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1. Introduction

While numerous methodologies for identifying structural damages through finite
element (FE) model updating and optimization algorithms have been developed and
validated for accuracy, certain unresolved issues necessitate further investigation.
The establishment of a numerical model is imperative for damage assessment
through model updating, particularly for complex engineering structures with
numerous elements, such as trusses, which demand substantial effort. Utilizing
commercial software can offer significant convenience in this context. To cope with
this challenge, we propose a FE model update strategy employing the SAP2000
Open Application Programming Interface (OAPI) and Teaching-Learning-Based
Optimization (TLBO) for evaluating damages in complex truss structures. The FE
model of the monitored structure is, first, constituted via SAP2000 software.
Subsequently, the damage assessment of the structure is formulated as an
unconstrained optimization problem. An objective function is defined as a weighted
linear combination of three modal parameters: frequency, Coordinate Modal
Assurance Criterion (COMAC), and flexibility. For the identification and
quantification of stiffness degradation induced by damage, the optimization problem
is addressed through TLBO. The iterative optimization process is automated by
establishing a linkage between MATLAB and SAP2000 through the OAPI feature
of SAP2000. The efficacy of the proposed approach is demonstrated through two
numerical test examples, accounting for measurement noise and sparse measured
data.

Engineering structures may be subject to various types and levels of damage throughout their service lives.
If these damages are not early diagnosed, they may develop over time and lead to catastrophic failure of the
structure to fulfill its function or even its complete collapse. Therefore, effective monitoring of structures is
essential to ensure their integrity and safety. In this regard, a considerable amount of research has been
devoted to the development of structural damage detection techniques which have played an essential role
in structural health monitoring (SHM) in recent years. Among them, vibration-based damage identification
techniques have become more popular [1]. They have been first developed and applied in aerospace,
mechanical, and civil engineering communities since the early 1980s [2]. The fundamental principle behind
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vibration-based damage detection is that the presence of damage will change the physical properties of a
structure such as mass, stiffness, and damping, which causes changes in the modal parameters such as
frequencies and mode shapes [3]. Tracking these changes provides information about the damage to the
structure.

Vibration-based methodologies for detecting structural damage can be broadly classified into two
categories: (i) non-model-based or data-driven methods and (ii) model-based methods. Model-based
techniques have attracted increased attention and preference owing to their high precision in identifying
structural damage. These approaches necessitate the formulation of a numerical model corresponding to the
structure under investigation. For numerical modeling, the finite element (FE) method has been generally
preferred along with model updating strategies [4].

FE model updating provides an effective manner of structural damage detection [4-11]. In this strategy,
the numerical model of the structure is updated by gradually adjusting its parameters and assumptions to
ensure a good match between the parameters of the damaged structure. Once the agreement is achieved, the
local modification of the FE model indicates the damage [1, 4, 12].

The process of damage identification through finite element (FE) model updating can be conceptualized
as an optimization problem, where the design variables correspond to the damaged elements. In comparison
to numerous alternative approaches, there is a noticeable trend towards the growing utilization of
metaheuristic optimization methods in the FE model updating. [4, 13]. Over the past decade, researchers
have used various metaheuristic optimization methods to solve the damage detection problem by FE model
updating and have achieved quite successful results. Genetic algorithm (GA) [14-17], harmony search (HS)
algorithm [18, 19], particle swarm optimization (PSO) algorithm [20-23], teaching—learning-based
optimization (TLBO) algorithm [24-27], Jaya algorithm [28-30], lightning attachment procedure
optimization (LAPQ) algorithm [31], and further improved/ hybrid optimization algorithms [32-39] are
representative examples successfully applied by researchers in solving the problem.

Recent scientific investigations have been prominently directed towards the development of hybrid
methodologies, wherein the integration of commercial software packages with MATLAB is employed to
elevate the sophistication of FE modeling and speed up structural damage identification. The cohesive
incorporation of commercial software packages with MATLAB demonstrates substantial potential in
refining and advancing FE model updating techniques for structural damage identification. These hybrid
methodologies capitalize on the distinctive strengths inherent in both software platforms, effectively
harnessing advanced optimization algorithms embedded in MATLAB and leveraging the formidable
simulation capabilities intrinsic to commercial software. Numerous scholarly contributions have advocated
and proposed the adoption of such hybrid methodologies within the scientific community. Sanayei and
Rohela [40] introduced the Parameter Identification System (PARIS) program, an Optimization Toolbox
available in MATLAB. This program interfaces with the Finite Element (FE) analysis solver of SAP2000
software through the Open Application Programming Interface (OAPI) to autonomously update FE models
for full-scale structures. In a separate study, Nozari et al. [41] proposed a framework for FE model updating,
combining a gradient-based least-squares optimization approach with SAP2000 software for modal
identification and damage detection in a 10-story building using ambient vibration measurements. Recently,
Dinh-Cong et al. [42] introduced an FE model updating approach utilizing the SAP2000-OAPI and an
enhanced symbiotic organism's search (ESOS) algorithm for assessing damages in full-scale structures. Their
study involved the analysis of an industrial steel frame and a 3D two-story full-scale building, considering
various hypothetical damage scenarios for numerical investigation.

While numerous methodologies for identifying structural damage through finite element (FE) model
updating and optimization algorithms have been developed and validated for accuracy, there is still limited
research on damage identification and quantification in large complex engineering structures with numerous
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elements, such as trusses. Since establishing a numerical model is imperative for damage assessment in such
structures, utilizing commercial software can offer significant convenience in this context. Inspired by this
need, an FE model update strategy is proposed for evaluating damages in complex truss structures. The
technique uses the commercial software SAP2000 Open Application Programming Interface (OAPI) and the
TLBO algorithm. In the damage detection strategy, the SAP2000 FE models of the considered trusses are,
first, constructed to extract the natural frequencies and mode shapes. The TLBO algorithm is, then, used to
minimize a novel objective function dependent on frequency, flexibility matrix, and coordinate modal
assurance criterion (COMAC). TLBO algorithm is executed using MATLAB and establishes communication
with SAP2000 via OAPI for bidirectional data exchange. The efficacy of the proposed method is assessed
through experimentation on two numerical examples: a plane truss and a space truss structure, each subjected
to diverse damage scenarios. Furthermore, the study delves into the examination of the influence of
measurement noise and sparse data on the performance of the proposed technique.

2. Methods

2.1. Iterative improved reduction system (IIRS)

One of the practical challenges of model-based techniques is the limited number of sensors available for
collecting measurement information. To overcome this challenge, previous studies have proposed using
modal expansion or reduction techniques [43, 44]. The simplest method for the latter was proposed by Guyan
[45], which ignores the inertia effects, and it is reliable only at zero frequency. According to the Guyan
method (or static reduction), the static transformation between the full state vector and the master coordinates
can be expressed as

X = Texp, 1)

where

=) o=kl @
The reduced mass and stiffness matrices are then given by
MR = TgMTG, KR = TgKTG (3)

In the above expressions, x denotes the state vector, M and K are the mass and stiffness matrices, respectively.
Subscripts m and s denote master and slave DOFs, respectively.

O’Callahan [46] introduced inertia terms as pseudo-static forces to eliminate the drawback of static
reduction. This technique is known as the Improved Reduced System (IRS) method. The IRS transformation
may be conveniently written as

TIRS = TG + SMTgMglKR (4)
where
0 0
s=lo w ©

and the reduced mass and stiffness matrices are represented by
Mg = TITRSMTIRS: Kirs = TITRSKTIRS (6)

The IRS method has a significant error in calculating higher-order frequencies. Friswell [47] improved
the precision of the IRS through an iterative process called the iterative improved reduced system (lIRS),
which aims to create a simplified version of a complex dynamic system while retaining its essential
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characteristics. The IIRS method starts by developing an initial reduced-order model, which is then
iteratively improved by incorporating additional information from the full-order model. The first iteration of
the IIRS is computed by Eq. (4), and the subsequent iterations are given by

Tirsiv1 = To + SMTirs ;Mg Kips; =23, ... (7

This iterative process results in a reduced model that captures the dynamic behavior of the original system
while requiring significantly fewer computational resources. In the present study, the number of iterations is
set to ten for all examples considered.

2.2. Teaching-learning-based optimization (TLBO)
Teaching-Learning-Based Optimization (TLBO), initially proposed by Rao et al. [48], is a population-based
metaheuristic algorithm designed for solving optimization problems. This algorithm draws inspiration from
the dynamics of the teaching and learning process observed in a classroom setting. Functioning as a nature-
inspired approach, TLBO simulates the exchange of knowledge and skills within a collective of individuals,
where each individual signifies a prospective solution to the given optimization problem. This collective is
bifurcated into two distinct groups: the teachers and the learners.

During the teaching phase, the preeminent individuals, denoted as the teachers, extend assistance to the
less proficient individuals, identified as the learners, to enhance their respective solutions. The spatial
configuration of the learner in the ith iteration, characterized by D number of decision variables, is denoted

as x; = (x},x?, ...,xP). The mean of the class with NP number of learners (population) in the ith iteration

IS Xpean = N—IP NP x;. The learner with the optimal solution within the population is chosen as the teacher,

denoted as X ;.45 TOr the ith iteration. The positions of each learner are then updated based on the following
criteria:

Xinew = Xiola T rand(0,1) (X¢eacher — Tr * Xmean) (8)

Tr = round[1 + rand(0,1){2 — 1}] 9)

where the teaching factor T, takes on a value of either 1 or 2 for each iteration, and " rand" represents a
random number between 0 and 1. If the newly computed solution x; ,,.,, yields a lower objective function
value than the previous solution x; 5,4, the individual's old position is replaced with the new position. This
updated position is then utilized as input in the subsequent learner phase.

In the learning phase, individuals designated as learners’ endeavor to acquire knowledge from one
another, aiming to enhance their respective solutions. Here, another learner x; different from x; is randomly
selected, and the following criterion is applied:

v - {xi,old +rand(0,1)(x; —x;), iff(x;) < f(x))
Lnew Xiold + rand(O,l)(xj - xi), lff(XL) > f(x])
If the newly computed learner x; ,,.,, exhibits a lower objective function value compared to the existing

learner x; ,;4, the new learner supplants the old one. Conversely, if the objective function value of the new
learner is not superior to the old learner, the position of the learner remains unchanged.

(10)
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3. Damage detection strategy

3.1. Modeling damage

Damage is modeled by assigning a stiffness loss parameter (or damage index) oe ranging from the value of
zero to one to any element of the structure. To do this, for the ith-damaged element, Young’s modulus is
assumed as

Ef=1-a)E}¥ (0<a;<1) (i=12,,ne) (11)

where the superscripts d and u denote damaged and undamaged states, respectively, and ne is the number
of elements in the FE model. In this assumption, the mass of the structure remains unchanged [49]. The
boundaries of the parameter «; represent two limiting cases such as a fully damaged element and an intact
element. By considering the damage condition of each element, it is possible to update their respective
stiffness matrices. These updated stiffness matrices are then combined globally to form the overall stiffhess
matrix of the structure.

3.2. Modeling noise
Noise is an inevitable component in experimental modal testing due to various factors, reflecting real-life
situations. Therefore, it is crucial to evaluate the effectiveness of the proposed approach using noisy data. To
simulate real-world scenarios, the frequencies and mode shapes acquired through numerical analysis from
the FE model are intentionally contaminated with noise. The addition of noise to the frequencies and mode
shapes are, respectively, accomplished by the following expressions [49]:
fiorse = (1 + % X randn) fi
(12)

. n
lpjmse — (1 + m X randn) d)ij

where, f; is the ith frequency, ¢;; is the jth component of the ith mode shape vector, the superscript noise is
the related value contaminated by noise, 7 is the noise level in percentage, and randn is a random scalar
drawn from the standard normal distribution. Given that frequencies are generally less susceptible to
measurement noise and can be measured with greater accuracy in comparison to mode shapes; unless
explicitly mentioned otherwise, standard errors of £0.15% and £3% are assumed for the frequencies and
mode shapes, respectively.

3.3. Optimization-based damage detection

The endeavor to detect damage through FE model updating is cast as an unconstrained optimization problem,
wherein the identification of the location and extent of structural damage constitutes unknown parameters to
be ascertained. This problem is mathematically formulated as follows:

Find x = {aq, a3, a3, ..., Ape}
minimize f(x) (13)
subjectto0 < a; <1(i =1,2,...,ne)

where f(x) is the objective function, and x is the design variable vector including the stiffness loss
parameters of each element.

A novel objective function is considered in this study, which is a weighted linear combination of residuals
depending on vibration parameters (frequencies, mode shapes, and modal flexibility), as in the following:
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nm 2 nm

1 fiE_fiC . ”FE_FC( )” ro
Fx) =w, EZ <ﬁ—E) +w, 2[1 — COMAC()]2 + W3T;F (14)

i=1 i=1

where f; is the ith frequency (in Hz), COMAC(i) is the Coordinate Modal Assurance Criterion, F is the
flexibility matrix, and the notation || ||z, denotes the Frobenius norm of a matrix. The Coordinate Modal
Assurance Criterion is given by [50]

2

o (CAR
S (05) 2 (95)

and the flexibility matrix of a structure is defined as [51]

COMAC(i) = > ((=12,..,nm) (15)

nm
1 T
F= chbﬁbi (16)
i=1 *

In Egs. (14-16), nm is the number of modes considered, np is the number of locations where the
measurements are taken, w;is the ith natural frequency (in rad/sec), ®; = {(/)11 b1z ¢>1np} is the ith
mode shape vector, w,, w, and wy are the weighting coefficients, and the superscripts T, E, and C denote
the transpose of a matrix, the measured and calculated values of the related quantity, respectively. The
weighting coefficients signify the relative significance of each residual in the objective function as defined
in Eg. (14), and their values are established through trial-and-error and/or engineering judgment. For the
current investigation, based on a trial-and-error study, these coefficients are unity for which the best results
are obtained.

In the optimization process, the set of stiffness loss parameters (design variables), denoted by x that
minimizes the objective function f(x), i.e., f (x) = 0 theoretically, represents the sought-after damage status
of the structure. In each iteration of updating the vector x, a SAP2000 model of the monitored structure
functions as a slave program for FE analyses. Through the OAPI feature, a connection is established between
MATLAB and SAP2000, facilitating two-way data exchange. This seamless integration enables the
automated execution of the iterative optimization process. The flowchart illustrating the proposed
methodology is presented in Fig. 1.

4. Test examples and numerical results

In this section, the proposed methodology is utilized for damage assessment of truss structures. Two
numerical examples compromising a 31-bar planar truss and a 52-bar space truss are chosen to demonstrate
the effectiveness of the proposed method as shown in Fig. 2. Various possible damage scenarios are
considered for each example under noise-free and noisy conditions. As mentioned earlier, structural damage
is designated as a reduction in the Young's modulus of the relevant truss members. The assumption is made
that the structures under consideration exhibit linear elastic behavior both before and after the occurrence of
damage. Given the stochastic nature of the optimization process, five independent runs are conducted for
each damage scenario. The best results from these runs are subsequently presented for damage assessment.
Unless otherwise stated, the optimization parameters of the TLBO algorithm are assumed as follows: the
population size N, = 35 for the 31-bar truss and N, = 60 for the space truss, respectively, the maximum
number of iterations maxIter = 100, and the stop criterion tol = 1 x 107,



225 Ozgan et al.

l I

Create the FE model of the Measurements from the
monitored structure in SAP2000 monitored structure
Set the initial design Experimental modal
variable vector analysis for structural
modal characteristics

!

Update the design Access SAP2000 through
variable vector MATLAB by OAPI

meee- L. , l

: — : Obtain structural modal
H Initialization i characteristics by FE
: I modal analysis
o [
=N Teaching phase ! l
= i
. l & &
' Learning phase - Calculate thl? objective
: i function
[

No Stop

criterion?

Yes

Damage
detection
Fig. 1. The flowchart of the proposed damage detection methodology

4.1. 31-bar planar truss

The first example is a 31-bar planar truss [27, 49]. The geometry of the structure and the sensor locations are
shown in Fig. 2. In SAP2000, the finite element model is constituted of 31 planar bar elements, 14 nodes,
and 28 DOFs. The length of horizontal and vertical bars is 1.52 m. For each truss member, Young's modulus
E = 70 GPa, Poisson’s ratio v = 0.2, and material density p = 2770 kg/m3 are assumed. All truss members
have a hollow section with an outer diameter of 150 mm and a wall thickness of 5.5 mm. In numerical
simulations, three damage scenarios given in Table 1 are assumed.

For damage detection, the data from the six sensor locations corresponding to node numbers 3, 6, 7, 8,
10, and 11 are considered (see Fig. 2). Note that the sensors are installed on the same nodes as Das and
Dhang [49] for comparison. Since each sensor measures the response of two DOFs of the corresponding
node, the six installed sensors can measure the response of 12 DOFs, representing around 42% of the total
DOFs of the system. The suitability of the installed sensor positions was confirmed by Das and Dhang [49]
in which the 1IRS method was used for model reduction.
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Fig. 2. Truss models considered in the study (red solid circles show the sensor locations)
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Fig. 3. Convergence history for scenario 2 of 31-bar planar truss

Table 1. Damage scenarios for 31-bar planar truss example [49]

Damage scenario 1 2 3
Damaged element 11 25 16 1 2
Damage severity 0.25 0.15 0.30 0.30 0.20
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Table 2. Statistical results of five independent runs for each scenario of Example 1
Scenario Actual Run 1 Run 2 Run 3 Run 4 Run 5 Average Std. dev.

Noise-free case

1 a;; =025 0.249856  0.249656  0.238522  0.24955  0.249608 0.2474384  0.004459

as =0.15 0.149498 0.149714 0.121565 0.149349  0.149914  0.144008  0.011223
2 a;6 =030 0.299692 0.299789  0.299897  0.299982  0.299793  0.2998306  0.000099
3 a; =030 0.298936 0.299753  0.29929  0.298883 0.300379  0.2994482  0.000559

a, =0.20 0.20099  0.199861 0.199971 0.201092 0.197521  0.199887  0.001286

Noisy case
1 a;; =025 0.250781 0.251368 0.243945 0.248879 0.248651  0.248725  0.002611
a,s =0.15 0.150297 0.144805 0.132958 0.127051 0.14744 0.14051 0.008949
2 a6 =030 0.296641 0.290905 0.312839 0.302089 0.300403  0.300575  0.007235
3 a; =030 0.299372 0.307091 0.297657  0.295844  0.299577  0.299908  0.003836

a, =020 0.172589 0.178869 0.138696 0.086822 0.182632  0.151922  0.036081

In Fig. 3, the convergence history of the proposed method for the 31-bar planar truss example with
damage scenario 2 is shown. In the figure, the variations of the average of the best cost values for all runs
with iteration numbers are given under noisy and noise-free cases. According to the figure, the algorithm
quickly converges for both cases. In the noise-free case, the curve reaches a value in the order of 10 at 80
iterations, however, the same cannot be seen when the noise is considered. In the noisy case, the curve
converges to a value in the order of 10-2. The value of the average best cost for the noise-free case is smaller
than that of the noisy case.

Table 2 presents the statistical results of five independent runs for each scenario of Example 1 with and
without noise, respectively. As seen, damage indices are, in general, determined with small errors, i.e., within
the range of 1-5%. Further, standard deviations for the damage detection results are relatively small, which
shows the robustness of the present method. Note that some exceptions have also appeared. For multiple
damages, the errors in damage indices, as well as standard deviations, are slightly increasing. Due to the
obtained results being very close to the actual values, it appears possible to further reduce these errors by
increasing the number of independent runs. However, due to the small error rates, it was not considered
necessary to increase the number of independent runs in this study.

Fig. 4 shows the damage detection results for the 31-bar planar truss under three considered damage
scenarios with and without noise. These figures showcase the best results obtained from the five runs
conducted during the damage detection process. An overall analysis reveals that the proposed method
accurately detects damages for all the scenarios considered. In the presence of noise, it is observed that false
alarm elements are slightly more pronounced for damage scenarios 2 and 3. However, these false alarms
have negligible magnitudes and do not significantly affect the correctness of the proposed method.

Table 3 compares the damage identification results of the present method and those of Das and Dang [49]
who obtained their results by four well-established optimization algorithms, e.g., GA, PSO, Jaya, and TLBO,
with a self-controlled multi-stage strategy (SCMS) for the 31-bar planar truss with and without noise. In the
work by Das and Dang [49], cross-over percentage = 0.7, mutation percentage = 0.3, roulette wheel selection,
and selection pressure = 0.8 for GA and ¢; = ¢, = 2.05, wy,,4, = 1.1, and w,,,;,, = 0.1 for PSO were assumed
as the specific control parameters, respectively. The population size was selected as 35 for all algorithms. In
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the tables, the performance of the algorithms is evaluated by comparing their mean damage indices (®,eqn),
the standard deviation of the damage indices, and the average number of structural analyses (MNSA).
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Fig. 4. Damage detection results for 31-bar planar truss under the scenarios considered
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Table 3. Comparison of the present method for the 31-bar planar truss with different optimization algorithms using the multi-stage strategy of Ref. [49]
GA PSO Jaya TLBO Present

Scenario
Umean. Std. dev. MNSA  @peqn  Std.dev. MNSA  @peqn Std.dev. MNSA e Std.dev. MNSA  @peqn  Std. dev.  MNSA

Noise-free case

1 0.2501 8.4x10° 27,600 0.2500 0.0 6685 0.2500 3.7x10° 14,785 0.2500 6.4x10° 6000 0.2474 4.46x10° 6587
0.1491 1.4x10°8 0.1500 0.0 0.1500 4.0x10™ 0.1500 8.0x10* 0.1440 1.12x107?

2 0.3005 1.5x10° 12,120 0.3000 0.0 7780  0.2999 9.12x10° 2150 0.3000 4.0x10° 1585  0.2998 9.90x10° 5243
3 0.3000 4.6x10* 9650  0.3000 0.0 8260 0.3001 6.3x10* 5015 0.3000 1.0x10* 5160 0.2994 5.59x10* 6083
0.1998 7.0x10* 0.2000 0.0 0.2001  1.5x10° 0.2000 2.0x10* 0.1999 1.29x10°%

Noisy case
1 0.2506 7.4x10* 35900 0.2633 3.16x102 12,135 0.2500 6.8x10* 45025 0.2500 8.2x10* 8665 0.2487 2.61x10° 7035
0.1512 5.9x10°8 0.1447 1.41x107? 0.1464 1.1x10%? 0.1516 6.2x10° 0.1405 8.95x10%?

2 0.3006 1.3x10° 27,985 0.3214 2.84x102 15840 0.2996 8.1x10* 29,120 0.2996 7.9x10“% 3960 0.3006 7.24x10° 7035
3 0.3007 2.4x10° 19,180 0.2988 4.83x10° 11,750 0.3016 2.5x10° 18,395 0.3017 2.3x10° 4715 0.2999 3.84x10° 7035

0.1994 2.9x1073 0.2024 8.76x107° 0.1980 2.5x10°% 0.1979 3.1x10°° 0.1519 3.61x10?
MNSA: Mean number of structural analyses
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Considering the results without noise, despite being a single-stage strategy, the present method appears
to perform relatively close to Jaya, while achieving results with fewer structural analyses than GA and PSO.
In scenarios 1, 2, and 3, the present method required 76.13%, 56.74%, and 36.96% fewer MNSA than GA,
respectively. Similarly, the present method needed 1.47%, 32.61%, and 26.36% fewer MNSA than PSO for
scenarios 1, 2, and 3, respectively. The present method exhibited slightly worse performance than TLBO
with SCMS in terms of MNSA. In terms of the error and standard deviation of the results, the present method
exhibits similar performance with the other algorithms.

Regarding the results in the presence of noise, notably, the present method exhibited superior
performance compared to the other algorithms in the noisy case except TLBO with SCMS. In terms of
MNSA, the present method required 80.40%, 74.86%, and 63.32% fewer MNSA than GA, 42.03%, 55.59%,
and 40.12% fewer MNSA than PSO, and 84.38%, 75.84%, and 61.76% fewer MNSA than Jaya algorithm
for scenarios 1 to 3, respectively. As mentioned above, it is seen that the present method had a slightly worse
performance than TLBO with SCMS in terms of MNSA. Moreover, the error in damage prediction and the
standard deviation of the results exhibited similar patterns across all algorithms and remained within an
acceptable range.

4.2. 52-bar planar truss

In the second example, a 52-bar space truss is considered [27]. The geometry of the structure is given in Fig.
2. The FE model consists of 52 3D-bar elements, 21 nodes, and 63 DOFs. The material properties of each
truss member are Young’s modulus E = 210 GPa, Poisson’s ratio v = 0.3, and material density p = 7800
kg/m3. Again hollow-sectioned truss members with an outer diameter of 109.1 mm and a wall thickness of
3 mm are used in modeling. Three damage scenarios are assumed for numerical simulations as given in Table
4. Only seven sensors located at nodes 1, 2, 4, 6, 8, 10, and 12 are employed for obtaining the modal data.
The sensor locations are the same as the work by Dinh-Cong et al. [27]. As a result, the FE model of the
structure is reduced to a model with 21 DOFs for seven installed sensors, which represents about 33% of the
total DOFs.

In Fig. 5, the convergence history of the proposed method for the 52-bar space truss example with damage
scenario 2 is given. In the figure, the average of the best costs for all runs are given for noise-free and noise-
polluted cases. As seen, the algorithm quickly converges for both cases. Without noise, the curve reaches a
value in the order of 10-3 at 100 iterations, while it converges to a value in the order of 10-2 with noise. As
in Example 1, the noise-free case more quickly converges than the noisy case.

In Table 5, the statistical results of five independent runs for each scenario of Example 2 are presented
for both noise-free and noisy cases. As observed, the present method accurately identifies the damaged
elements with only small errors in severity, specifically average errors of 2.5% in the noise-free case and
3.5% in the noisy case, respectively. These results indicate the method’s robustness, as evidenced by the
relatively small standard deviations. Although scenario 3 shows a slight increase in errors for the damage
indices, they remain within acceptable limits.

Table 4. Damage scenarios for 52-bar space truss example [27]
Damage scenario 1 2 3
Damaged element 9 10 51 9 10 49
Damage severity 0.25 0.20 0.30 0.20 0.30 0.30
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Fig. 5. Convergence history for scenario 2 of Example 2
Table 5. Statistical results of five independent runs for each scenario of Example 2
Scenario Actual Run 1 Run 2 Run 3 Run 4 Run 5 Average Std. dev.
Noise-free case
1 a9 =025 0.249709 0.249814 0.249902 0.247851 0.249938  0.249443 0.0008
2 a;0 =020 0.195096 0.202012 0.197932 0.195885  0.19355 0.196895  0.002922
as; =030 0.278426  0.297855 0.299438  0.294443  0.294486 0.29293 0.007506
3 ag =020 0.179972 0.188175 0.192325 0.196821 0.192325 0.189924 0.005678
a0 =030 0.289009 0.278039 0.287848 0.290622 0.287848 0.286673 0.004435
Noisy case
1 ag =0.25 0.25 0.242156  0.253588 0.251853  0.237915  0.244667  0.005895
2 a;0 =020 0.196009 0.192942  0.19578  0.191524  0.23068 0.201387  0.014745
as; =030 0.298515 0.273155 0.293699 0.316857 0.255885  0.287622  0.021104
3 ag =0.20 0.190387 0.188724  0.199436 0.1445 0.175856 0.179781 0.019178
a0 =030 0272378 0.293193 0.288663 0.268326  0.287413 0.281995 0.009783

Fig. 6 illustrates the results of damage detection for the 52-bar planar truss across three specific damage
scenarios, both with and without noise. These figures display the most favorable results achieved from the
five runs conducted. It is evident that the proposed method successfully identifies damages for all the
considered scenarios. In the presence of noise, it is noticeable that false alarms are slightly more prominent
in damage scenarios 2 and 3. Nevertheless, these false alarms are of negligible magnitude and do not
substantially impact the accuracy of the proposed method.
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Fig. 6. Damage detection results for 52-bar planar truss under the scenarios considered

4.3. Performance of the proposed method
In this section, we employ the following formulas, originally presented by Hoseini Vaez and Fallah [52] to
further illustrate the performance of the current method:
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Table 6. The error indices I; and I, calculated for each example in noise-free and noisy conditions

) Noise-free case Noisy case

Structure Scenario I A RMSE* I 2 RMVISE

1 5.019307 0.046224 2.60x1073 6.836613 0.047632 3.02x10°8
81-bar planar 2 0.056467  0.003076  1.36x10* 0.1918 0.234604  1.25x102
fruss 3 0.240433 0.002919 1.72x10* 24.0698 0.158867 1.13x107?

1 0.22288 0.005113 1,55x10* 1.58568 0.06783 1.91x10%3
52-bar space 3 2
{russ 2 3.9093 0.113356 3.31x10 4.819433 0.726136 1.72x10

3 10.74127 0.362242 9.84x1073 2450623 0.675553 1.80%x107?

RMSE =

m
a; — C,l\i
L= —x 100 17)
i=1 !
n-m
12 = z C,l\i,mis (18)
i=1

where a; represents the actual damage of the ith damaged element, @; denotes the estimated damage of the
same element using the algorithm, and &; ,,;s is the estimated damage of the ith undamaged element. The
variables m and n correspond to the number of damaged elements and the total number of elements in the
structure, respectively. The error-index I; quantifies the absolute percent of error in the damaged elements,
while the index I, represents the sum of the values of misidentified elements in each scenario. Therefore,
smaller values of these indices indicate the more efficient the algorithm.

Table 6 shows I, and I, indices calculated for each example in noise-free and noisy conditions. In the
table, it is also seen the root-mean-square error (RMSE) for each case as a separate column. Note that the
calculations were made using the average of five independent runs for damage identification results of each
scenario. Based on the table, both the I, error index and RMSE exhibit reasonable values close to zero across
all damage scenarios in both considered examples. However, the I; error index sometimes shows
unreasonably large values. Nevertheless, as mentioned in the reference study [52], since this index alone
cannot provide a definitive assessment of the algorithm’s performance, it can be concluded that the proposed
method in the study demonstrates an exceptionally high level of performance when evaluated in conjunction
with the other two error indices.

5. Conclusions

This investigation introduces a novel optimization-based procedure for FE modal updating, integrated with
a commercial software package, to detect damage in intricate truss structures with limited modal data. The
approach leverages SAP2000 as a slave program for FE analysis and employs TLBO as the optimization
solver to address the FE model updating challenges. Implemented in MATLAB, the TLBO algorithm is
seamlessly integrated with the SAP2000 OAPI feature, facilitating two-way data exchange throughout the
optimization process. The efficacy of the proposed methodology is validated through the application of two
numerical examples: a 31-bar planar truss and a 52-bar space truss, each subjected to various hypothetical
damage scenarios. The outcomes from these examples lead to the following conclusions:
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1.

When compared to established algorithms like Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Jaya, and Teaching-Learning-Based Optimization (TLBO), which employ
multi-stage search strategies, the single-stage TLBO method introduced in this study presents a
computationally efficient alternative. This efficiency is attributed to its utilization of a reduced
number of structural analyses.

The damage detection technique proposed in this study, integrating a novel three-term objective
function that includes frequency change, mode shape correlation, and flexibility, consistently
identifies accurate damage locations, and reliably predicts damage magnitudes. This holds even
when confronted with spatially incomplete measurements and relatively elevated levels of noise.
Across the tested damage scenarios, minimal misidentification of elements with negligible damage
severity was observed, and no damaged elements were overlooked.

The proposed strategy adeptly combines commercial FE modeling software with custom research
software, enabling the integration of advanced technology for damage assessment in full-scale
structures. This approach demonstrates promise for continued refinement and application in
practical structural health monitoring systems. However, it is imperative to acknowledge that under
real-world conditions, operational and environmental variables, including temperature, wind, and
humidity, may exert adverse effects on the proposed technique's performance. Therefore, a
comprehensive assessment of its efficacy under the diverse influences of these factors is essential
before deploying the technique in real-world structural applications.
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