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Accepted 18 December 2024 plates has been extended and named FGL-IGA to perform the static analysis of thick
and thin functionally graded piezoelectric plates. Unlike most of the isogeometric
finite element models in literature that neglect thickness stretching when analyzing
through-the-thickness functionally graded plates, FGL-IGA integrates Reddy’s
Piezoelectric layerwise theory into the electromechanically coupled constitutive and equilibrium
equations, enabling precise displacement and stress results relying on the
displacement-based virtual work principle. Additionally, unlike standard finite
elements, the utilization of high-order continuous NURBS functions for discretizing
geometry and kinematic variables allows both direct and exact retrieval of geometry
Finite element from CAD software, as well as faster convergence of results. The accuracy and
reliability of FGL-IGA have been tested and validated for two cases with exact
solutions from literature, considering various span-to-thickness ratios and
electromechanical loading scenarios.
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1. Introduction

In the late 1980s, a group of Japanese scientists introduced the concept of functionally graded materials
(FGM), which refers to a smooth and continuous variation of mechanical properties from one surface to
another [1, 2]. The unique idea of FGMs emerged from the requirement of heat-resistant ceramic materials
to be used as thermal barriers on surfaces with high temperatures, while utilizing tough metals with high
thermal conductivity on the opposite surface, resulting in a gradual compositional variation from ceramic to
metal. Evaluation of the mechanical properties in FG structures, two different approaches have been used in
literature, that are the theory of mixtures or Mori-Tanaka scheme [3]. Due to their high-performance and
multi-functional roles, FGMs gained considerable attention by the future high-speed spacecraft and power
generation industries [4]. Many investigations have been carried out to assess the behaviour of functionally
graded plates and shells. Reddy [5] has proposed a Navier’s solution for the analysis of through-the-thickness
FG plates accounting for the Von-Karman type geometric nonlinearity. A closed form solution by Cheng
and Batra [6] has been developed for the analysis of linear thermoelastic, functionally graded elliptic plates.
Carrera et al. [7] considered the theories employing a constant transverse displacement in FG structures as a
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contradiction since the material properties change significantly through-the-thickness. To investigate the
effect of thickness stretching, Carrera’s Unified Formulation (CUF) [8] has been extended to FG plates in
[9-11].

The abilities of piezoelectric materials to generate electrical voltage under mechanical stress (direct
effect) and deformations in response to an applied electrical field (converse effect) allow their use as
actuators and sensors in smart structures with self-controlling capabilities [12]. Until recently, monolithic
piezoelectric materials such as Piezoceramics (like PZT) and Piezopolymers (like PVDF) played a major
role in active damping in smart structures. Higher electromechanical coupling coefficient compared to
piezoelectric polymers makes the PZTs more efficient. Nonetheless, there are still notable disadvantages
associated with strip-form piezoceramic sheets that are bonded using an adhesive, such as epoxy resin. PZTs
are brittle, unflexible and when subjected to low temperatures, interfacial stress concentrations between two
piezoelectric ceramic sheets can trigger the crack initiation and propagation, resulting in layer detachments,
while at high temperatures, creep may take place [13]. To attain high piezoelectric effect from PZTs and
ductility from PVDFs, today’s production technology has fulfilled these requirements by producing a new
kind of material, named as functionally graded piezoelectric material (FGPM) in which the piezoelectric and
dielectric material coefficients vary continuously and gradually along the thickness. Piezoelectric structures
can be entirely made by FGPMs or utilizing an FG core layer with an outer skin, made by piezoelectric fiber
reinforced composites (PFRC). The rods of piezoelectric materials in PFRCs are generally oriented
longitudinally embedded in a polymer matrix and the electrical field is applied across the thickness of the
composite, that is, in a direction transverse to the fiber alignment. Mallik and Ray [14] have proven that
PFRCs are superior to monolithic ones by determining the effective coefficient of PFRCs. In recent years,
numerous studies have been published to examine the behaviour of functionally graded piezoelectric
materials. For example, Ray and Sachade [15] have developed a finite element model (FEM) for the static
analysis of functionally graded plates incorporating a layer of PFRC material and compared the FEM results
with the exact solutions of [16]. Based on 3D electroelasticity theory, Zhong and Shang [17] have presented
an exact solution for a FGPM, simply supported plate. Zenkour and Alghanmi [18] have investigated the
static response of a sandwich plate composed of FG core and piezoelectric faces under hygro-thermo-electro-
mechanical sinusoidal loadings by employing a two-variable shear deformation plate theory. Also, Rouzegar
and Abbasi [19] have conducted a FE formulation utilizing a four-variable refined plate theory to predict the
displacement and stress results of the FG plate integrated with a PFRC actuator under electrical and
mechanical loadings. Shiyekar and Kant [20] have derived an analytical solution for the bending analysis of
laminates with PFRC actuators using a higher order shear and normal deformation theory. Recently, Chanda
and Sahoo [21] have studied the flexural behaviour of smart FG plate with PFRC actuator at the top/bottom
by employing the inverse hyperbolic shear deformation theory. Dung et al. [22] have examined the static
bending and dynamic response analyses of piezoelectric bidirectional FG plates, utilizing a combination of
Reddy’s third order shear deformation theory and FEM.

In recent years, Hughes et al. [23, 24] introduced a method known as isogeometric analysis (IGA). This
approach utilizes Non-Uniform Rational B-Splines (NURBS) basis functions for both kinematic variable
approximation and geometry definition, paralleling their use in Computer Aided Design (CAD) for exact
geometric representation. Thus, geometric data from CAD could be maintained at the coarsest level of
discretization and employed directly for numerical simulation purposes. The notable attributes of 1GA,
including higher-order continuity, elimination of the meshing difficulty, and the maintanance of geometric
accuracy throughout the analysis, make it a more advanced option compared to traditional FEM. An overview
along with the computational implementation of IGA was provided in [25]. IGA has been effectively applied
to linear analyses of FGM structures, particularly in FG plates and shells [26, 27]. Besides, Liu et al. [28]
proposed a NURBS based IGA on the basis of first order shear deformation theory for analysing the static
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and dynamic responses of FG plates with surface-bonded piezoelectric actuators and sensors. Chen et al. [29]
also utilized IGA to investigate the vibration and transient responses of FGPM curved beams. Further, Shi
[30] has developed an isogeometric finite element for the static bending, free vibration and buckling
behaviours of FG carbon nanotube-reinforced composite plates. Nguyen-Thoi et al. [31] have presented a
numerical approach that combines electromechanical coupling IGA with a piecewise linear zig-zag function
to analyze multilayer porous FG graphene platelets-reinforced composite plates.

The literature indicates that the deformation response of functionally graded plates with piezoelectric
actuators has been investigated using equivalent single layer (ESL) theories, either First-Order Shear
Deformation Theory (FSDT) or Higher-Order Shear Deformation Theories (HSDTs). However, it is noted
that the results from FSDT are often unreliable for thick multilayered composite or functionally graded plate
structures. Besides, HSDTSs incorporate higher-order terms, which account for additional membrane and
bending deformation modes necessary for accurately modelling non-homogeneous multilayered plates.
Nonetheless, these higher-order terms can sometimes be difficult to realize physically. Also, Qian et al. [32]
highlighted that most of the ESL theories in literature disregard transverse normal deformations and generally
assume that the FG plate is under a plane stress condition. While these assumptions are appropriate for thin
plates, they may lead to inaccurate results for thicker ones with a length/thickness ratio of 5 or lower. When
the main emphasis of the analysis is on determining accurate prediction of through-the-thickness stress and
electrical displacement values of thick FGP plates, Layerwise Theories (LWTSs) based FE models provide a
more realistic kinematics assumption with separate displacement and electrical potential field expansions for
each material layer through the laminate thickness [33-36].

To the best of the authors' knowledge, the isogeometric studies conducted in literature on FGP plates are
based on the ESL theories that disregard thickness stretching. It is evident that these studies, even when
utilizing high-order continuous NURBS functions, will not yield accurate and reliable stress and
displacement results in thick FG plates when compared to LW theory, which considers deformation in the
thickness direction. To fulfil this gap, the IGA-based LW finite element developed for the static analysis of
piezolaminated plates, has been extended in this study to perform the static analysis of both thin and thick
FG plates with integrated piezoelectric layers [35]. To evaluate the current Functionally Graded Layerwise
IsoGeometric (FGL-IGA) methodology, several analyses with different span/thickness ratios and
electromechanical loadings scenarios have been performed utilizing an in-house Mathematica code that
imports the exact geometric NURBS data from the commercial Rhinoceros CAD software. The accuracy
and reliability of the FGL-IGA have been verified by comparing the results with the analytical solutions in
literature [16, 17]. The outline of the paper is as follows: Section 2.1 addresses the governing piezoelectric
equations, providing a brief explanation of the variation in material properties, constitutive equations, and
the weak formulation related to FGPMs. Sections 2.2 and 2.3 respectively give a concise overview of B-
splines and NURBS basis functions, as well as the isogeometric layerwise kinematics for FGP plates. In
Section 3, an in-depth analysis is performed to demonstrate the effects of electromechanical coupling, the
functionally graded index, and the span/thickness ratio on the static bending response. The paper is finalized
with concluding remarks included in Section 4.

2. Mathematical formulation

Consider a simply supported, rectangular plate made of FG material, as shown in Fig. 1. The top surface of
the plate is integrated with a layer of PFRC material, which serves as the distributed actuator for the FG
plate. The dimensions of the plate length, width, and thickness are designated as a, b, and h, respectively,
while the thickness of the PFRC layer is represented by h,,. The bottom surface of the FG substrate plate,

x5 = 0 is treated as the reference plane, and the origin of the Cartesian coordinate system, {x;}(i = 1,2,3) is
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positioned at one corner of the bottom surface. The coordinates x; = 0,aand x , = 0, b correspond to the
edges of the FG substrate plate.

The displacements, u = {1 Uz Uus}"and the electrical potential, ¢, illustrated in Fig. 1, are both
regarded as primary variables. In accordance with the layerwise description, each physical layer (either in
FG substrate or actuator) can be separated into computational k sublayers. The superscript, k stands for the
kth layer specifics.

2.1. Electro-mechanical basic equations

Under the assumptions of linear piezo-elastic material behavior and small strain-small displacements, the
electromechanical coupling (direct piezoelectric effect) between the elastic and electric field for a single
piezoelectric kth layer can be expressed as follows:

o = QUgk) _ gt () (1a)
DK = () k) 4 4K g (1b)
k) _ [ (k K K k k T
o = {01( ) 02( ) U?E ) 1{3) T§3) sz)} (22)
du, Ou, Ous Ou, Ous Ou, Ous 0Ou; Ouy)’
W0 0 o 0 (k)TE{_l Ju, Ouz Oth  Ouz Oup Ouz Oy _2} 2b
& {Sl £ & T P )’12} dx; 0xp, Oxs 6x3+6x1 ax3+6x2 ax2+6x1 (2b)
Fl a a
k) — = w0 NT. T _ 9 o2 9
e® =Liu=L. {9 {9 W} 17=]0 m 00 o . (2c)
a a a
Q) Q) T
T iLo) 09 a9,
E® = (g® [® g} E{_ p %% 9% } (2d)
dx, dx, 0x3
0 0 a3
E(")=L.¢>(k)z{—— - ——} o) 2e
7 0x; 0x, dox3) P (2€)
_ k k Ny
p® ={p® p® p} (2f)

Fig. 1. Geometry and kinematic variables of the rectangular FG plate attached with a PFRC actuator at the top
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where ®, £, E®) and D®) represent the stress, strain, electrical field and electrical displacement vectors,
respectively. Herein, q)lgk)stands for the electrical potential. If the kth lamina is made of an orthotropic
material, transformed elastic material matrix, Q®in Eq. (1) is symmetric and can be written as:

01y 01z Gis 0 0 Qu™
Q_12 Q_22 Q_23 0 0 Q_26
Q_13 Q_23 Q_33 _0 _0 Q_36 (3)
0 0 0 Q4 Q4 O
0 0 0 Q4 Qss O
-Ql6 QZ6 036 0 0 Q66-

Laminates are composed of multiple laminae, each of which can be oriented at any angle, 8% relative

to the laminate’s reference system. Thereby, the local stiffness terms of each lamina, Q(k) (xgk)) need to be
transformed into global ones, Q(k) (xgk)) (given in Eq. (3) to provide the alignment with the coordinates of
the geometric problem, x . For the sake of completeness, the explicit form of the transformation,

0L (x() = £(Q5,6®) is given in Appendix A. The local stiffness terms of an orthotropic material, Q"
can be formulated in terms of engineering constants as follows:

) (k). (k) (k) ,. (k) (k) (k) &) o (k) (k) (k)
a0 _ Er (1 =wvy3v3y) ay _ Er (v +v37vp57) wy _ E3 (Vi3 v vp37) (43)
1 = A® 12 = A® 3 = A®

(k) (k). (k) (k) ,. (k) )., (k) (k) (k) (k)
w0 _E; (1 —vigvap) ay _ Ez (V3 + vy vp57) a0 _ E3 (1 —vpvpp) (4b)
22 & A Q3" = A® 33 = A

(k) G(k) (k) G(k) (k) G(k) (4c)

k). (k k). (k k). (k k). (k). (k
AW =1~ V( )Vz(1) Vz(s)vz(,z) Vz(,1) 1(3) 2"2(1)1’3(2)1/1(3) (4d)

If the kth lamina is isotropic and homogeneous in the x;x, domain, while exhibiting non-homogeneity
along the thickness-xdirection, akin to functionally graded materials, Eqgs. (3-4) lead to:

(1 —=v)E(x3)

(k) Ak) _ (k)
=011 =03 =022 = =033 = A+ —-2v) (5a)
VE (x3)
05 = Q1 =0 = Qi3 =035 = Qy3 = m (5b)
E(x3)
(k) = Q4 = st = (Qs5 = (k) = Q66 = 201 —I—Bv) (5¢)

in which Poisson’s ratio, v is kept constant and Young’s modulus of FG material, E (x3) can be governed by
an exponential law through the thickness as:

E(x3) = Eje™*s (6a)

where E refers to the Young’s modulus of the material located at the bottom surface of the FG plate and 1
is a parameter that describes the gradient of inhomogeneity in the functionally graded material throughout
the thickness. In a similar manner, transformed piezoelectricity, e and permittivity matrix, A®)terms
defined in Egs. (1a-b) can be rearranged having the following exponential distributions as:
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gl) =0 &lets AP =0 APes (6b)

where Ofi(].l); (t = e, A) are the values at the plane x; = 0.

2.2. NURBS basis functions in isogeometric analysis

This section gives a brief introduction to B-splines and NURBS basis functions, which are employed to
discretize the problem of geometry and kinematic variables [23, 24]. The knot vector, U =
&1 & - & &aaperJeonsists of a non-decreasing series of real numbers within the parameter
space, ¢ where §;representing the ith knot, i as the knot index, n being the total number of basic functions
and p indicating the polynomial order. The B-spline basis functions [37] are defined recursively based on the
Cox-De-Boor formula for p = 0 and any pth degree as:

WO={ o e 2
P — E - Ei p—-1 fi+p+1 - f p—1
Ni (f) fi+p - fi Ni (E) * Ei+p+1 - $i+1 Ni+1 (5) (7b)

B-splines functions are nonnegative (N}’(f) > 0) and have local support property that means for a given
knot span and degree, i.e, & &) =& &) and p = 2, the total number of nonzero B-splines functions
are (p+1) =3, that are (Nip_ () o Nf(f)) = (N2(§) N2(&) N2(&). While B-spline basis
polynomials, constructed using Egs. (7a-b), has humerous advantages, there are several important types of
curves and surfaces that cannot be exactly represented by B-splines, including circles, ellipses, hyperbolas,
cylinders, cones and spheres. It is a well-established fact that all these geometries need to be represented
through rational functions, which are formed by the ratio of two polynomials. One (¢) and two dimensional,
(¢,m) Non-Uniform Rational B-splines (NURBS) basis functions have been introduced for this purpose as
follows:

5D _ WiNip({)
o= LiwiNS (D) (82
NPE)M?
R ) = et MO () (8b)

L1 die WijNip(f)qu(n)
where w;, w;; are the associated weights and qu (n) represent the nonrational B-spline functions defined in
the n -direction with a degree of q. The variable m refers to the total number of basic functions defined in
the knot vector, V.={ N2 ** 7; " Tmigq+1}. A nonzero (& # &4 An; #1nj4,) knot span,
&80 ® r;j,r;]-H) gives the domain of an isogeometric 2-D element, 2(¢). Herein this knot span, the
nonzero NURBS functions are constructed with nonzero Bsplines, that are (Nip_p,Nip_pH,---Nip) &

(M, Mo .., M) with a total number of nen = (p +1) x (¢ + 1). S(§,n) represents a NURBS
surface and can be constructed using NURBS functions defined in Eq. (8) along with the control point

coordinates matrix, P;; = {*ij Yij Zij}" in the following form:

SEm =@M BED BEWY =) > RIEDPy ©)

=1=1
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Herein, the control points (except for the first and last ones) defined in P;; matrix generally do not lie on
the physical geometry (not interpolatory) that makes them distinct from the nodes in classical FEM analysis.

Thereby, imposing boundary conditions in complex geometric forms of IGA is an issue that needs to be
considered carefully.

Fig. 2 shows the first five quadratic (p = q =2) and bivariate (&,n) functions of the total
(n xm = 25)NURBS definedforU =V ={0. 0. 0. 1.0 2.0 3.0 3.0 3.0}knotvectors. Herein,
the sub and superscript of the B-Splines functions, i.e., Nz(l)refers to the (1%) element’s (2"%) function. By
drawing the desired geometry in a CAD program based on NURBS technology, the knot vectors, i.e.
U(,m);V(En) and the control points location matrix, P;; can easily be extracted from the CAD

environment, i.e., Rhinoceros [38]. In this way, the geometry to be analysed can be obtained using Egs. (8-
9).
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Fig. 2. The first five NURBS functions,R[ " (§,7) defined on 0,3) ® 0,1)knot domain(wjs are 1.0)
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2.3. Layerwise kinematics
Reddy’s layerwise theory [39] is based on the idea of expressing the kinematic unknowns in the form of a
two-part function, specifically in-plane, (x;, x,) and thickness directions, x5 as:

_ — _ . . . T
U(xy,%5,x3) = {1 Uz Uz}’ = 7:1 U’ (xl,xz)R]P(x3) U/ (xq, %) = {u{ ué Ué} (10)
where the in-plane variable functions, U/ (x,, x,) represent the displacements of all points located on the jth
plane, (x3 = xé) Herein, R}’(x3) refers to the 1D NURBS functions through the thickness coordinate. In a
similar manner, the in-plane variable functions can be discretized utilizing 2D NURBS functions as:
M
UG, %) = ) WRP (2, %) 0=l W )
i=1
By expressing the equations for the unknown displacements written above in matrix form and
elementwise, it would be as follows:

T

(11)

r -
(Zgu(x1,xz,x3)={(e(2u1 (‘Z‘Za;uz 022“3} =(Z;Rz(x3(()).(Z;ny(xl(f,n),xz(f,r})).(Eégu (12)
Ry, (&) 0 0 0
(e2) 0  RLEM O 0
R, (m) = v (13q)
ey 0 0 0
0 0 0 Ry™(m)
REPEm 0 0
RyEm=["Ry 'Ry = "Ryl Ry=| 0  REm 0 (13)
0 0o RPCm
(i;\u=[ﬁ1 Uy - W o Tpeng]” ﬁj=[u{1 ué‘l uél u{z ugz ugz u{nen ué’nen ué‘nen]T (13c)

where nenz = pz + 1 with the NURBS degree of pz through the thickness coordinate, {. The indices, e and
ez correspond to the elements in the x;x, plane and x5 directions, respectively. In a similar manner, the
electrical potential in an (ez, e)*element can be discretized as:

(e2) 7 (k) _ (eD)p (eDp (e2) 4,
©@P = Rz () Rxy ) Pp (14a)
where
R, 0 0 0 0 o
0 R, 0 0 0 O
(ez) 10 0 " 0 0 0 =i _
AT PRI R, 0 o Ry=[R" RS - R (14b)
0 0 0 0 -~ o0
[0 0 0 0 o0 Ry
R, =R RXQ) RLQ) -~ Rrenx(Q)] (14c)
g _ (Bl & &/ Gnenz]” G _ (&)1 )2 ~jnem T
T0,= [0 & - & - el W=(@) & - &) o
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The virtual work, (‘EQSU done by the internal force and electrical displacements in moving through virtual

displacement and electrical potential can be expressed as:
o= f f ((6e¥)Ta® — (SEW)T D)) dx, dx,dx, (15)
ne Jpe?
By replacing the constitutive equations, Egs. (1a-b) for 6™ and D®into Eq. (15) gives:
50 = f fﬂ e fh ((B£®)TQWe® — (560)TeWE® — (SEO)Teel® — (SEW)TAWE® )dx; dxydx, (16)

From this point on, the indices, e and ez will not be displayed in the terms unless undeemed necessary
for the purpose of simplifying equations. The following strain energy variation can be obtained via
substituting Egs. (2c-€) into Eq. (16) respectively for € and E®yields:

Cou= f f f [(6wL1Q®Lyu — (u)LIe®L, 00 — (508 Lre®L,u — (6<Dz§k))TL§/_1(")L2<DISk)] dx; dx,dx,  (17)
ne Jpt%
Furthermore, the displacement and electrical potential vectors in Eq. (17) can be expressed in terms of
the discretized forms presented in Egs. (12-14a), the resulting final form of Eq. (17) will be:
[(6@)" RL,RILT QU LyR,R,, i — (5@)" RL,RTL] &® L,R,R,, &, 1

Bu T B, B,)T B |
(6(251/ ff f | ( ) (Bu) *_ _ _ ldxzdxdx, (18)
ne hezl (6®,) RL,RIL ™ L R,R,, 0 — (54),,) R, RTLT A® L,R,R,, d>pJ

(Bo)T By Bap)T Bg

For the sake of completeness, B,, and By, appeared in Eq. (18) are given in the Appendix B. Note that
the element strain-displacement and potential-displacement matrices, B,,, B, given in Egs. (B1-B2) contain
not only NURBS functions but also derivatives. To obtain the NURBS derivatives with respect to physical
in-plane coordinates, (x;, x,), one must apply the chain rule in the form;

axl _ axl axl af — -1 (e) fn (E) 19
6RU - af 67) ORU - (11 ) (Rder) ( )
axZ axz axZ 61’]

where (J71)©represents the inverse of the element Jacobian matrix, 1§e>. With the aid of known control

point coordinates, (x; ,xz) and the NURBS basis functions, Ri(je)(f.n) = R (¢,1); the mapping

between the physical in-plane, 2 (x,,x,) and parametric domains of an eth element, 2¢)(&,n) can be
accomplished by a similar approach defined in Eq. (28) as:

(p+1) (g+1) nen (p+1) (q+1) nen
2@ = Z z €l RO (€,m) _Zx{ RO x© = Z Z I RO, ")_Z 1R@ (20)
i=1 j=1 I1=1 i=1 j=1 I=1

Thus, the inverse of the element Jacobian matrix, ](9) required in Eq. (19), can be evaluated by taking the
derivatives of Egs. (20) with respect to parametric coordinates, (¢, 7) that yields the ]Ee) to be obtained as:

6x1 axz © aR1 aRz aRne‘n © X11 le 2
@ _|0§ 95| _|o& 0% 0¢ X12 x5 (21)
1 0x; 0x,| ~|0Ry OR, ORon :

x;len

nen

an o o oy X
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Also, the Jacobian term, ](ez) of the transformation between the physical and parametric thickness
coordinates, (x3,{) can be written as:

x% (ez)
e _ (%)(ez) _ (R, ar R\ | (22)
» =\a) @ %« a

x;lenz

The difficulty of integrating Eq. (18) analytically gives rise to the numerical Gauss-Legendre quadrature
method that needs a further mapping from parametric coordinates, (¢, 7, {) to parent element space, (E 7,7 )
as:

f=q+(E+) === (5”1 D @ 7(""“2_ W, =g @ —“"“ - 3)
(e2) ﬁd_n% i1 — &) (’7j+1 - 77j) (Cr+1 — Si) (23b)
@37 g&dijd; = 2 2 2
Furthermore, additional relations that will be needed in Eq. (18) is:
dxydac, = || dédn dxy = J$?dg (24)

where |](e) stands for the determinant of the Jacobian matrix and interested readers are referred to [40] for
the proof of the relations. By applying the transformations, the element virtual work integral can be rewritten
as:

(e2) (6w)"(B,)" QW B, — (50)" (B,) e Bo®,
(e)éU .Uj F(¢,7,{)dédnd{ = J J J (5¢p) (Bp)Te®B, i — (5(1) ) (B¢)TA(k)B¢¢

Jdédnid{ (25)

where ] represents the total Jacobian that can be computed as:

J =] % Jy xJs (26)

The element stiffness matrix terms of Eq. (25) can be separated and computed as:

P 1 Ngpe Ngpy /Nepg
(ez) _ 5 5 F o (
A= [ [ ([ @re©sgac)atar~ Yy (Z((B Q9B , Wt> W, (272)

r=1 s=1

11 1 Ngpe Nepy /Nepg
K= | 1( | 1(Bu)Te'e(k)quJalZ) agdij ~ Z Z (Z((Bu)Té“)Bd)l@t)wt) WW,  (27b)

6pe Ngpy /Ngp
K pu = f f (f (qu)Te(")Bu]d() Z Z<Z{((B¢)Té<k>3uf)l(zt)wt> W (27c)

Ngpg

Ngpg Ngp
(Z%Kw‘f f <f (B¢)TA<’<>B¢Jd€) dian~ ), ) <Z((B¢)TA<'<)B¢1)I e
r=1 s=1

WW,  (27d)
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T
where C9K,, is the element mechanical stiffness matrix, SOK,q :(((Z;KW) are the element
(ez)

piezoelectric matrix, and Koo is the element electrical permittivity matrix. The number of in-plane Gauss

points are denoted by (ngg,NGP,,) and taken as (p + 1) x (g + 1). Similarly, the number of thickness
Gauss points, Ngp, are set to be pz + 1 and W, W, and, W, are the corresponding weights. In the absence

of body forces, the virtual work done by the external mechanical forces and applied electric charges for an

(e2)

, (€2 6u and electric potential, €950 can be written as:

arbitrary variation of displacement field @0 Pp

(ez) —
‘Zi)é‘W = ﬁez)s((&l)Tfs —8®7q)ds (28)
(e)

where fiand gare the surface traction and charge vectors, respectively. By substituting Egs. (12-14a) into
Eq. (28) for (6u)” and 6, , one can obtain the element force vectors due to applied traction and surface
charge as:

(ez) _ 5 (ez) _ 5T B
O = [, RLRIfLds DFa=- |, RoRIqds 29)
@©° @3
Based on the principle that the actual displacement and electric potential vector minimize the potential
energy function, E = U — 6W = 0 the following element equations system is derived:

) P
ez [Kuu Ku¢] {1‘ }(ez) B {Fs }(ez) (30)
o Kou Kool Prly, ol

Following the similar element assembly procedure used in classic finite elements, global systems of
equations are obtained, and the primary unknowns can be solved as:

(o) =l kel (7 @
Pp)  Kgu Kol (Fo

To make FGL-IGA more versatile and cost effective, the skyline solver algorithm has been utilized in
the solution process. Thereby, only the terms on the upper diagonal part of the stiffness matrix have been
focused, considering only the terms up to the last non-zero term in any given column, while disregarding the
remaining zero terms above. An interested reader can refer to [40,41] on the skyline solver algorithm. Once
the model unknowns, i and @, are yielded, the expressions for £®), ™), E®), and D®) can be obtained
from the strain-displacement and constitutive equations.

3. Numerical results

In this section, the numerical results are evaluated utilizing the FGL-IGA element derived in the preceding
section. Two separate cases with analytical solutions available in literature have been selected. The first case
aims to investigate the stress and displacement results of a plate made entirely of piezoelectric material with
a functionally graded thickness under mechanical loads using FGL-IGA, while the second case aims to
analyze the combined effects of electrical and mechanical loads by placing a piezoelectric layer on top of a
functionally graded isotropic substrate layer. Assuming linear piezoelastic material behavior and small-
strain, small-displacement conditions, the piezoelectric layers are subjected to mechanical and/or electrical
loads and are perfectly bonded to each other. Furthermore, the shear-lag effect is ignored by neglecting the
thickness of the adhesive between the layers.
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Case 1

The first case, investigated by Zhong and Shang [17], features a square (a = b = 1 m) moderately thick
plate, (a/h =10) that is made entirely of piezoelectric material (PZT-4 at x; = 0) and functionally graded
through its thickness. The state space approach has been applied in, and the corresponding approach is based
on eliminating the five unknowns (o4, 055,042, D4, D,) from the governing piezoelectric field equations
[17]. Thus, a total of eight unknowns (ul,uz,ogg,D3,ol3, 03, U3, ¢p) can be obtained by utilizing eight
boundary conditions to be applied to the simply supported plate. The elastic and piezoelectric properties of
PZT-4 are given in Tablel. The static analysis of the FG piezoelectric plate under bisinusoidal mechanical
loading, q(x;, x5, x3 = h) = q, sm( )sm( ) with g, = 1 N/m? has been conducted by modifying the

material property gradient index, a in the range of (—1.0,1.0) that is utilized in the following material
exponential distributions as:

Qi = QP eCxs/h) & = eeatxs/h Ayj = A% ety (32)

where Q{’], 3 and /10 are the elastic stiffness, piezoelectric and dielectric tensor values at the plane, x; = 0.

To obtain the desired accuracy, the in-plane and thickness domains are discretized into 14 x 14 and 6
quadratics, (p = q = pz = 2) isogeometric elements, respectively (Fig. 3). FGPM plate is simply supported
and grounded on its four lateral edges that can be mathematically stated as:

U, =uz =¢,=0atx; =0anda Uy =uz=¢,=0atx, =0and b (33a)

¢p(x11x2'x3 = 0) = (l)p(xl; X2, X3 = h) =0 (33b)

Table 1. Elastic and piezoelectric properties for PZT-4 and PZT-5H

Elastic Properties Piezoelectric Properties

Properties PZT-4 PZT-5H Properties PZT-4 PZT-5H
Q11[GPa] 139 32.6 es1[C/m?] 5.2 -6.76
02,[GPa] 139 7.2 e3,[C/m?] 52
Q33[GPa] 115 7.2 e33[C/m?] 151 e
Q13[GPal] 74.3 4.76 e,4[C/m?] 127 e
Q23[GPa] 74.3 3.85 e1s[C/m?] 127 e
Q12[GPal] 778 43 €11[F /m] 1475¢," 4.179¢,"
Q44[GPal] 256 1.29 €22[F /m] 1475¢," 4.179¢,"
Qss5[GPal] 256 1.05 £33[F/m] 1300¢," 1201.69¢,"
Qes[GPa]l 30.6 129 e e e

*The vacuum dielectric constant used as ¢, = 8.854187817 x 10~2[F /m)].
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Fig. 5. Through-the-thickness stress and electric displacement variations

Fig. 4 illustrates the effect of the material gradient index, a on the distribution of in-plane and transverse
displacements throughout the thickness of the functionally graded piezoelectric material (FGPM) plate, along
with the electric potential. As exhibited in Fig. 4, when compared to the case where the material is
homogeneous (PZT4 - « = 0) along the plate thickness, the positive values in the gradient index (a) leads
to a reduction in the center deflection and electric potential as well as the in-plane displacements at the base
(x5 = 0). Additionally, while the effects of the negative values of the gradient index are in the opposite
direction, it is evident from Fig. 4 that the rate of increase of these effects is higher for the negative values
of the index compared to the positive ones. As depicted in Fig. 5, through-the-thickness in-plane normal and
shear stress as well as transverse electrical displacement distributions obtained from FGL-IGA agree well
with the analytical solution [17]. Herein, in-plane normal and shear stresses for &« = Oare in a linear form
whereas the modification of gradient index makes the distributions exhibit a nonlinear pattern.

Case 2

Unlike the first case, herein, the second problem involves a square (a = b = 0.3 m) plate where a
piezoelectric fiber-reinforced composite (PFRC) layer is placed on top, while a substrate layer made of
functionally graded isotropic material is positioned beneath it (Fig. 1). By keeping the ratio E,/E, = 10
constant, linear static analyses were performed over a wide range of the span/thickness ratio from a/h = 20
to 100, with both voltage and sinusoidal mechanical loadings applied to the top piezoelectric layer. The
resulting displacement and stress values were then compared with the analytical solution from the literature.
Thereby, the effect of voltage on the mechanical load results could also be examined. The thicknesses of the
FG substrate and PFRC actuator layers are takenas h = 3 X 107> mand h,, = 250 um, respectively. PFRC
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layer is made of PZT5H with the material properties defined in Table 1. Besides, the engineering constants
at the bottom location (x5 = 0) of the isotropic FG plate are regarded as: E, = 200 GPa and v = 0.3. The
Poisson’s ratio, v is assumed as constant over the FG plate and the Young’s modulus, E is varied as an
exponential function of the thickness coordinate as:

E = Eje*s (34)

with a parameter A characterizing the inhomogeneity of the FG material throughout the thickness that can be
described as:

in (g_z) (35)

where E;, refers to the elasticity modulus of the FG plate at x; = h. The mechanical and electrical boundary
conditions over the FG plate are as follows:

Uy (X2, x3) = Uz (X2, X3) = Pp(x2,x3) =0 atx; =0andx; =a (36a)
Uy (1, X3) = uz(Xg, X3) = ¢p(x1,x3) =0 atx, =0andx, =b (36Db)
Gp(x1,%2,%3) = 0 at0<x3<h (36¢)

Also, the imposed bisinusoidal mechanical and electrical loadings on top surface of the PFRC plate are
defined as:

q(x1, %2, %3 = h + hy,) = qq sin (%) sin (%) with g = =40 N/m? (37a)
(%0, %3, %3 = h+ hy) =V sin (%) sin (%) withV = 0 + 100 (37h)

This configuration enables the study of the behavior of the functionally graded plate under both
mechanical and various electrical potential loads applied to the PFRC layer, with an emphasis on
displacement, and stress values. The results obtained were then compared to the analytical solution presented
in the literature [16]. Utilizing simply-supported boundary conditions as well as with the zero electrical
potential conditions at the edges of the PFRC layer make the four primary unknowns (ul, Uy, Us, ¢>p) to be
written in terms of a sinus and cosinus admissible functions that yields a set of homogenous algebraic
equations to be solved [16].To be more convenient, the displacement and stress values are normalized as
follows:

_Eoh’ __ 100Eyh® . K
Uy Us —W% {o, 0, T} = pEr.

The normalized in-plane and transverse displacements (it,, @i3), along with the in-plane normal and shear

{0, 0 T2} (38)

Uy
a3
do

stresses (4, d,,74,), for an FG substrate with % = 10 are provided in Tables 2 and 3, respectively. Thin
0

plate (a/h = 100) is subjected to bisinusoidal distributed mechanical loading together with/without applied
voltages.

Tables 2 and 3 indicate that the present results obtained from FGL-IGA are in good agreement with the
exact solutions and the maximum deviation from the exact values for displacements do not exceed %1.06.
It is also clear that applying a positive voltage (V = +100) to the PFRC layer causes the substrate to bend
in the opposite direction of the mechanical load, thereby reducing the mechanical deformations. In contrast,
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when the voltage polarity is negative (V' = —100), the actuator bends the substrate in the direction of the
mechanical load, which results in an increase in the mechanical deformations.

Table 2. Normalized displacement responses of the FG substrate plate (Ej,/E, = 10)for various applied voltages (V) to
the top surface (a/h = 100)

_ Error _ Error
=0,x,=b/2,x3=0
1% Theory Us Percentage 1_11(’(1 Y2 = b/2x3 =0) Percentage
(xy =a/2,x, =b/2,x3 = h/2) (%) (%, = 0,x, =b/2,x3 = h) (%)
Present 0.9139 0.17 100195 0.00
' ' 0.0093 0.00
0

Exact 00195 -

-0915 -
[16] 0.0093
-0.0201 0.50

Present 0.9296 0.77
-0.0494 0.60

100

Exact -0.0202

0938 0 -
[16] 00497
-0.0190 1.06

Present -2.7534 0.52
0.0679 0.44

-100

-0.0188 -

E’l‘g"t 27678 e
[16] 00682

Table 3. Normalized stress responses of the FG substrate plate (E,/E, = 10) for various applied voltages (V) to the top

surface (a/h = 100)

6,(xy=a/2,x, =b/2,x3=0)

G,(% = af2,x, = b/2,x3 = 0)

T12(x1 = 0,x, = 0,x3 = 0)

%4 Theory G1(xy = a/2,x, =b/2,x3 =h) 6,00 =a/2,%, =b/2,x3 =h)  F,(x = 0,%, = 0,23 = h)
Present 0.0880 0.0879 -0.0473
04189 -0.4198 0.2257
0
Exact [16] 0.0874 0.0873 -0.0470
-0.4161 -0.4170 0.2243
Present 0.0288 -0.1148 0.0231
1.6160 0.1778 -0.4803
100
Exact [16] 0.0291 -0.1145 0.0230
X
16124 0.1751 04813
Present 0.1472 0.2907 -0.1178
-2.4539 -1.0174 0.9317
-100
Exact [16] 0.1457 0.2892 -0.1171
-2.4446 -1.0090 0.9298
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It is evident from Fig. 6 that the FGL-IGA stress results are virtually indistinguishable from the exact
ones and the stress distribution across the thickness is nonlinear, resulting from the nonzero gradient of the
Young’s modulus defined in Eq. (34). Furthermore, the maximum stress observed at the interface between
the substrate and the PFRC layer can be attributed to the Young’s modulus reaching its highest value
(En/E, = 10) at this location.

1.0 1.0
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0

various span/thickness ratios (V = 100)
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Figs. 7 and 8 show how span/thickness ratio affects through-the-thickness displacement and stress
variations for the range of moderately thick to thin plates under applied voltage (V = 100) and mechanical
loadings given in Egs. (37a-b). By keeping the thickness of the FG plate is fixed (h = 0.003 m) and
modifying the in-plane dimensions, several static analyses have been conducted. Otherwise, altering the
thickness would result in the inhomogeneity parameter 4 to be modified in accordance with Eq. (35). It can
be seen from Figs. 7 and 8 that the in-plane displacements behave linearly along the thickness direction,
while the transverse displacements remain constant, and the normal stresses follow a nonlinear pattern. The
results obtained are consistent with the exact solution [16], and increasing thickness leads to a significant
rise in both displacements and stresses.

4., Conclusions

In this study, an isogeometric finite element has been developed to obtain the static response of functionally
graded piezoelectric plates. Thanks to its ability to allow the exponential variation of both piezoelectric and
mechanical properties along the thickness, the formulation can be applied to any plate system, whether it is
created by grading solely the piezoelectric material or by varying the properties of isotropic or orthotropic
materials and placing a homogeneous piezoelectric actuator on top. To validate the present formulation, the
results obtained from FGL-IGA have been compared with those reported in literature and the results show
that FGL-IGA is in excellent agreement with the exact ones. Also, the FGL-IGA displacement and stress
results in overlapping with the analytical ones for a wide range of span/thickness ratio, i.e., a/h = 20 to
a/h = 100 (from moderately thick to thin plates).

This study serves as an initial attempt to showcase the efficiency of isogeometric layerwise analysis for
functionally graded piezoelectric plates. It can be further extended to static or transient analyses of more
complex geometries, such as those with curved boundaries or internal holes within the FG piezoelectric plate
domain, in future work.
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Appendix A

The global stiffness coefficients defined in Eqg. (3) can be obtained in terms of local stiffness values and

angle, 8% as:

(k)
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(k) (Q () _

(k) (Q () _

(k) (Q ) 4

Appendix B

B)

1
6x3

R, -

= Q% cos* 0% + 2(Q% +2Q%) sin? 6% cos? 6®) + QL sin* 6®

(Q(k)

(k) 4Qék))sm 0® cos 9(")+Q(k)(sm 00 + cos* g™)

= Q%W sin* 0% + 2(Q% +2Q%) sin? 6® cos? 6™ + QL cos* 6®

(k) ZQék)) sin 0% cos® 90O + (Q(k)

(k) ZQék)) sin® 8% cos 0 + (Q(k)

(k)

k
Q()

® 1208 sin3 §® cos ®
5 +20%) sin 6@ cos® g®

209 5in? 6% cos? 6% + QU (sin* 6K + cos* 6 1)

08 = %) cosz 9™ 4 Q(k) sin? 9

(k) ( % () _

Q%) cos 6®) sin o®)

_é? = Q(k) cos? 9 + Q(k) sin? 6

=[B, B

o Pepiy
ax1 1(

0 0
R OR; 0
1 axg
oy 0R

i R
axl J 2 axg
aRl _

ey -3 0
axz /
R,
0 —R;
axz J

B’

ox;

u

R aR
2 aX3
0R, .
0x1
aRz _

Bnenz]

ORpen =
a—Xle 0 0
ORpen -
0 —R; 0
axz ]
0 0 oR;
nen 9
OR; OR _
R gy 0 nen 3
e 9xg dx; 7
OR; ORpen -
0 e ) ﬂRj
ax:; axZ
ORpen = ORpen -
R; R; 0
axZ ] axl J

(Ala)
(Alb)
(Alc)
(Ald)
(Ale)
(A1f)
(Alh)
(Ai)

(A1)

(Bla)

(B1b)



257 Hagim

By =[B, B% - B), - B¥"| (B2a)
- OR, . R, . IRy -
_hp 2R .. _ITmenp
ox, ox, ’ ox;
. OR, . OR, . OR,., -
oo | P2 L R.
B, ox, 0 T ax, Y ox, U (B2b)
R oR; R oR; R OR;
| T Ox, 2 0x, et G, |

References

[1] Koizumi M (1993) The concept of FGM. Ceram Trans Funct Grad Mater 3-10.

[2] Yamanouchi M, Koizumi M, Hirai T, Shiota | (1990) Proceedings of the First International Symposium of
Functionally Graded Materials

[3] Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting
inclusions. Acta Metall 21:571-4. https://doi.org/10.1016/0001-6160(73)90064-3

[4] Koizumi M (1997) FGM activities in Japan. Compos Part B 28:1-4. https://doi.org/10.1016/S1359-
8368(96)00016-9

[5] Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47:663-84.
https://doi.org/10.1002/(SICI1)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8

[6] Cheng ZQ, Batra RC (2000) Three-dimensional thermoelastic deformations of a functionally graded elliptic plate.
Compos Part B Eng 31:97-106. https://doi.org/10.1016/S1359-8368(99)00069-4

[7]1 Carrera E, Brischetto S, Cinefra M, Soave M (2011) Effects of thickness stretching in functionally graded plates
and shells. Compos Part B Eng 42:123-33. https://doi.org/10.1016/j.compositesb.2010.10.005

[8] Carrera E, Cinefra M, Zappino E, Petrolo M (2014) Finite Element Analysis of Structures Through Unified
Formulation. Wiley. https://doi.org/10.1002/9781118536643

[9] Carrera E, Brischetto S, Robaldo A (2008) Variable kinematic model for the analysis of functionally graded
material plates. AIAA J 46:194-203. https://doi.org/10.2514/1.32490

[10] Brischetto S, Carrera E (2010) Advanced mixed theories for bending analysis of functionally graded plates.
Comput Struct 88:1474-83. https://doi.org/10.1016/j.compstruc.2008.04.004

[11] Brischetto S (2009) Classical and mixed advanced models for sandwich plates embedding functionally graded
cores. J Mech Mater Struct 4:13-33. https://doi.org/10.2140/jomms.2009.4.13

[12] Chopra I (2002) Review of State of Art of Smart Structures. AIAA J 40:16-9.

[13] Zhu X, Meng Z (1995) Operational principle, fabrication and displacement characteristics of a functionally gradient
piezoelectric ceramic actuator. Sensors Actuators A 48:169-76. https://doi.org/10.1016/0924-4247(95)00996-5

[14] Mallik N, Ray MC (2003) Effective Coefficients of Piezoelectric Fiber-Reinforced Composites. AIAA J 41:704—
10. https://doi.org/10.2514/2.2001

[15] Ray MC, Sachade HM (2006) Finite element analysis of smart functionally graded plates. Int J Solids Struct
43:5468-84. https://doi.org/10.1016/j.ijsolstr.2005.06.096

[16] Ray MC, Sachade HM (2006) Exact solutions for the functionally graded plates integrated with a layer of
piezoelectric fiber-reinforced composite. J Appl Mech Trans ASME 73:622-32. https://doi.org/10.1115/1.2165230

[17] Zhong Z, Shang ET (2003) Three-dimensional exact analysis of a simply supported functionally gradient
piezoelectric plate. Int J Solids Struct 40:5335-52. https://doi.org/10.1016/S0020-7683(03)00288-9

[18] Zenkour AM, Alghanmi RA (2021) Hygro-thermo-electro-mechanical bending analysis of sandwich plates with
FG core and piezoelectric faces. Mech Adv Mater Struct 28:282-94.
https://doi.org/10.1080/15376494.2018.1562134

[19] Rouzegar J, Abbasi A (2017) A refined finite element method for bending of smart functionally graded plates.
Thin-Walled Struct 120:386-96. https://doi.org/10.1016/j.tws.2017.09.018



https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1016/S1359-8368(96)00016-9
https://doi.org/10.1016/S1359-8368(96)00016-9
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663::AID-NME787%3e3.0.CO;2-8
https://doi.org/10.1016/S1359-8368(99)00069-4
https://doi.org/10.1016/j.compositesb.2010.10.005
https://doi.org/10.1002/9781118536643
https://doi.org/10.2514/1.32490
https://doi.org/10.1016/j.compstruc.2008.04.004
https://doi.org/10.2140/jomms.2009.4.13
https://doi.org/10.1016/0924-4247(95)00996-5
https://doi.org/10.2514/2.2001
https://doi.org/10.1016/j.ijsolstr.2005.06.096
https://doi.org/10.1115/1.2165230
https://doi.org/10.1016/S0020-7683(03)00288-9
https://doi.org/10.1080/15376494.2018.1562134
https://doi.org/10.1016/j.tws.2017.09.018

Journal of Structural Engineering & Applied Mechanics 258

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[30]

[31]

[33]

[34]

Shiyekar SM, Kant T (2011) Higher order shear deformation effects on analysis of laminates with piezoelectric
fibre reinforced composite actuators. Compos Struct 93:3252-61.
https://doi.org/10.1016/j.compstruct.2011.05.016

Chanda A, Sahoo R (2020) Flexural Behavior of Functionally Graded Plates with Piezoelectric Materials. Arab J
Sci Eng 45:9227-48. https://doi.org/10.1007/s13369-020-04699-w

Dung NT, Minh P Van, Hung HM, Tien DM (2021) The Third-Order Shear Deformation Theory for Modeling the
Static Bending and Dynamic Responses of Piezoelectric Bidirectional Functionally Graded Plates. Adv Mater Sci
Eng. https://doi.org/10.1155/2021/5520240

Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric Analysis Toward Integration of CAD and FEA. United
Kingdom: John Wiley & Sons Ltd.

Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement. Comput Methods Appl Mech Eng 194:4135-95. https://doi.org/10.1016/j.cma.2004.10.008
Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: An overview and computer
implementation aspects. Math Comput Simul 117:89-116. https://doi.org/10.1016/j.matcom.2015.05.008

Thai CH, Kulasegaram S, Tran L V, Nguyen-Xuan H (2014) Generalized shear deformation theory for functionally
graded isotropic and sandwich plates based on isogeometric approach. Comput Struct 141:94-112.
https://doi.org/https://doi.org/10.1016/j.compstruc.2014.04.003

Nguyen TN, Thai CH, Luu AT, Nguyen-Xuan H, Lee J, Kulasegaram S, et al. (2019) NURBS-based postbuckling
analysis of functionally graded carbon nanotube-reinforced composite shells. Comput Methods Appl Mech Eng
347:983-1003. https://doi.org/10.1016/j.cma.2019.01.011

Liu T, Li C, Wang C, Lai JW, Cheong KH (2020) A simple-fsdt-based isogeometric method for piezoelectric
functionally graded plates. Mathematics 8:1-24. https://doi.org/10.3390/math8122177

Chen M, Chen H, Ma X, Jin G, Ye T, Zhang Y, et al. (2018) The isogeometric free vibration and transient response
of functionally graded piezoelectric curved beam with elastic restraints. Results Phys 11:712-25.
https://doi.org/10.1016/j.rinp.2018.10.019

Shi P (2022) Three-dimensional isogeometric analysis of functionally graded carbon nanotube-reinforced
composite plates. Arch Appl Mech 92:3033-63. https://doi.org/10.1007/s00419-022-02224-z

Nguyen-Thoi T, Ly DK, Kattimani S, Thongchom C (2024) An electromechanical coupling isogeometric approach
using zig-zag function for modeling and smart damping control of multilayer PFG-GPRC plates. Acta Mech
235:941-70. https://doi.org/10.1007/s00707-023-03785-y

Qian LF, Batra RC, Chen LM (2004) Static and dynamic deformations of thick functionally graded elastic plates
by using higher-order shear and normal deformable plate theory and meshless local Petrov—Galerkin method.
Compos Part B Eng 35:685-97. https://doi.org/10.1016/j.compositesh.2004.02.004

Shakeri M, Mirzaeifar R (2009) Static and dynamic analysis of thick functionally graded plates with piezoelectric
layers using layerwise finite element model. Mech Adv  Mater Struct  16:561-75.
https://doi.org/10.1080/15376490802625514

Moleiro F, Mota Soares CM, Mota Soares CA, Reddy JN (2012) Assessment of a layerwise mixed least-squares
model for analysis of multilayered piezoelectric composite plates. Comput Struct 108-109:14-30.
https://doi.org/10.1016/j.compstruc.2012.04.002

Hasim KA, Kefal A (2022) A novel isogeometric layerwise element for piezoelectric analysis of laminated plates
with straight/curvilinear fibers. Comput Methods Appl Mech Eng 399:115440.
https://doi.org/https://doi.org/10.1016/j.cma.2022.115440

Li G, Carrera E, Hou Y, Kulikov GM (2021) Multi-layered plate finite element models with node-dependent
kinematics for smart structures with piezoelectric components. Chinese J Aeronaut 34:164-75.
https://doi.org/10.1016/j.cja.2021.01.005

Piegl L, Tiller W (1997) The NURBS Book.

McNeel R (2010) Rhinoceros 3D.

Reddy JN (2003) Mechanics of Laminated Composite Plates and Shells Theory and Analysis 840.

Chandrupatla T, Belegundu A (2021) Introduction to Finite Elements in Engineering. 5th Edition. Cambridge
University Press, Cambridge. https://doi.org/DOI:10.1017/9781108882293

Bathe KJ (1996) Finite Element Procedures. Englewood Cliffs: Prentice-Hall.



https://doi.org/10.1016/j.compstruct.2011.05.016
https://doi.org/10.1007/s13369-020-04699-w
https://doi.org/10.1155/2021/5520240
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.matcom.2015.05.008
https://doi.org/https:/doi.org/10.1016/j.compstruc.2014.04.003
https://doi.org/10.1016/j.cma.2019.01.011
https://doi.org/10.3390/math8122177
https://doi.org/10.1016/j.rinp.2018.10.019
https://doi.org/10.1007/s00419-022-02224-z
https://doi.org/10.1007/s00707-023-03785-y
https://doi.org/10.1016/j.compositesb.2004.02.004
https://doi.org/10.1080/15376490802625514
https://doi.org/10.1016/j.compstruc.2012.04.002
https://doi.org/https:/doi.org/10.1016/j.cma.2022.115440
https://doi.org/10.1016/j.cja.2021.01.005
https://doi.org/DOI:10.1017/9781108882293

