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In this study, an isogeometric finite element originally developed for piezolaminated 

plates has been extended and named FGL-IGA to perform the static analysis of thick 

and thin functionally graded piezoelectric plates. Unlike most of the isogeometric 

finite element models in literature that neglect thickness stretching when analyzing 

through-the-thickness functionally graded plates, FGL-IGA integrates Reddy’s 

layerwise theory into the electromechanically coupled constitutive and equilibrium 

equations, enabling precise displacement and stress results relying on the 

displacement-based virtual work principle. Additionally, unlike standard finite 

elements, the utilization of high-order continuous NURBS functions for discretizing 

geometry and kinematic variables allows both direct and exact retrieval of geometry 

from CAD software, as well as faster convergence of results. The accuracy and 

reliability of FGL-IGA have been tested and validated for two cases with exact 

solutions from literature, considering various span-to-thickness ratios and 

electromechanical loading scenarios. 
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1. Introduction 

In the late 1980s, a group of Japanese scientists introduced the concept of functionally graded materials 

(FGM), which refers to a smooth and continuous variation of mechanical properties from one surface to 

another [1, 2]. The unique idea of FGMs emerged from the requirement of heat-resistant ceramic materials 

to be used as thermal barriers on surfaces with high temperatures, while utilizing tough metals with high 

thermal conductivity on the opposite surface, resulting in a gradual compositional variation from ceramic to 

metal. Evaluation of the mechanical properties in FG structures, two different approaches have been used in 

literature, that are the theory of mixtures or Mori-Tanaka scheme [3]. Due to their high-performance and 

multi-functional roles, FGMs gained considerable attention by the future high-speed spacecraft and power 

generation industries [4]. Many investigations have been carried out to assess the behaviour of functionally 

graded plates and shells. Reddy [5] has proposed a Navier’s solution for the analysis of through-the-thickness 

FG plates accounting for the Von-Karman type geometric nonlinearity. A closed form solution by Cheng 

and Batra [6] has been developed for the analysis of linear thermoelastic, functionally graded elliptic plates. 

Carrera et al. [7] considered the theories employing a constant transverse displacement in FG structures as a 
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contradiction since the material properties change significantly through-the-thickness. To investigate the 

effect of thickness stretching, Carrera’s Unified Formulation (CUF) [8] has been extended to FG plates in 

[9–11]. 

 The abilities of piezoelectric materials to generate electrical voltage under mechanical stress (direct 

effect) and deformations in response to an applied electrical field (converse effect) allow their use as 

actuators and sensors in smart structures with self-controlling capabilities [12]. Until recently, monolithic 

piezoelectric materials such as Piezoceramics (like PZT) and Piezopolymers (like PVDF) played a major 

role in active damping in smart structures. Higher electromechanical coupling coefficient compared to 

piezoelectric polymers makes the PZTs more efficient. Nonetheless, there are still notable disadvantages 

associated with strip-form piezoceramic sheets that are bonded using an adhesive, such as epoxy resin. PZTs 

are brittle, unflexible and when subjected to low temperatures, interfacial stress concentrations between two 

piezoelectric ceramic sheets can trigger the crack initiation and propagation, resulting in layer detachments, 

while at high temperatures, creep may take place [13]. To attain high piezoelectric effect from PZTs and 

ductility from PVDFs, today’s production technology has fulfilled these requirements by producing a new 

kind of material, named as functionally graded piezoelectric material (FGPM) in which the piezoelectric and 

dielectric material coefficients vary continuously and gradually along the thickness. Piezoelectric structures 

can be entirely made by FGPMs or utilizing an FG core layer with an outer skin, made by piezoelectric fiber 

reinforced composites (PFRC). The rods of piezoelectric materials in PFRCs are generally oriented 

longitudinally embedded in a polymer matrix and the electrical field is applied across the thickness of the 

composite, that is, in a direction transverse to the fiber alignment. Mallik and Ray [14] have proven that 

PFRCs are superior to monolithic ones by determining the effective coefficient of PFRCs. In recent years, 

numerous studies have been published to examine the behaviour of functionally graded piezoelectric 

materials. For example, Ray and Sachade [15] have developed a finite element model (FEM) for the static 

analysis of functionally graded plates incorporating a layer of PFRC material and compared the FEM results 

with the exact solutions of [16]. Based on 3D electroelasticity theory, Zhong and Shang [17] have presented 

an exact solution for a FGPM, simply supported plate. Zenkour and Alghanmi [18] have investigated the 

static response of a sandwich plate composed of FG core and piezoelectric faces under hygro-thermo-electro-

mechanical sinusoidal loadings by employing a two-variable shear deformation plate theory. Also, Rouzegar 

and Abbasi [19] have conducted a FE formulation utilizing a four-variable refined plate theory to predict the 

displacement and stress results of the FG plate integrated with a PFRC actuator under electrical and 

mechanical loadings. Shiyekar and Kant [20] have derived an analytical solution for the bending analysis of 

laminates with PFRC actuators using a higher order shear and normal deformation theory. Recently, Chanda 

and Sahoo [21] have studied the flexural behaviour of smart FG plate with PFRC actuator at the top/bottom 

by employing the inverse hyperbolic shear deformation theory. Dung et al. [22] have examined the static 

bending and dynamic response analyses of piezoelectric bidirectional FG plates, utilizing a combination of 

Reddy’s third order shear deformation theory and FEM. 

 In recent years, Hughes et al. [23, 24] introduced a method known as isogeometric analysis (IGA). This 

approach utilizes Non-Uniform Rational B-Splines (NURBS) basis functions for both kinematic variable 

approximation and geometry definition, paralleling their use in Computer Aided Design (CAD) for exact 

geometric representation. Thus, geometric data from CAD could be maintained at the coarsest level of 

discretization and employed directly for numerical simulation purposes. The notable attributes of IGA, 

including higher-order continuity, elimination of the meshing difficulty, and the maintanance of geometric 

accuracy throughout the analysis, make it a more advanced option compared to traditional FEM. An overview 

along with the computational implementation of IGA was provided in [25]. IGA has been effectively applied 

to linear analyses of FGM structures, particularly in FG plates and shells [26, 27]. Besides, Liu et al. [28] 

proposed a NURBS based IGA on the basis of first order shear deformation theory for analysing the static 
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and dynamic responses of FG plates with surface-bonded piezoelectric actuators and sensors. Chen et al. [29] 

also utilized IGA to investigate the vibration and transient responses of FGPM curved beams. Further, Shi 

[30] has developed an isogeometric finite element for the static bending, free vibration and buckling 

behaviours of FG carbon nanotube-reinforced composite plates. Nguyen-Thoi et al. [31] have presented a 

numerical approach that combines electromechanical coupling IGA with a piecewise linear zig-zag function 

to analyze multilayer porous FG graphene platelets-reinforced composite plates.  

 The literature indicates that the deformation response of functionally graded plates with piezoelectric 

actuators has been investigated using equivalent single layer (ESL) theories, either First-Order Shear 

Deformation Theory (FSDT) or Higher-Order Shear Deformation Theories (HSDTs). However, it is noted 

that the results from FSDT are often unreliable for thick multilayered composite or functionally graded plate 

structures. Besides, HSDTs incorporate higher-order terms, which account for additional membrane and 

bending deformation modes necessary for accurately modelling non-homogeneous multilayered plates. 

Nonetheless, these higher-order terms can sometimes be difficult to realize physically. Also, Qian et al. [32] 

highlighted that most of the ESL theories in literature disregard transverse normal deformations and generally 

assume that the FG plate is under a plane stress condition. While these assumptions are appropriate for thin 

plates, they may lead to inaccurate results for thicker ones with a length/thickness ratio of 5 or lower. When 

the main emphasis of the analysis is on determining accurate prediction of through-the-thickness stress and 

electrical displacement values of thick FGP plates, Layerwise Theories (LWTs) based FE models provide a 

more realistic kinematics assumption with separate displacement and electrical potential field expansions for 

each material layer through the laminate thickness [33–36].  

 To the best of the authors' knowledge, the isogeometric studies conducted in literature on FGP plates are 

based on the ESL theories that disregard thickness stretching. It is evident that these studies, even when 

utilizing high-order continuous NURBS functions, will not yield accurate and reliable stress and 

displacement results in thick FG plates when compared to LW theory, which considers deformation in the 

thickness direction. To fulfil this gap, the IGA-based LW finite element developed for the static analysis of 

piezolaminated plates, has been extended in this study to perform the static analysis of both thin and thick 

FG plates with integrated piezoelectric layers [35]. To evaluate the current Functionally Graded Layerwise 

IsoGeometric (FGL-IGA) methodology, several analyses with different span/thickness ratios and 

electromechanical loadings scenarios have been performed utilizing an in-house Mathematica code that 

imports the exact geometric NURBS data from the commercial Rhinoceros CAD software. The accuracy 

and reliability of the FGL-IGA have been verified by comparing the results with the analytical solutions in 

literature [16, 17]. The outline of the paper is as follows: Section 2.1 addresses the governing piezoelectric 

equations, providing a brief explanation of the variation in material properties, constitutive equations, and 

the weak formulation related to FGPMs. Sections 2.2 and 2.3 respectively give a concise overview of B-

splines and NURBS basis functions, as well as the isogeometric layerwise kinematics for FGP plates. In 

Section 3, an in-depth analysis is performed to demonstrate the effects of electromechanical coupling, the 

functionally graded index, and the span/thickness ratio on the static bending response. The paper is finalized 

with concluding remarks included in Section 4. 

 

2. Mathematical formulation 

Consider a simply supported, rectangular plate made of FG material, as shown in Fig. 1. The top surface of 

the plate is integrated with a layer of PFRC material, which serves as the distributed actuator for the FG 

plate. The dimensions of the plate length, width, and thickness are designated as a, b, and h, respectively, 

while the thickness of the PFRC layer is represented by ℎ𝑝. The bottom surface of the FG substrate plate, 

𝑥3 = 0 is treated as the reference plane, and the origin of the Cartesian coordinate system, {𝑥𝑖}(𝑖 = 1,2,3) is 
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positioned at one corner of the bottom surface. The coordinates 𝑥1 = 0, 𝑎and 𝑥 2 = 0, 𝑏 correspond to the 

edges of the FG substrate plate.  

 The displacements, 𝒖 = {𝑢1 𝑢2 𝑢3}𝑇and the electrical potential, 𝜙𝑝 illustrated in Fig. 1, are both 

regarded as primary variables. In accordance with the layerwise description, each physical layer (either in 

FG substrate or actuator) can be separated into computational k sublayers. The superscript, k stands for the 

kth layer specifics. 

2.1. Electro-mechanical basic equations 

Under the assumptions of linear piezo-elastic material behavior and small strain-small displacements, the 

electromechanical coupling (direct piezoelectric effect) between the elastic and electric field for a single 

piezoelectric kth layer can be expressed as follows: 

𝝈(𝑘) = 𝑸̄(𝑘)𝜺(𝑘) − 𝒆̄(𝑘)𝑬(𝑘) (1a) 

𝑫(𝑘) = 𝒆̄(𝑘)𝜺(𝑘) + 𝜦̄(𝑘)𝑬(𝑘) (1b) 

𝝈(𝑘) = {𝜎1
(𝑘)

𝜎2
(𝑘)

𝜎3
(𝑘)

𝜏13
(𝑘)

𝜏23
(𝑘)

𝜏12
(𝑘)}

𝑇
 (2a) 

𝜺(𝑘) = {𝜀1
(𝑘)

𝜀2
(𝑘)

𝜀3
(𝑘)

𝛾13
(𝑘)

𝛾23
(𝑘)

𝛾12
(𝑘)}

𝑇
≡ {
𝜕𝑢1
𝜕𝑥1

𝜕𝑢2
𝜕𝑥2

𝜕𝑢3
𝜕𝑥3

𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1

}
𝑇

 (2b) 

𝜺(𝑘) = 𝑳𝟏. 𝒖 ≡ 𝑳𝟏. {𝑢1
(𝑘)

𝑢2
(𝑘)

𝑢3
(𝑘)}

𝑇
;  𝑳𝟏

𝑇 =

[
 
 
 
 
𝜕

𝜕𝑥1
0 0

𝜕

𝜕𝑥3
0

𝜕

𝜕𝑥2

0
𝜕

𝜕𝑥2
0 0

𝜕

𝜕𝑥3

𝜕

𝜕𝑥1

0 0
𝜕

𝜕𝑥3

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
0 ]
 
 
 
 

 (2c) 

𝑬(𝑘) = {𝐸1
(𝑘)

𝐸2
(𝑘)

𝐸3
(𝑘)}

𝑇
≡ {−

𝜕𝛷𝑝
(𝑘)

𝜕𝑥1
−
𝜕𝛷𝑝

(𝑘)

𝜕𝑥2
−
𝜕𝛷𝑝

(𝑘)

𝜕𝑥3
}

𝑇

 (2d) 

𝑬(𝑘) = 𝑳𝟐. 𝛷𝑝
(𝑘)
≡ {−

𝜕

𝜕𝑥1
−
𝜕

𝜕𝑥2
−
𝜕

𝜕𝑥3
}
𝑇

𝛷𝑝
(𝑘)

 (2e) 

𝑫(𝑘) = {𝐷1
(𝑘)

𝐷2
(𝑘)

𝐷3
(𝑘)}

𝑇
 (2f) 

 

 

Fig. 1. Geometry and kinematic variables of the rectangular FG plate attached with a PFRC actuator at the top 
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where 𝝈(𝑘), 𝜺(𝑘), 𝑬(𝑘), and 𝑫(𝑘) represent the stress, strain, electrical field and electrical displacement vectors, 

respectively. Herein, 𝛷𝑝
(𝑘)

stands for the electrical potential. If the kth lamina is made of an orthotropic 

material, transformed elastic material matrix, 𝑸̄(𝑘)in Eq. (1) is symmetric and can be written as: 

[
 
 
 
 
 
 
𝑄̄11 𝑄̄12 𝑄̄13 0 0 𝑄̄16
𝑄̄12 𝑄̄22 𝑄̄23 0 0 𝑄̄26
𝑄̄13 𝑄̄23 𝑄̄33 0 0 𝑄̄36
0 0 0 𝑄̄44 𝑄̄45 0

0 0 0 𝑄̄45 𝑄̄55 0

𝑄̄16 𝑄̄26 𝑄̄36 0 0 𝑄̄66]
 
 
 
 
 
 
(𝑘)

 (3) 

 Laminates are composed of multiple laminae, each of which can be oriented at any angle, 𝜃(𝑘) relative 

to the laminate’s reference system. Thereby, the local stiffness terms of each lamina, 𝑄𝑖𝑗
(𝑘)
(𝒙̄𝑖
(𝑘)
) need to be 

transformed into global ones, 𝑄̄𝑖𝑗
(𝑘)
(𝒙𝑖
(𝑘)
) (given in Eq. (3) to provide the alignment with the coordinates of 

the geometric problem, 𝒙𝑖
(𝑘)

. For the sake of completeness, the explicit form of the transformation, 

𝑄̄𝑖𝑗
(𝑘)
(𝒙𝑖
(𝑘)
) = 𝑓(𝑄𝑖𝑗

(𝑘)
, 𝜃(𝑘)) is given in Appendix A. The local stiffness terms of an orthotropic material, 𝑄𝑖𝑗

(𝑘)
 

can be formulated in terms of engineering constants as follows: 

𝑄11
(𝑘)
=
𝐸1
(𝑘)
(1 − 𝜈23

(𝑘)
𝜈32
(𝑘)
)

𝛥(𝑘)
 𝑄12

(𝑘)
=
𝐸1
(𝑘)
(𝜈21
(𝑘)
+ 𝜈31

(𝑘)
𝜈23
(𝑘)
)

𝛥(𝑘)
 𝑄13

(𝑘)
=
𝐸3
(𝑘)
(𝜈13
(𝑘)
+ 𝜈12

(𝑘)
𝜈23
(𝑘)
)

𝛥(𝑘)
 (4a) 

𝑄22
(𝑘)
=
𝐸2
(𝑘)
(1 − 𝜈13

(𝑘)
𝜈31
(𝑘)
)

𝛥(𝑘)
 𝑄23

(𝑘)
=
𝐸3
(𝑘)
(𝜈23
(𝑘)
+ 𝜈21

(𝑘)
𝜈13
(𝑘)
)

𝛥(𝑘)
 𝑄33

(𝑘)
=
𝐸3
(𝑘)
(1 − 𝜈12

(𝑘)
𝜈21
(𝑘)
)

𝛥(𝑘)
 (4b) 

𝑄44
(𝑘)
= 𝐺13

(𝑘)
 𝑄55

(𝑘)
= 𝐺23

(𝑘)
 𝑄66

(𝑘)
= 𝐺12

(𝑘)
 (4c) 

𝛥(𝑘) = 1 − 𝜈12
(𝑘)
𝜈21
(𝑘)
− 𝜈23

(𝑘)
𝜈32
(𝑘)
− 𝜈31

(𝑘)
𝜈13
(𝑘)
− 2𝜈21

(𝑘)
𝜈32
(𝑘)
𝜈13
(𝑘)

 (4d) 

 If the kth lamina is isotropic and homogeneous in the 𝑥1𝑥2 domain, while exhibiting non-homogeneity 

along the thickness-𝑥3direction, akin to functionally graded materials, Eqs. (3-4) lead to: 

𝑄̄11
(𝑘)
= 𝑄11 = 𝑄̄22

(𝑘)
= 𝑄22 = 𝑄̄33

(𝑘)
= 𝑄33 =

(1 − 𝜈)𝐸(𝑥3)

(1 + 𝜈)(1 − 2𝜈)
 (5a) 

𝑄̄12
(𝑘)
= 𝑄12 = 𝑄̄13

(𝑘)
= 𝑄13 = 𝑄̄23

(𝑘)
= 𝑄23 =

𝜈𝐸(𝑥3)

(1 + 𝜈)(1 − 2𝜈)
 (5b) 

𝑄̄44
(𝑘)
= 𝑄44 = 𝑄̄55

(𝑘)
= 𝑄55 = 𝑄̄66

(𝑘)
= 𝑄66 =

𝐸(𝑥3)

2(1 + 𝜈)
 (5c) 

in which Poisson’s ratio, 𝜈 is kept constant and Young’s modulus of FG material, 𝐸(𝑥3) can be governed by 

an exponential law through the thickness as: 

𝐸(𝑥3) = 𝐸0𝑒
𝜆𝑥3  (6a) 

where 𝐸0 refers to the Young’s modulus of the material located at the bottom surface of the FG plate and 𝜆 

is a parameter that describes the gradient of inhomogeneity in the functionally graded material throughout 

the thickness. In a similar manner, transformed piezoelectricity, 𝒆̄(𝑘) and permittivity matrix, 𝜦̄(𝑘)terms 

defined in Eqs. (1a-b) can be rearranged having the following exponential distributions as: 
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𝑒̄𝑖𝑗
(𝑘)
= 0 𝑒̄𝑖𝑗

(1)
𝑒𝜆𝑥3  𝛬̄𝑖𝑗

(𝑘)
= 0 𝛬̄𝑖𝑗

(1)
𝑒𝜆𝑥3  (6b) 

where 0𝑡̄𝑖𝑗
(1)
; (𝑡 = 𝑒, 𝛬) are the values at the plane 𝑥3 = 0. 

2.2. NURBS basis functions in isogeometric analysis 

This section gives a brief introduction to B-splines and NURBS basis functions, which are employed to 

discretize the problem of geometry and kinematic variables [23, 24]. The knot vector, 𝑈 =

{𝜉1 𝜉2 ⋯ 𝜉𝑖 ⋯ 𝜉𝑛+𝑝+1}consists of a non-decreasing series of real numbers within the parameter 

space, 𝜉 where 𝜉𝑖representing the ith knot, i as the knot index, n being the total number of basic functions 

and p indicating the polynomial order. The B-spline basis functions [37] are defined recursively based on the 

Cox-De-Boor formula for p = 0 and any pth degree as:  

𝑁𝑖
0(𝜉) = {

   1
   0

   
     if 𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1

   otherwise
 (7a) 

𝑁𝑖
𝑝(𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖
𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1
𝑝−1(𝜉) (7b) 

 B-splines functions are nonnegative (𝑁𝑖
𝑝(𝜉) ≥ 0) and have local support property that means for a given 

knot span and degree, i.e, 𝜉𝑖 𝜉𝑖+1) = 𝜉3 𝜉4) and p = 2, the total number of nonzero B-splines functions 

are (𝑝 + 1) = 3, that are (𝑁𝑖−𝑝
𝑝 (𝜉)⋯ → 𝑁𝑖

𝑝(𝜉)) ≡ (𝑁1
2(𝜉) 𝑁2

2(𝜉) 𝑁3
2(𝜉)). While B-spline basis 

polynomials, constructed using Eqs. (7a-b), has numerous advantages, there are several important types of 

curves and surfaces that cannot be exactly represented by B-splines, including circles, ellipses, hyperbolas, 

cylinders, cones and spheres. It is a well-established fact that all these geometries need to be represented 

through rational functions, which are formed by the ratio of two polynomials. One (𝜁) and two dimensional, 

(𝜉, 𝜂) Non-Uniform Rational B-splines (NURBS) basis functions have been introduced for this purpose as 

follows: 

𝑅̄𝑖
𝑝(𝜁) =

𝑤𝑖𝑁𝑖
𝑝(𝜁)

∑ 𝑤𝑖𝑁𝑖
𝑝(𝜁)𝑛

𝑖=1

 (8a) 

𝑅𝑖𝑗
𝑝𝑞(𝜉, 𝜂) =

𝑤𝑖𝑗𝑁𝑖
𝑝(𝜉)𝑀𝑗

𝑞(𝜂)

∑ ∑ 𝑤𝑖𝑗𝑁𝑖
𝑝(𝜉)𝑀𝑗

𝑞(𝜂)𝑛
𝑖=1

𝑚
𝑗=1

 (8b) 

where 𝑤𝑖 , 𝑤𝑖𝑗  are the associated weights and 𝑀𝑗
𝑞(𝜂) represent the nonrational B-spline functions defined in 

the 𝜂 -direction with a degree of q. The variable m refers to the total number of basic functions defined in 

the knot vector, 𝑉 = {𝜂1 𝜂2 ⋯ 𝜂𝑗 ⋯ 𝜂𝑚+𝑞+1}. A nonzero (𝜉𝑖 ≠ 𝜉𝑖+1 ∧ 𝜂𝑗 ≠ 𝜂𝑗+1) knot span, 

𝜉𝑖 , 𝜉𝑖+1) ⊗ 𝜂𝑗 , 𝜂𝑗+1) gives the domain of an isogeometric 2-D element, 𝛺(𝑒).  Herein this knot span, the 

nonzero NURBS functions are constructed with nonzero Bsplines, that are (𝑁𝑖−𝑝
𝑝
, 𝑁𝑖−𝑝+1

𝑝
, ⋯𝑁𝑖

𝑝
) ⊗

(𝑀𝑗−𝑞
𝑞
, 𝑀𝑗−𝑞+1

𝑞
, ⋯𝑀𝑗

𝑞
) with a total number of 𝑛𝑒𝑛 = (𝑝 + 1) × (𝑞 + 1).  𝑺(𝜉, 𝑛) represents a NURBS 

surface and can be constructed using NURBS functions defined in Eq. (8) along with the control point 

coordinates matrix, 𝑷𝑖𝑗 = {𝑥𝑖𝑗 𝑦𝑖𝑗 𝑧𝑖𝑗}𝑇  in the following form: 

𝑺(𝜉, 𝑛) = {𝑥1(𝜉, 𝑛) 𝑥2(𝜉, 𝑛) 𝑥3(𝜉, 𝑛)}
𝑇 =∑∑𝑅𝑖𝑗

𝑝𝑞(𝜉, 𝜂)

𝑛

𝑖=1

𝑚

𝑗=1

𝑷𝑖𝑗  (9) 
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 Herein, the control points (except for the first and last ones) defined in 𝑷𝑖𝑗  matrix generally do not lie on 

the physical geometry (not interpolatory) that makes them distinct from the nodes in classical FEM analysis. 

Thereby, imposing boundary conditions in complex geometric forms of IGA is an issue that needs to be 

considered carefully. 

 Fig. 2 shows the first five quadratic (𝑝 = 𝑞 = 2) and bivariate (𝜉, 𝜂) functions of the total 

(𝑛 × 𝑚 = 25)NURBS defined for 𝑈 = 𝑉 = {0. 0. 0. 1.0 2.0 3.0 3.0 3.0}knot vectors. Herein, 

the sub and superscript of the B-Splines functions, i.e., 𝑁2
(1)

refers to the (1st) element’s (2nd) function. By 

drawing the desired geometry in a CAD program based on NURBS technology, the knot vectors, i.e. 

𝑈(𝜉, 𝜂); 𝑉(𝜉, 𝜂) and the control points location matrix, 𝑷𝑖𝑗  can easily be extracted from the CAD 

environment, i.e., Rhinoceros [38]. In this way, the geometry to be analysed can be obtained using Eqs. (8-

9). 

 

 

  

  

Fig. 2. The first five NURBS functions,𝑅𝑖𝑗
𝑝𝑞(𝜉, 𝜂) defined on 0,3)⊗ 0,1)knot domain(𝑤𝑖𝑗s are 1.0) 
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2.3. Layerwise kinematics 

Reddy’s layerwise theory [39] is based on the idea of expressing the kinematic unknowns in the form of a 

two-part function, specifically in-plane, (𝑥1, 𝑥2) and thickness directions, 𝑥3 as: 

𝑼(𝑥1, 𝑥2, 𝑥3) = {𝑢1 𝑢2 𝑢3}𝑇 = ∑ 𝑼̄𝑗(𝑥1, 𝑥2)𝑅̄𝑗
𝑝(𝑥3)

𝑁
𝑗=1           𝑼̄𝑗(𝑥1, 𝑥2) = {𝑢1

𝑗
𝑢2
𝑗
𝑢3
𝑗}
𝑇
 (10) 

where the in-plane variable functions, 𝑼̄𝑗(𝑥1, 𝑥2) represent the displacements of all points located on the jth 

plane, (𝑥3 = 𝑥3
𝑗
). Herein, 𝑅̄𝑗

𝑝(𝑥3) refers to the 1D NURBS functions through the thickness coordinate. In a 

similar manner, the in-plane variable functions can be discretized utilizing 2D NURBS functions as: 

𝑼̄𝑗(𝑥1, 𝑥2) =∑Û𝑗𝑖𝑅𝑖
𝑝𝑞
(𝑥1, 𝑥2)

𝑀

𝑖=1

 Û𝑗𝑖 = {𝑢1
𝑗𝑖

𝑢2
𝑗𝑖

𝑢3
𝑗𝑖}

𝑇
 (11) 

 By expressing the equations for the unknown displacements written above in matrix form and 

elementwise, it would be as follows: 

𝒖(𝑒)
(𝑒𝑧) (𝑥1, 𝑥2, 𝑥3) = { 𝑢(𝑒)

(𝑒𝑧)
1 𝑢(𝑒)

(𝑒𝑧)
2 𝑢(𝑒)

(𝑒𝑧)
3}
𝑇

= 𝑹(𝑒)

(𝑒𝑧)̄
𝒛(𝑥3(𝜁)). 𝑹(𝑒)

(𝑒𝑧)
𝒙𝒚(𝑥1(𝜉, 𝜂), 𝑥2(𝜉, 𝜂)). 𝒖(𝑒)

(𝑒𝑧)̂
 (12) 

𝑹(𝑒)
(𝑒𝑧)

𝒙𝒚(𝜉, 𝜂) =

[
 
 
 
 
𝑹𝒙𝒚
1 (𝜉, 𝜂) 𝟎 𝟎 𝟎

𝟎 𝑹𝒙𝒚
𝑗 (𝜉, 𝜂) 𝟎 𝟎

𝟎 𝟎 ⋱ 𝟎
𝟎 𝟎 𝟎 𝑹𝒙𝒚

𝑛𝑒𝑛𝑧(𝜉, 𝜂)]
 
 
 
 

 (13a) 

𝑹𝒙𝒚
𝑗 (𝜉, 𝜂) = [ 𝑹1 𝒙𝒚

𝑗
𝑹𝑖 𝒙𝒚
𝑗

⋯ 𝑹𝑛𝑒𝑛
𝒙𝒚
𝑗 ]      𝑹𝑖 𝒙𝒚

𝑗
= [

𝑅𝑖
(𝑒)(𝜉, 𝜂) 0 0

0 𝑅𝑖
(𝑒)(𝜉, 𝜂) 0

0 0 𝑅𝑖
(𝑒)(𝜉, 𝜂)

] (13b) 

𝒖
(𝑒)
(𝑒𝑧)̂

= [𝒖̂𝟏 𝒖̂𝟐 ⋯ 𝒖̂𝒋 ⋯ 𝒖̂𝒏𝒆𝒏𝒛]𝑇   𝒖̂𝒋 = [𝑢1
𝑗1

𝑢2
𝑗1

𝑢3
𝑗1

𝑢1
𝑗2

𝑢2
𝑗2

𝑢3
𝑗2

⋯ 𝑢1
𝑗𝑛𝑒𝑛

𝑢2
𝑗𝑛𝑒𝑛

𝑢3
𝑗𝑛𝑒𝑛]

𝑇
 (13c) 

where 𝑛𝑒𝑛𝑧 = 𝑝𝑧 + 1 with the NURBS degree of 𝑝𝑧 through the thickness coordinate, 𝜁. The indices, 𝑒 and 

𝑒𝑧 correspond to the elements in the 𝑥1𝑥2 plane and 𝑥3 directions, respectively. In a similar manner, the 

electrical potential in an (𝑒𝑧, 𝑒)𝑡ℎelement can be discretized as: 

𝛷(𝑒)
(𝑒𝑧)

𝑝
(𝑘)
= 𝑹(𝑒)

(𝑒𝑧)̃
𝒛 𝑹(𝑒)

(𝑒𝑧)̃
𝒙𝒚 𝜱(𝑒)

(𝑒𝑧)̂
𝒑 (14a) 

where 

𝑹(𝑒)

(𝑒𝑧)̃
𝒙𝒚(𝜉, 𝜂) =

[
 
 
 
 
 
 
𝑹̃𝒙𝒚
1 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝑹̃𝒙𝒚
2 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 ⋱ 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝑹̃𝒙𝒚
𝑗

𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 ⋱ 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑹̃𝒙𝒚

𝑛𝑒𝑛𝑧
]
 
 
 
 
 
 

          𝑹̃𝒙𝒚
𝑗
= [𝑅1

(𝑒)
𝑅2
(𝑒)

⋯ 𝑅𝑛𝑒𝑛
(𝑒) ] (14b) 

𝑹
(𝑒)

(𝑒𝑧)̃
𝒛(𝜁) = [𝑅̄𝑧

1(𝜁) 𝑅̄𝑧
2(𝜁) 𝑅̄𝑧

𝑗(𝜁) ⋯ 𝑅̄𝑧
nenz(𝜁)] (14c) 

𝜱(𝑒)

(𝑒𝑧)̂
𝒑 = [𝜱̂𝒑

𝟏 𝜱̂𝒑
𝟐 ⋯ 𝜱̂𝒑

𝒋
⋯ 𝜱̂𝒑

𝒏𝒆𝒏𝒛]
𝑇
          𝜱̂𝒑

𝒋
= {𝛷̂𝑝

j1
𝛷̂𝑝
j2

⋯ 𝛷̂𝑝
jnen
}
𝑇
 (14d) 
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 The virtual work, δU(𝑒)
(𝑒𝑧)

 done by the internal force and electrical displacements in moving through virtual 

displacement and electrical potential can be expressed as: 

δU(𝑒)
(𝑒𝑧)

=∬ ∫ ((𝛿𝜺(𝑘))𝑇𝝈(𝑘) − (𝛿𝑬(𝑘))𝑇𝑫(𝑘))𝑑𝑥3
ℎ
𝑒𝑧

𝑑𝑥1𝑑𝑥2
𝛺𝑒

 (15) 

 By replacing the constitutive equations, Eqs. (1a-b) for 𝝈(𝑘) and 𝑫(𝑘)into Eq. (15) gives: 

δU(𝑒)
(𝑒𝑧)

=∬ ∫ ((𝛿𝜺(𝑘))𝑇𝑸̄(𝑘)𝜺(𝑘) − (𝛿𝜺(𝑘))𝑇𝒆̄(𝑘)𝑬(𝑘) − (𝛿𝑬(𝑘))𝑇𝒆̄(𝑘)𝜺(𝑘) − (𝛿𝑬(𝑘))𝑇𝜦̄(𝑘)𝑬(𝑘))𝑑𝑥3
ℎ
𝑒𝑧

𝑑𝑥1𝑑𝑥2
𝛺𝑒

 (16) 

 From this point on, the indices, 𝑒 and 𝑒𝑧 will not be displayed in the terms unless undeemed necessary 

for the purpose of simplifying equations. The following strain energy variation can be obtained via 

substituting Eqs. (2c-e) into Eq. (16) respectively for 𝜺(𝑘) and 𝑬(𝑘)yields: 

δU(𝑒)
(𝑒𝑧)

=∬ ∫ [(𝛿𝒖)𝑇𝑳1
𝑇𝑸̄(𝑘)𝑳𝟏𝒖− (𝛿𝒖)

𝑇𝑳1
𝑇𝒆̄(𝑘)𝑳𝟐𝛷𝑝

(𝑘)
− (𝛿𝛷𝑝

(𝑘)
)
𝑇
𝑳2
𝑇𝒆̄(𝑘)𝑳𝟏𝒖− (𝛿𝛷𝑝

(𝑘)
)
𝑇
𝑳2
𝑇𝜦̄(𝑘)𝑳𝟐𝛷𝑝

(𝑘)
] 𝑑𝑥3

ℎ
𝑒𝑧

𝑑𝑥1𝑑𝑥2
𝛺𝑒

 (17) 

 Furthermore, the displacement and electrical potential vectors in Eq. (17) can be expressed in terms of 

the discretized forms presented in Eqs. (12-14a), the resulting final form of Eq. (17) will be: 

δU(𝑒)
(𝑒𝑧)

=∬ ∫

[
 
 
 
 
(𝛿𝒖̂)𝑇 𝑹𝒙𝒚

𝑇 𝑹̄𝒛
𝑇𝑳1

𝑇
⏟      
(𝑩𝒖)

𝑇

𝑸̄(𝑘) 𝑳𝟏𝑹̄𝒛𝑹𝒙𝒚⏟      
𝑩𝒖

𝒖̂ − (𝛿𝒖̂)𝑇 𝑹𝒙𝒚
𝑇 𝑹̄𝒛

𝑇𝑳1
𝑇

⏟      
(𝑩𝒖)

𝑇

𝒆̄(𝑘) 𝑳𝟐𝑹̃𝒛𝑹̃𝒙𝒚⏟      
𝑩𝜱

𝜱̂𝒑

−(𝛿𝜱̂𝒑)
𝑇
𝑹̃𝒙𝒚
𝑇 𝑹̃𝒛

𝑇𝑳2
𝑇

⏟      
(𝑩𝜱)

𝑇

𝒆̄(𝑘) 𝑳𝟏𝑹̄𝒛𝑹𝒙𝒚⏟      
𝑩𝒖

𝒖̂ − (𝛿𝜱̂𝒑)
𝑇
𝑹̃𝒙𝒚
𝑇 𝑹̃𝒛

𝑇𝑳2
𝑇

⏟      
(𝑩𝜱)

𝑇

𝜦̄(𝑘) 𝑳𝟐𝑹̃𝒛𝑹̃𝒙𝒚⏟      
𝑩𝜱

𝜱̂𝒑
]
 
 
 
 

𝑑𝑥3
ℎ
𝑒𝑧

𝑑𝑥1𝑑𝑥2
𝛺𝑒

 (18) 

 For the sake of completeness, 𝑩𝒖 and 𝑩𝜱 appeared in Eq. (18) are given in the Appendix B. Note that 

the element strain-displacement and potential-displacement matrices, 𝑩𝒖, 𝑩𝜱, given in Eqs. (B1-B2) contain 

not only NURBS functions but also derivatives. To obtain the NURBS derivatives with respect to physical 

in-plane coordinates, (𝑥1, 𝑥2), one must apply the chain rule in the form: 

[
 
 
 
 
𝜕𝑅𝑖𝑗

𝜕𝑥1
𝜕𝑅𝑖𝑗

𝜕𝑥2 ]
 
 
 
 
(𝑒)

=

[
 
 
 
𝜕𝜉

𝜕𝑥1

𝜕𝜂

𝜕𝑥1
𝜕𝜉

𝜕𝑥2

𝜕𝜂

𝜕𝑥2]
 
 
 
(𝑒)

[
 
 
 
 
𝜕𝑅𝑖𝑗

𝜕𝜉
𝜕𝑅𝑖𝑗

𝜕𝜂 ]
 
 
 
 
(𝑒)

≡ (𝑱1
−1)(𝑒) (𝑹𝑑𝑒𝑟

𝜉𝜂
)
(𝑒)

 (19) 

where (𝑱1
−1)(𝑒)represents the inverse of the element Jacobian matrix, 𝑱1

(𝑒)
. With the aid of known control 

point coordinates, (𝑥1
𝑖𝑗
, 𝑥2
𝑖𝑗
)
(𝑒)

 and the NURBS basis functions, 𝑅𝑖𝑗
(𝑒)(𝜉, 𝜂) ≡ 𝑅𝐼

(𝑒)(𝜉, 𝜂); the mapping 

between the physical in-plane, 𝛺(𝑒)(𝑥1, 𝑥2) and parametric domains of an eth element, 𝛺̂(𝑒)(𝜉, 𝜂) can be 

accomplished by a similar approach defined in Eq. (28) as: 

𝑥1
(𝑒)
= ∑ ∑ 𝑥

(𝑒)
1
𝑖𝑗

(𝑞+1)

𝑗=1

(𝑝+1)

𝑖=1

𝑅𝑖𝑗
(𝑒)(𝜉, 𝜂) ≡ ∑𝑥1

𝐼

𝑛𝑒𝑛

𝐼=1

𝑅𝐼
(𝑒)

 𝑥2
(𝑒)
= ∑ ∑ 𝑥

(𝑒)
2
𝑖𝑗

(𝑞+1)

𝑗=1

(𝑝+1)

𝑖=1

𝑅𝑖𝑗
(𝑒)(𝜉, 𝜂) ≡ ∑𝑥2

𝐼

𝑛𝑒𝑛

𝐼=1

𝑅𝐼
(𝑒)

 (20) 

 Thus, the inverse of the element Jacobian matrix, 𝑱1
(𝑒)

 required in Eq. (19), can be evaluated by taking the 

derivatives of Eqs. (20) with respect to parametric coordinates, (𝜉, 𝜂) that yields the 𝑱1
(𝑒)

 to be obtained as: 

𝑱1
(𝑒)
=

[
 
 
 
 
𝜕𝑥1
𝜕𝜉

𝜕𝑥2
𝜕𝜉

𝜕𝑥1
𝜕𝜂

𝜕𝑥2
𝜕𝜂 ]
 
 
 
 
(𝑒)

≡

[
 
 
 
 
𝜕𝑅1
𝜕𝜉

𝜕𝑅2
𝜕𝜉

⋯
𝜕𝑅𝑛𝑒𝑛
𝜕𝜉

𝜕𝑅1
𝜕𝜂

𝜕𝑅2
𝜕𝜂

⋯
𝜕𝑅𝑛𝑒𝑛
𝜕𝜂 ]

 
 
 
 
(𝑒)

[
 
 
 
𝑥1
1 𝑥2

1

𝑥1
2 𝑥2

2

⋮ ⋮
𝑥1
𝑛𝑒𝑛 𝑥2

𝑛𝑒𝑛]
 
 
 
(𝑒)

 (21) 
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 Also, the Jacobian term, 𝐽2
(ez)

 of the transformation between the physical and parametric thickness 

coordinates, (𝑥3, 𝜁) can be written as: 

𝐽2
(ez)

= (
𝑑𝑥3
𝑑𝜁
)
(𝑒𝑧)

≡ {
dR̄𝑧

1

𝑑𝜁

dR̄𝑧
2

𝑑𝜁
⋯

dR̄𝑧
𝑛𝑒𝑛𝑧

𝑑𝜁
}

(𝑒𝑧)

{
 

 
𝑥3
1

𝑥3
2

⋮
𝑥3
𝑛𝑒𝑛𝑧}

 

 
(𝑒𝑧)

 (22) 

 The difficulty of integrating Eq. (18) analytically gives rise to the numerical Gauss-Legendre quadrature 

method that needs a further mapping from parametric coordinates, (𝜉, 𝜂, 𝜁) to parent element space, (𝜉, 𝜂̃, 𝜁) 

as: 

𝜉 = 𝜉𝑖 + (𝜉 + 1)
(𝜉𝑖+1 − 𝜉𝑖)

2
 𝜂 = 𝜂𝑗 + (𝜂̃ + 1)

(𝜂𝑗+1 − 𝜂𝑗)

2
; 𝜁 = 𝜁𝑘 + (𝜁 + 1)

(𝜁𝑘+1 − 𝜁𝑘)

2
 (23a) 

𝐽(𝑒)
(𝑒𝑧)

3 =
𝑑𝜉

𝑑𝜉

𝑑𝜂

𝑑𝜂̃

𝑑𝜁

𝑑𝜁
≡
(𝜉𝑖+1 − 𝜉𝑖)

2

(𝜂𝑗+1 − 𝜂𝑗)

2

(𝜁𝑘+1 − 𝜁𝑘)

2
 (23b) 

 Furthermore, additional relations that will be needed in Eq. (18) is: 

𝑑𝑥1𝑑𝑥2 = |𝑱1
(𝑒)
|𝑑𝜉𝑑𝜂 𝑑𝑥3 = 𝐽2

(ez)
𝑑𝜁 (24) 

where |𝑱1
(𝑒)
| stands for the determinant of the Jacobian matrix and interested readers are referred to [40] for 

the proof of the relations. By applying the transformations, the element virtual work integral can be rewritten 

as: 

δU(𝑒)
(𝑒𝑧)

=∭𝐹(𝜉,
𝑉

𝜂, 𝜁)𝑑𝜉𝑑𝜂𝑑𝜁 ≡ ∫ ∫ ∫ [
(𝛿𝒖̂)𝑇(𝑩𝒖)

𝑇𝑸̄(𝑘)𝑩𝒖𝒖̂ − (𝛿𝒖̂)
𝑇(𝑩𝒖)

𝑇𝒆̄(𝑘)𝑩𝜱𝜱̂𝒑

−(𝛿𝜱̂𝒑)
𝑇
(𝑩𝜱)

𝑇𝒆̄(𝑘)𝑩𝒖𝒖̂ − (𝛿𝜱̂𝒑)
𝑇
(𝑩𝜱)

𝑇𝜦̄(𝑘)𝑩𝜱𝜱̂𝒑
] 𝐽𝑑𝜉𝑑𝜂𝑑𝜁

1

−1

1

−1

1

−1

 (25) 

where 𝐽 represents the total Jacobian that can be computed as: 

𝐽 = |𝑱1
(𝑒)
| × 𝐽2 × 𝐽3 (26) 

The element stiffness matrix terms of Eq. (25) can be separated and computed as: 

𝑲(𝑒)
(𝑒𝑧)

𝒖𝒖 = ∫ ∫ (∫ (𝑩𝒖)
𝑇𝑸̄(𝑘)𝑩𝒖𝐽𝑑𝜁

1

−1

)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈ ∑ ∑ (∑((𝑩𝒖)
𝑇𝑸̄(𝑘)𝑩𝒖𝐽)|(𝜁̃𝑡)

𝑊𝑡

𝑁𝐺𝑃𝜁

𝑡=1

)|

𝑁𝐺𝑃𝜂

𝑠=1

𝑁𝐺𝑃𝜉

𝑟=1
(𝜉̃𝑟,𝜂̃𝑠)

𝑊𝑟𝑊𝑠 (27a) 

𝑲(𝑒)
(𝑒𝑧)

𝒖𝜙 = ∫ ∫ (∫ (𝑩𝒖)
𝑇𝒆̄(𝑘)𝑩𝜱𝐽𝑑𝜁

1

−1

)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈ ∑ ∑ (∑((𝑩𝒖)
𝑇𝒆̄(𝑘)𝑩𝜱𝐽)|(𝜁̃𝑡)

𝑊𝑡

𝑁𝐺𝑃𝜁

𝑡=1

)|

𝑁𝐺𝑃𝜂

𝑠=1

𝑁𝐺𝑃𝜉

𝑟=1
(𝜉̃𝑟,𝜂̃𝑠)

𝑊𝑟𝑊𝑠 (27b) 

𝑲(𝑒)
(𝑒𝑧)

𝜙𝒖 = ∫ ∫ (∫ (𝑩𝜱)
𝑇𝒆̄(𝑘)𝑩𝒖𝐽𝑑𝜁

1

−1

)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈ ∑ ∑ (∑((𝑩𝜱)
𝑇𝒆̄(𝑘)𝑩𝒖𝐽)|(𝜁̃𝑡)

𝑊𝑡

𝑁𝐺𝑃𝜁

𝑡=1

)|

𝑁𝐺𝑃𝜂

𝑠=1

𝑁𝐺𝑃𝜉

𝑟=1
(𝜉̃𝑟,𝜂̃𝑠)

𝑊𝑟𝑊𝑠 (27c) 

𝑲(𝑒)
(𝑒𝑧)

𝜙𝜙 = ∫ ∫ (∫ (𝑩𝜱)
𝑇𝜦̄(𝑘)𝑩𝜱𝐽𝑑𝜁

1

−1

)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈ ∑ ∑ (∑((𝑩𝜱)
𝑇𝜦̄(𝑘)𝑩𝜱𝐽)|𝑡𝑊𝑡

𝑁𝐺𝑃𝜁

𝑡=1

)|

𝑁𝐺𝑃𝜂

𝑠=1

𝑁𝐺𝑃𝜉

𝑟=1
(𝜉̃𝑟,𝜂̃𝑠)

𝑊𝑟𝑊𝑠 (27d) 
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where 𝑲(𝑒)
(𝑒𝑧)

𝒖𝒖 is the element mechanical stiffness matrix, 𝑲(𝑒)
(𝑒𝑧)

𝒖𝜙 = ( 𝑲(𝑒)
(𝑒𝑧)

𝜙𝒖)
𝑇

are the element 

piezoelectric matrix, and 𝑲(𝑒)
(𝑒𝑧)

𝜙𝜙 is the element electrical permittivity matrix. The number of in-plane Gauss 

points are denoted by (𝑁𝐺𝑃𝜉 , 𝑁𝐺𝑃𝜂) and taken as (𝑝 + 1) × (𝑞 + 1). Similarly, the number of thickness 

Gauss points, 𝑁𝐺𝑃𝜁  are set to be 𝑝𝑧 + 1 and 𝑊𝑟 ,𝑊𝑠, and, 𝑊𝑡 are the corresponding weights. In the absence 

of body forces, the virtual work done by the external mechanical forces and applied electric charges for an 

arbitrary variation of displacement field, 𝛿(𝑒)
(𝑒𝑧)

𝒖 and electric potential, 𝛿(𝑒)
(𝑒𝑧)

𝛷𝑝
(𝑘)

 can be written as: 

𝛿(𝑒)
(𝑒𝑧)

𝑊 = ∫ ((𝛿𝒖)𝑇𝒇𝒔 − 𝛿𝛷𝑝
𝑇𝑞)

𝑆
(𝑒)
(𝑒𝑧)

𝑑𝑆 (28) 

where 𝒇𝒔and 𝑞are the surface traction and charge vectors, respectively. By substituting Eqs. (12-14a) into 

Eq. (28) for (𝛿𝒖)𝑇 and 𝛿𝛷𝑝
𝑇, one can obtain the element force vectors due to applied traction and surface 

charge as: 

𝑭(𝑒)
(𝑒𝑧)

𝑠 = ∫ 𝑹𝒙𝒚
𝑇 𝑹̄𝒛

𝑇𝒇𝒔
𝑆(𝑒)

(𝑒𝑧)
𝑑𝑆 𝑭(𝑒)

(𝑒𝑧)
𝛷 = −∫ 𝑹̃𝒙𝒚

𝑇 𝑹̃𝒛
𝑇𝑞

𝑆(𝑒)
(𝑒𝑧)

𝑑𝑆 (29) 

 Based on the principle that the actual displacement and electric potential vector minimize the potential 

energy function, 𝛿𝐸 = 𝛿𝑈 − 𝛿𝑊 = 0 the following element equations system is derived: 

[
𝑲𝒖𝒖 𝑲𝒖𝝓
𝑲𝝓𝒖 𝑲𝝓𝝓

] {
𝒖̂
𝜱̂𝒑
}
(𝑒)

(𝑒𝑧)

=

(𝑒)

(𝑒𝑧)

{
𝑭𝒔
𝑭𝜱
}
(𝑒)

(𝑒𝑧)

 (30) 

 Following the similar element assembly procedure used in classic finite elements, global systems of 

equations are obtained, and the primary unknowns can be solved as:   

{
𝒖̂
𝜱̂𝒑
} = [

𝑲𝒖𝒖 𝑲𝒖𝜙
𝑲𝜙𝒖 𝑲𝜙𝜙

]
−1

{
𝑭𝑠
𝑭𝛷
} (31) 

 To make FGL-IGA more versatile and cost effective, the skyline solver algorithm has been utilized in 

the solution process. Thereby, only the terms on the upper diagonal part of the stiffness matrix have been 

focused, considering only the terms up to the last non-zero term in any given column, while disregarding the 

remaining zero terms above. An interested reader can refer to [40,41] on the skyline solver algorithm. Once 

the model unknowns, 𝒖̂ and 𝜱̂𝒑 are yielded, the expressions for 𝜺(𝑘), 𝝈(𝑘), 𝑬(𝑘), and 𝑫(𝑘) can be obtained 

from the strain-displacement and constitutive equations. 

 

3. Numerical results 

In this section, the numerical results are evaluated utilizing the FGL-IGA element derived in the preceding 

section. Two separate cases with analytical solutions available in literature have been selected. The first case 

aims to investigate the stress and displacement results of a plate made entirely of piezoelectric material with 

a functionally graded thickness under mechanical loads using FGL-IGA, while the second case aims to 

analyze the combined effects of electrical and mechanical loads by placing a piezoelectric layer on top of a 

functionally graded isotropic substrate layer. Assuming linear piezoelastic material behavior and small-

strain, small-displacement conditions, the piezoelectric layers are subjected to mechanical and/or electrical 

loads and are perfectly bonded to each other. Furthermore, the shear-lag effect is ignored by neglecting the 

thickness of the adhesive between the layers. 
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Case 1 

 The first case, investigated by Zhong and Shang [17], features a square (𝑎 = 𝑏 = 1 m) moderately thick 

plate, (𝑎/ℎ =10) that is made entirely of piezoelectric material (PZT-4 at x3 = 0) and functionally graded 

through its thickness. The state space approach has been applied in, and the corresponding approach is based 

on eliminating the five unknowns (σ11, σ22, σ12, D1, D2) from the governing piezoelectric field equations 

[17]. Thus, a total of eight unknowns (u1, u2, σ33, D3, σ13, σ23, u3, ϕp) can be obtained by utilizing eight 

boundary conditions to be applied to the simply supported plate. The elastic and piezoelectric properties of 

PZT-4 are given in Table1. The static analysis of the FG piezoelectric plate under bisinusoidal mechanical 

loading, 𝑞(𝑥1, 𝑥2, 𝑥3 = ℎ) = 𝑞0 sin (
𝜋𝑥1

𝑎
) sin (

𝜋𝑥2

𝑏
) with 𝑞0 = 1 N/m2 has been conducted by modifying the 

material property gradient index, α in the range of (−1.0,1.0) that is utilized in the following material 

exponential distributions as:  

𝑄̄𝑖𝑗 = 𝑄̄𝑖𝑗
0 𝑒𝛼(𝑥3/ℎ) 𝑒̄𝑖𝑗 = 𝑒̄𝑖𝑗

0 𝑒𝛼(𝑥3/ℎ) 𝛬̄𝑖𝑗 = 𝛬̄𝑖𝑗
0 𝑒𝛼(𝑥3/ℎ) (32) 

where 𝑄̄𝑖𝑗
0 , 𝑒̄𝑖𝑗

0 , and 𝛬̄𝑖𝑗
0  are the elastic stiffness, piezoelectric and dielectric tensor values at the plane, 𝑥3 = 0. 

 To obtain the desired accuracy, the in-plane and thickness domains are discretized into 14 × 14 and 6 

quadratics, (𝑝 = 𝑞 = 𝑝𝑧 = 2) isogeometric elements, respectively (Fig. 3). FGPM plate is simply supported 

and grounded on its four lateral edges that can be mathematically stated as: 

𝑢2 = 𝑢3 = 𝜙𝑝 = 0 at 𝑥1 = 0 and 𝑎 𝑢1 = 𝑢3 = 𝜙𝑝 = 0 at 𝑥2 = 0 and 𝑏 (33a) 

𝜙𝑝(𝑥1, 𝑥2, 𝑥3 = 0) = 𝜙𝑝(𝑥1, 𝑥2, 𝑥3 = ℎ) = 0 (33b) 

 

 

Table 1. Elastic and piezoelectric properties for PZT-4 and PZT-5H 

Elastic Properties Piezoelectric Properties 

Properties PZT-4 PZT-5H Properties PZT-4 PZT-5H 

𝑄11[𝐺𝑃𝑎] 139 32.6 𝑒31[𝐶/𝑚
2] -5.2 -6.76 

𝑄22[𝐺𝑃𝑎] 139 7.2 𝑒32[𝐶/𝑚
2] -5.2 ------ 

𝑄33[𝐺𝑃𝑎] 115 7.2 𝑒33[𝐶/𝑚
2] 15.1 ------ 

𝑄13[𝐺𝑃𝑎] 74.3 4.76 𝑒24[𝐶/𝑚
2] 12.7 ------ 

𝑄23[𝐺𝑃𝑎] 74.3 3.85 𝑒15[𝐶/𝑚
2] 12.7 ------ 

𝑄12[𝐺𝑃𝑎] 77.8 4.3 𝜀11[𝐹/𝑚] 1475𝜀0
∗ 4.179𝜀0

∗ 

𝑄44[𝐺𝑃𝑎] 25.6 1.29 𝜀22[𝐹/𝑚] 1475𝜀0
∗ 4.179𝜀0

∗ 

𝑄55[𝐺𝑃𝑎] 25.6 1.05 𝜀33[𝐹/𝑚] 1300𝜀0
∗ 1201.69𝜀0

∗ 

𝑄66[𝐺𝑃𝑎] 30.6 1.29 ------------ ------------ ------------- 

∗The vacuum dielectric constant used as 𝜀0 = 8.854187817 × 10
−12[𝐹/𝑚]. 
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a) b) 

 

c) 

Fig. 3. Isogeometric discretization (14×14×6) of a square piezoelectric functionally graded plate with a fully simply 

supported boundary: Meshes of a) physical; b) in-plane CP; and c) transverse plane CP 

 

  

 

Fig. 4. Through-the-thickness displacement and electric potential variations 
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Fig. 5. Through-the-thickness stress and electric displacement variations 

 

 Fig. 4 illustrates the effect of the material gradient index, 𝛼 on the distribution of in-plane and transverse 

displacements throughout the thickness of the functionally graded piezoelectric material (FGPM) plate, along 

with the electric potential. As exhibited in Fig. 4, when compared to the case where the material is 

homogeneous (PZT4 - 𝛼 = 0) along the plate thickness, the positive values in the gradient index (𝛼) leads 

to a reduction in the center deflection and electric potential as well as the in-plane displacements at the base 

(𝑥3 = 0). Additionally, while the effects of the negative values of the gradient index are in the opposite 

direction, it is evident from Fig. 4 that the rate of increase of these effects is higher for the negative values 

of the index compared to the positive ones. As depicted in Fig. 5, through-the-thickness in-plane normal and 

shear stress as well as transverse electrical displacement distributions obtained from FGL-IGA agree well 

with the analytical solution [17]. Herein, in-plane normal and shear stresses for 𝛼 = 0are in a linear form 

whereas the modification of gradient index makes the distributions exhibit a nonlinear pattern. 

 

Case 2 

 Unlike the first case, herein, the second problem involves a square (𝑎 = 𝑏 = 0.3 m) plate where a 

piezoelectric fiber-reinforced composite (PFRC) layer is placed on top, while a substrate layer made of 

functionally graded isotropic material is positioned beneath it (Fig. 1). By keeping the ratio 𝐸ℎ/𝐸0 = 10 

constant, linear static analyses were performed over a wide range of the span/thickness ratio from 𝑎/ℎ = 20 

to 100, with both voltage and sinusoidal mechanical loadings applied to the top piezoelectric layer. The 

resulting displacement and stress values were then compared with the analytical solution from the literature. 

Thereby, the effect of voltage on the mechanical load results could also be examined. The thicknesses of the 

FG substrate and PFRC actuator layers are taken as ℎ = 3 × 10−3 m and ℎ𝑝 = 250  m, respectively. PFRC 
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layer is made of PZT5H with the material properties defined in Table 1. Besides, the engineering constants 

at the bottom location (𝑥3 = 0) of the isotropic FG plate are regarded as: 𝐸0 = 200 GPa and 𝜈 = 0.3. The 

Poisson’s ratio, 𝜈 is assumed as constant over the FG plate and the Young’s modulus, 𝐸 is varied as an 

exponential function of the thickness coordinate as: 

𝐸 = 𝐸0𝑒
𝜆𝑥3  (34) 

with a parameter 𝜆 characterizing the inhomogeneity of the FG material throughout the thickness that can be 

described as: 

𝜆 =
𝑙𝑛 (

𝐸ℎ
𝐸0
)

ℎ
 

(35) 

where 𝐸ℎ refers to the elasticity modulus of the FG plate at 𝑥3 = ℎ. The mechanical and electrical boundary 

conditions over the FG plate are as follows: 

𝑢2(𝑥2, 𝑥3) = 𝑢3(𝑥2, 𝑥3) = 𝜙𝑝(𝑥2, 𝑥3) = 0 at 𝑥1 = 0 and 𝑥1 = 𝑎 (36a) 

𝑢1(𝑥1, 𝑥3) = 𝑢3(𝑥1, 𝑥3) = 𝜙𝑝(𝑥1, 𝑥3) = 0 at 𝑥2 = 0 and 𝑥2 = 𝑏 (36b) 

𝜙𝑝(𝑥1, 𝑥2, 𝑥3) = 0 at 0 ≤ 𝑥3 ≤ ℎ (36c) 

Also, the imposed bisinusoidal mechanical and electrical loadings on top surface of the PFRC plate are 

defined as: 

𝑞(𝑥1, 𝑥2, 𝑥3 = ℎ + ℎ𝑝) = 𝑞0 𝑠𝑖𝑛 (
𝜋𝑥1
𝑎
) 𝑠𝑖𝑛 (

𝜋𝑥2
𝑏
) with 𝑞0 = −40 N/m

2 (37a) 

𝜙𝑝(𝑥1, 𝑥2, 𝑥3 = ℎ + ℎ𝑝) = 𝑉 𝑠𝑖𝑛 (
𝜋𝑥1
𝑎
) 𝑠𝑖𝑛 (

𝜋𝑥2
𝑏
) with 𝑉 = 0 ± 100 (37b) 

 This configuration enables the study of the behavior of the functionally graded plate under both 

mechanical and various electrical potential loads applied to the PFRC layer, with an emphasis on 

displacement, and stress values. The results obtained were then compared to the analytical solution presented 

in the literature [16]. Utilizing simply-supported boundary conditions as well as with the zero electrical 

potential conditions at the edges of the PFRC layer make the four primary unknowns (𝑢1, 𝑢2, 𝑢3, 𝜙𝑝) to be 

written in terms of a sinus and cosinus admissible functions that yields a set of homogenous algebraic 

equations to be solved [16].To be more convenient, the displacement and stress values are normalized as 

follows: 

𝑢̄1 =
𝐸0ℎ

2

𝑞0𝑎
3
𝑢1 𝑢̄3 =

100𝐸0ℎ
3

𝑞0𝑎
4
𝑢3 {𝜎̄1 𝜎̄2 𝜏̄12}

𝑇 =
ℎ
2

𝑎2𝑞0
{𝜎1 𝜎2 𝜏12}𝑇 (38) 

 The normalized in-plane and transverse displacements (𝑢̄1, 𝑢̄3), along with the in-plane normal and shear 

stresses (𝜎̄1, 𝜎̄2, 𝜏̄12), for an FG substrate with 
𝐸ℎ

𝐸0
= 10 are provided in Tables 2 and 3, respectively. Thin 

plate (𝑎/ℎ = 100) is subjected to bisinusoidal distributed mechanical loading together with/without applied 

voltages.  

 Tables 2 and 3 indicate that the present results obtained from FGL-IGA are in good agreement with the 

exact solutions and the maximum deviation from the exact values for displacements do not exceed  %1.06. 

It is also clear that applying a positive voltage (𝑉 =  +100) to the PFRC layer causes the substrate to bend 

in the opposite direction of the mechanical load, thereby reducing the mechanical deformations. In contrast, 
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when the voltage polarity is negative (𝑉 =  −100), the actuator bends the substrate in the direction of the 

mechanical load, which results in an increase in the mechanical deformations. 

 

 

Table 2. Normalized displacement responses of the FG substrate plate (𝐸ℎ/𝐸𝑜 = 10)for various applied voltages (𝑉) to 

the top surface (𝑎/ℎ = 100) 

𝑉 Theory 
𝑢̄3 

(𝑥1 = 𝑎/2, 𝑥2 = 𝑏/2, 𝑥3 = ℎ/2) 

Error 

Percentage 

(%) 

𝑢̄1(𝑥1 = 0, 𝑥2 = 𝑏/2, 𝑥3 = 0) 

𝑢̄1(𝑥1 = 0, 𝑥2 = 𝑏/2, 𝑥3 = ℎ) 

Error 

Percentage 

(%) 

0 

Present -0.9139 0.17 
-0.0195 

0.0093 

0.00 

0.00 

Exact 

[16] 
-0.9155 ----- 

-0.0195 

0.0093 

----- 

----- 

100 

Present 0.9296 0.77 
-0.0201 

-0.0494 

0.50 

0.60 

Exact 

[16] 
0.9368 ----- 

-0.0202 

-0.0497 

----- 

----- 

-100 

Present -2.7534 0.52 
-0.0190 

0.0679 

1.06 

0.44 

Exact 

[16] 
-2.7678 ----- 

-0.0188 ----- 

0.0682 ----- 

 

Table 3. Normalized stress responses of the FG substrate plate (𝐸ℎ/𝐸𝑜 = 10) for various applied voltages (𝑉) to the top 

surface (𝑎/ℎ = 100) 

𝑉 Theory 
𝜎̄1(𝑥1 = 𝑎/2, 𝑥2 = 𝑏/2, 𝑥3 = 0) 

𝜎̄1(𝑥1 = 𝑎/2, 𝑥2 = 𝑏/2, 𝑥3 = ℎ) 

𝜎̄2(𝑥1 = 𝑎/2, 𝑥2 = 𝑏/2, 𝑥3 = 0) 

𝜎̄2(𝑥1 = 𝑎/2, 𝑥2 = 𝑏/2, 𝑥3 = ℎ) 

𝜏̄12(𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0) 

𝜏̄12(𝑥1 = 0, 𝑥2 = 0, 𝑥3 = ℎ) 

0 

Present 
0.0880 

-0.4189 

0.0879 

-0.4198 

-0.0473 

0.2257 

Exact [16] 
0.0874 

-0.4161 

0.0873 

-0.4170 

-0.0470 

0.2243 

100 

Present 
0.0288 

1.6160 

-0.1148 

0.1778 

0.0231 

-0.4803 

Exact [16] 
0.0291 

1.6124 

-0.1145 

0.1751 

0.0230 

-0.4813 

-100 

Present 
0.1472 

-2.4539 

0.2907 

-1.0174 

-0.1178 

0.9317 

Exact [16] 
0.1457 

-2.4446 

0.2892 

-1.0090 

-0.1171 

0.9298 
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 It is evident from Fig. 6 that the FGL-IGA stress results are virtually indistinguishable from the exact 

ones and the stress distribution across the thickness is nonlinear, resulting from the nonzero gradient of the 

Young’s modulus defined in Eq. (34). Furthermore, the maximum stress observed at the interface between 

the substrate and the PFRC layer can be attributed to the Young’s modulus reaching its highest value 

(𝐸ℎ 𝐸0⁄ = 10) at this location. 

 

  

 

Fig. 6. Distributions of in-plane normal and shear stress throughout the thickness of thin (𝑎/ℎ = 100)FG plate 

(
𝐸ℎ

𝐸0
= 10) with/without applied voltages 

 

  

Fig. 7. Distributions of in-plane and transverse displacement throughout the thickness of FG plate (
𝐸ℎ

𝐸0
= 10) for 

various span/thickness ratios (𝑉 = 100) 
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Fig. 8. Distributions of in-plane normal stresses throughout the thickness of FG plate (
𝐸ℎ

𝐸0
= 10) for various 

span/thickness ratios 

 

 Figs. 7 and 8 show how span/thickness ratio affects through-the-thickness displacement and stress 

variations for the range of moderately thick to thin plates under applied voltage (𝑉 = 100) and mechanical 

loadings given in Eqs. (37a-b). By keeping the thickness of the FG plate is fixed (ℎ = 0.003 m) and 

modifying the in-plane dimensions, several static analyses have been conducted. Otherwise, altering the 

thickness would result in the inhomogeneity parameter 𝜆 to be modified in accordance with Eq. (35). It can 

be seen from Figs. 7 and 8 that the in-plane displacements behave linearly along the thickness direction, 

while the transverse displacements remain constant, and the normal stresses follow a nonlinear pattern. The 

results obtained are consistent with the exact solution [16], and increasing thickness leads to a significant 

rise in both displacements and stresses. 

 

4. Conclusions 

In this study, an isogeometric finite element has been developed to obtain the static response of functionally 

graded piezoelectric plates. Thanks to its ability to allow the exponential variation of both piezoelectric and 

mechanical properties along the thickness, the formulation can be applied to any plate system, whether it is 

created by grading solely the piezoelectric material or by varying the properties of isotropic or orthotropic 

materials and placing a homogeneous piezoelectric actuator on top. To validate the present formulation, the 

results obtained from FGL-IGA have been compared with those reported in literature and the results show 

that FGL-IGA is in excellent agreement with the exact ones. Also, the FGL-IGA displacement and stress 

results in overlapping with the analytical ones for a wide range of span/thickness ratio, i.e., 𝑎/ℎ = 20 to 

𝑎/ℎ = 100 (from moderately thick to thin plates).   

 This study serves as an initial attempt to showcase the efficiency of isogeometric layerwise analysis for 

functionally graded piezoelectric plates. It can be further extended to static or transient analyses of more 

complex geometries, such as those with curved boundaries or internal holes within the FG piezoelectric plate 

domain, in future work. 
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Appendix A 

The global stiffness coefficients defined in Eq. (3) can be obtained in terms of local stiffness values and 

angle, 𝜃(𝑘) as: 

𝑄̄11
(𝑘)
= 𝑄11

(𝑘)
𝑐𝑜𝑠4 𝜃(𝑘) + 2(𝑄12

(𝑘)
+ 2𝑄66

(𝑘)
) 𝑠𝑖𝑛2 𝜃(𝑘) 𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄22

(𝑘)
𝑠𝑖𝑛4 𝜃(𝑘) (A1a) 

𝑄̄12
(𝑘)
= (𝑄11

(𝑘)
+ 𝑄22

(𝑘)
− 4𝑄66

(𝑘)
) 𝑠𝑖𝑛2 𝜃(𝑘) 𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄12

(𝑘)
(𝑠𝑖𝑛4 𝜃(𝑘) + 𝑐𝑜𝑠4 𝜃(𝑘)) (A1b) 

𝑄̄22
(𝑘)
= 𝑄11

(𝑘)
𝑠𝑖𝑛4 𝜃(𝑘) + 2(𝑄12

(𝑘)
+ 2𝑄66

(𝑘)
) 𝑠𝑖𝑛2 𝜃(𝑘) 𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄22

(𝑘)
𝑐𝑜𝑠4 𝜃(𝑘) (A1c) 

𝑄̄16
(𝑘)
= (𝑄11

(𝑘)
− 𝑄12

(𝑘)
− 2𝑄66

(𝑘)
) 𝑠𝑖𝑛 𝜃(𝑘) 𝑐𝑜𝑠3 𝜃(𝑘) + (𝑄12

(𝑘)
− 𝑄22

(𝑘)
+ 2𝑄66

(𝑘)
) 𝑠𝑖𝑛3 𝜃(𝑘) 𝑐𝑜𝑠 𝜃(𝑘) (A1d) 

𝑄̄26
(𝑘)
= (𝑄11

(𝑘)
− 𝑄12

(𝑘)
− 2𝑄66

(𝑘)
) 𝑠𝑖𝑛3 𝜃(𝑘) 𝑐𝑜𝑠 𝜃(𝑘) + (𝑄12

(𝑘)
− 𝑄22

(𝑘)
+ 2𝑄66

(𝑘)
) 𝑠𝑖𝑛 𝜃(𝑘) 𝑐𝑜𝑠3 𝜃(𝑘) (A1e) 

𝑄̄66
(𝑘)
= (𝑄11

(𝑘)
+ 𝑄22

(𝑘)
− 2𝑄12

(𝑘)
− 2𝑄66

(𝑘)
) 𝑠𝑖𝑛2 𝜃(𝑘) 𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄66

(𝑘)
(𝑠𝑖𝑛4 𝜃(𝑘) + 𝑐𝑜𝑠4 𝜃(𝑘)) (A1f) 

𝑄̄44
(𝑘)
= 𝑄44

(𝑘)
𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄55

(𝑘)
𝑠𝑖𝑛2 𝜃(𝑘) (A1h) 

𝑄̄45
(𝑘)
= (𝑄44

(𝑘)
− 𝑄55

(𝑘)
) 𝑐𝑜𝑠 𝜃(𝑘) 𝑠𝑖𝑛 𝜃(𝑘) (A1i) 

𝑄̄55
(𝑘)
= 𝑄55

(𝑘)
𝑐𝑜𝑠2 𝜃(𝑘) + 𝑄44

(𝑘)
𝑠𝑖𝑛2 𝜃(𝑘) (A1j) 

Appendix B 

𝑩𝒖 = [𝑩𝒖
1 𝑩𝒖

2 ⋯ 𝑩𝒖
𝑗

⋯ 𝑩𝒖
𝑛𝑒𝑛𝑧] (B1a) 

𝑩𝒖
𝑗
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑅1
𝜕𝑥1

𝑅̄𝑗 0 0
𝜕𝑅2
𝜕𝑥1

𝑅̄𝑗(𝜁) 0 0 ⋯
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥1

𝑅̄𝑗 0 0

0
𝜕𝑅1
𝜕𝑥2

𝑅̄𝑗 0 0
𝜕𝑅2
𝜕𝑥2

𝑅̄𝑗 0 ⋯ 0
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥2

𝑅̄𝑗 0

0 0 𝑅1
𝜕𝑅̄𝑗

𝜕𝑥3
0 0 𝑅2

𝜕𝑅̄𝑗

𝜕𝑥3
⋯ 0 0 𝑅𝑛𝑒𝑛

𝜕𝑅̄𝑗

𝜕𝑥3

𝑅1
𝜕𝑅̄𝑗

𝜕𝑥3
0

𝜕𝑅1
𝜕𝑥1

𝑅̄𝑗 𝑅2
𝜕𝑅̄𝑗

𝜕𝑥3
0

𝜕𝑅2
𝜕𝑥1

𝑅̄𝑗 ⋯ 𝑅𝑛𝑒𝑛
𝜕𝑅̄𝑗

𝜕𝑥3
0

𝜕𝑅𝑛𝑒𝑛
𝜕𝑥1

𝑅̄𝑗

0 𝑅1
𝜕𝑅̄𝑗

𝜕𝑥3

𝜕𝑅1
𝜕𝑥2

𝑅̄𝑗 0 𝑅2
𝜕𝑅̄𝑗

𝜕𝑥3

𝜕𝑅2
𝜕𝑥2

𝑅̄𝑗 ⋯ 0 𝑅𝑛𝑒𝑛
𝜕𝑅̄𝑗

𝜕𝑥3

𝜕𝑅𝑛𝑒𝑛
𝜕𝑥2

𝑅̄𝑗

𝜕𝑅1
𝜕𝑥2

𝑅̄𝑗
𝜕𝑅1
𝜕𝑥1

𝑅̄𝑗 0
𝜕𝑅2
𝜕𝑥2

𝑅̄𝑗
𝜕𝑅2
𝜕𝑥1

𝑅̄𝑗 0 ⋯
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥2

𝑅̄𝑗
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥1

𝑅̄𝑗 0
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B1b) 
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𝑩𝜱 = [𝑩𝜱
1 𝑩𝜱

2 ⋯ 𝑩𝜱
𝑗

⋯ 𝑩𝜱
𝑛𝑒𝑛𝑧] (B2a) 

𝑩𝜱
𝑗
=

[
 
 
 
 
 
 −
𝜕𝑅1
𝜕𝑥1

𝑅̄𝑗 −
𝜕𝑅2
𝜕𝑥1

𝑅̄𝑗 ⋯ −
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥1

𝑅̄𝑗

−
𝜕𝑅1
𝜕𝑥2

𝑅̄𝑗 −
𝜕𝑅2
𝜕𝑥2

𝑅̄𝑗 ⋯ −
𝜕𝑅𝑛𝑒𝑛
𝜕𝑥2

𝑅̄𝑗

−𝑅1
𝜕𝑅̄𝑗

𝜕𝑥3
−𝑅2

𝜕𝑅̄𝑗

𝜕𝑥3
⋯ −𝑅𝑛𝑒𝑛

𝜕𝑅̄𝑗

𝜕𝑥3 ]
 
 
 
 
 
 

 (B2b) 
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