can be concluded that the proposed 

method in the study demonstrates an exceptionally high level of performance when evaluated in conjunction 

with the other two error indices. 

 

5. Conclusions 

This investigation introduces a novel optimization-based procedure for FE modal updating, integrated with 

a commercial software package, to detect damage in intricate truss structures with limited modal data. The 

approach leverages SAP2000 as a slave program for FE analysis and employs TLBO as the optimization 

solver to address the FE model updating challenges. Implemented in MATLAB, the TLBO algorithm is 

seamlessly integrated with the SAP2000 OAPI feature, facilitating two-way data exchange throughout the 

optimization process. The efficacy of the proposed methodology is validated through the application of two 

numerical examples: a 31-bar planar truss and a 52-bar space truss, each subjected to various hypothetical 

damage scenarios. The outcomes from these examples lead to the following conclusions: 
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1. When compared to established algorithms like Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Jaya, and Teaching-Learning-Based Optimization (TLBO), which employ 

multi-stage search strategies, the single-stage TLBO method introduced in this study presents a 

computationally efficient alternative. This efficiency is attributed to its utilization of a reduced 

number of structural analyses. 

2. The damage detection technique proposed in this study, integrating a novel three-term objective 

function that includes frequency change, mode shape correlation, and flexibility, consistently 

identifies accurate damage locations, and reliably predicts damage magnitudes. This holds even 

when confronted with spatially incomplete measurements and relatively elevated levels of noise. 

Across the tested damage scenarios, minimal misidentification of elements with negligible damage 

severity was observed, and no damaged elements were overlooked. 

3. The proposed strategy adeptly combines commercial FE modeling software with custom research 

software, enabling the integration of advanced technology for damage assessment in full-scale 

structures. This approach demonstrates promise for continued refinement and application in 

practical structural health monitoring systems. However, it is imperative to acknowledge that under 

real-world conditions, operational and environmental variables, including temperature, wind, and 

humidity, may exert adverse effects on the proposed technique's performance. Therefore, a 

comprehensive assessment of its efficacy under the diverse influences of these factors is essential 

before deploying the technique in real-world structural applications. 
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