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This study aims to improve the parameters of the modified fractional derivative 

constitutive model (MFDCM) for viscoelastic dampers (VEDs), as these parameters 

are extremely important in reducing and resisting structural responses to dynamic 

loads, such as seismic and wind loads. The MFDCM, with its nonlinear and 

frequency-dependent characteristics, is a complex model, which directly affects the 

storage modulus (𝐺𝑠) and loss factor (𝜂) of VEDs, leading to great difficulty in 

accurately predicting the damper behavior under different conditions. The problem 

studied is inherently multi-objective, involving trade-offs between errors in the 

storage modulus (𝐺𝑠) and loss factor (𝜂). First, a multi-objective approach is 

employed to identify a set of potential solutions and generate a Pareto front, which 

provides insights into the trade-offs between competing objectives. Precise weights 

are then determined from the Pareto front to transform the multi-objective problem 

into a single-objective problem, allowing further refinement using single-objective 

optimization techniques. Four advanced meta-heuristic optimization techniques—

Non-dominated Sorting Genetic Algorithm II (NSGA-II), Teaching–Learning-

Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony 

Search Algorithm (HSA)—are employed to systematically reduce the error rates in 

the storage modulus (𝐺𝑠) and loss factor (𝜂) predictions compared to experimental 

data. The results of this study demonstrate that, by incorporating multiple 

optimization techniques, the prediction accuracy of the MFDCM can be 

significantly enhanced. This improved modeling ability thus enables better design 

of VEDs, improving their performance and reliability in practical engineering 

applications. Comparative analysis of different algorithms provides insights into 

their effectiveness and efficiency, offering valuable guidance for choosing 

appropriate optimization strategies in engineering optimization problems. 
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1. Introduction 

Optimization is becoming more important in many areas of science and is now a key part of fields like 

engineering, economics, and management [1]. It helps solve complex problems in logistics, decision-making, 

and system design, and it is widely used in operations research, computer science, and engineering [2]. Over 

time, researchers have developed different methods to find solutions, and recent advances in technology and 

the growing complexity of real-world problems have made optimization even more necessary [3]. These 

techniques are now commonly used in engineering to solve a variety of challenges in areas like materials 

science and computer systems [4,5]. However, choosing the best optimization technique can still be difficult, 

especially for problems that are very complex or have many variables [6,7]. 

 The modified fractional derivative constitutive model (MFDCM) is a useful tool for understanding how 

viscoelastic dampers (VEDs) behave under different conditions [8]. VEDs are important for reducing the 

impact of dynamic loads, such as those caused by earthquakes and wind loads. Despite its usefulness, the 

MFDCM is challenging to optimize because of its complexity and reliance on experimental data. This makes 

it hard to improve the model’s accuracy in predicting how VEDs perform in real situations. To address this 

issue, advanced optimization techniques are needed to handle the trade-offs between different objectives. 

Many studies have shown how optimization techniques can improve engineering solutions [9–13]. For 

instance, Altun et al. [14] compared five algorithms to show how different methods perform under various 

conditions. Jain et al. [15] tested Multi-Objective Particle Swarm Optimization (MOPSO), Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II), and other techniques to balance costs and emissions in power 

systems. Wen et al. [16] introduced an improved version of NSGA-II to solve scheduling problems, proving 

its effectiveness. Kashani et al. [17] highlighted how NSGA-II and MOPSO can optimize the design of 

retaining walls, showing NSGA-II’s ability to manage competing goals like cost and safety. Other studies 

have used similar methods to solve complex problems, further proving their value [18–25]. 

 This research focuses on improving the parameters of the MFDCM using four optimization methods: 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), Teaching–Learning-Based Optimization (TLBO), 

Particle Swarm Optimization (PSO), and Harmony Search Algorithm (HSA). First, a multi-objective 

approach is used to explore different solutions, and then weights from the Pareto front are applied to convert 

the problem into a single-objective one for further optimization. This approach ensures that the parameters 

are adjusted to achieve better model accuracy. [26] By applying these techniques to experimental data, this 

study provides a clear comparison of their performance and offers guidance for improving models of VEDs 

in practical engineering applications.[27]. 

 

2. Modified fractional derivative constitutive model (MFDCM) 

Fig. 1. shows the structure of the modified fractional derivative constitutive model (MFDCM). This model 

consists of two main components: an elastic spring and a fractional Kelvin element. The elastic spring 

represents the solid-like, elastic behavior of the material, while the fractional Kelvin element accounts for 

the time-dependent, viscous properties of viscoelastic materials (VEMs). Together, these elements enable 

the MFDCM to capture both elastic and viscoelastic responses under varying loading conditions. 

 MFDCM offers a significant advantage over conventional integer derivative models. Its ability to 

describe the behavior of VEMs across a wide frequency range with fewer parameters makes it particularly 

efficient and accurate [28,29]. This capability reduces the complexity of parameter fitting, enhancing its 

applicability in modeling real-world materials. 
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Fig. 1. Modified fractional derivative constitutive model (MFDCM) [11] 

 

 MFDCM offers a significant advantage over conventional integer derivative models. Its ability to 

describe the behavior of VEMs across a wide frequency range with fewer parameters makes it particularly 

efficient and accurate [28,29]. This capability reduces the complexity of parameter fitting, enhancing its 

applicability in modeling real-world materials. 

𝜏(𝑡) + 𝑝1𝐷𝛼[𝜏(𝑡)] = 𝑞0𝛾(𝑡) + 𝑞1𝐷𝛼[𝛾(𝑡)] (1) 

where 𝑝1, 𝑞0, and 𝑞1 the coefficients related to the VEMs, that can be determined by experimental data. 𝜏(𝑡) 

and 𝛾(𝑡) are the shear stress and strain at physical time 𝑡, respectively. 𝐷𝛼 is the fractional derivative operator 

with a power of 𝛼, where 0 < 𝛼 < 1, at value 𝛼 = 1, the model considers as classic three-parameter model. 

 MFDCM provides a comprehensive framework to characterize the behavior of viscoelastic dampers 

(VEDs) under varying dynamic conditions. The governing equations of the model account for the nonlinear 

and frequency-dependent properties of the system, essential for accurately predicting the performance of 

VEDs. The storage modulus (𝐺𝑠) and loss factor (𝜂). are described as: 

𝐺𝑠(𝜔) =
𝑞0 + 𝑝1𝑞1𝜔2𝛼 + (𝑞0𝑝1 + 𝑞1)𝜔𝛼𝑐𝑜𝑠

𝜋𝛼
2

  

1 + 𝑝1
2𝜔𝛼

2 + 2𝑝1𝜔𝛼𝑐𝑜𝑠
𝜋𝛼
2

 (2) 

𝜂(𝜔) =
(𝑞1 − 𝑞0𝑝1)𝜔 𝛼𝑠𝑖𝑛

𝜋𝛼
2

 

𝑞0 + 𝑝1𝑞1𝜔  2𝛼 + (𝑞0𝑝1 + 𝑞1)𝜔𝛼𝑐𝑜𝑠
𝜋𝛼
2

  
 (3) 

where 𝜔 represents the circular frequency of excitation. 

 To adapt these equations for practical applications, the coefficients 𝑞0, 𝑞1, and 𝑝1 are reformulated in 

terms of displacement amplitude as follows: 

𝑞0
𝑟𝑒𝑓

=
𝐺1𝐺2

𝐺1 + 𝐺2

 (4) 

𝑞1
𝑟𝑒𝑓

=
𝐺1𝜂

𝐺1 + 𝐺2

 (5) 

𝑞0 = 𝑞0
𝑟𝑒𝑓

𝜆1 (6) 

𝑞1 = 𝑞1
𝑟𝑒𝑓

𝜆2 (7) 

𝜆1 = 1 + 𝑒−𝐶1𝛾𝑟𝑒𝑓  (8) 

𝜆2 = 1 + 𝑒−𝐶2𝛾𝑟𝑒𝑓  (9) 
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 The parameters 𝑞0
𝑟𝑒𝑓

 and 𝑞1
𝑟𝑒𝑓

 represent the original values derived from the standard fractional derivative 

model. The terms 𝐺1 and 𝐺2 denote the shear modulus of the respective components in the system, 

while 𝜂 indicates the viscosity of the fractional dashpot. The coefficients 𝐶1 and 𝐶2 govern the softening rates 

for 𝑞0 and 𝑞1 under varying shear strains. 

 The reference shear strain 𝛾𝑟𝑒𝑓  is defined as:  

𝛾𝑟𝑒𝑓 =
𝑢0

𝑡𝑣

 (10) 

where, 𝑢0 is the maximum displacement of the intermediate steel plate and 𝑡𝑣 is the thickness of the VEM 

layer. 

 These equations form the foundation for modeling and optimizing the parameters of the MFDCM, 

ensuring that it captures the nonlinearities and dynamic responses of VEDs with precision. By incorporating 

these refined formulations, the model aligns with the primary objective of improving the accuracy and 

reliability of VED simulations under real-world conditions. 

 

3. Problem definition and optimization framework 

The modified fractional derivative constitutive model (MFDCM) parameters play a crucial role in accurately 

representing the behavior of viscoelastic dampers (VEDs). This includes defining the objectives, error 

functions, and constraints, as well as outlining the approach used to address these through optimization 

techniques. 

3.1. Problem statement 

The error functions are critical in assessing the accuracy of the modified fractional derivative constitutive 

model (MFDCM) by measuring the differences between the model-predicted values and experimental data 

for two important viscoelastic properties: the storage modulus 𝐺𝑠 and the loss factor 𝜂. Minimizing these 

discrepancies ensures that the model reliably reflects real-world material behavior under dynamic loading 

conditions. The use of these error functions varies depending on whether a single-objective or multi-objective 

optimization framework is applied. 

3.2. Error functions for multi-objective optimization 

In multi-objective optimization, the goal is to simultaneously minimize two independent error functions: the 

storage modulus error (𝑬𝒓𝒓𝒐𝒓𝑮𝒔
) and the loss factor error (𝑬𝒓𝒓𝒐𝒓𝜼). These objectives are inherently 

conflicting, as reducing the error in one parameter may lead to an increase in the error of the other. 

3.2.1. Storage modulus error (𝐸𝑟𝑟𝑜𝑟𝐺𝑠
) 

Quantifies the absolute difference between the predicted storage modulus 𝐺𝑠
𝑚𝑜𝑑𝑒𝑙  and the experimental 

storage modulus 𝐺𝑠
𝑡𝑎𝑟𝑔𝑒𝑡

across all frequencies: 

𝐸𝑟𝑟𝑜𝑟𝐺𝑠
= ∑|𝐺𝑠

𝑚𝑜𝑑𝑒𝑙(𝜔) − 𝐺𝑠
𝑡𝑎𝑟𝑔𝑒𝑡(𝜔)|

𝜔

 (11) 

𝐺𝑠
𝑚𝑜𝑑𝑒𝑙(𝜔) = 𝜆1.

𝑞0 + 𝑝1𝑞1𝜔2𝛼 + (𝑞0𝑝1 + 𝑞1)𝜔𝛼𝑐𝑜𝑠
𝜋𝛼
2

  

1 + 𝑝1
2𝜔𝛼

2 + 2𝑝1𝜔𝛼𝑐𝑜𝑠
𝜋𝛼
2

 (12) 
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where 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 The total error in the storage modulus across all frequencies, 𝐺𝑠

𝑚𝑜𝑑𝑒𝑙(𝜔) The predicted value 

of the storage modulus from the model at a specific frequency (𝜔), 𝐺𝑠
𝑡𝑎𝑟𝑔𝑒𝑡(𝜔) the experimental target value 

of the storage modulus at the same frequency (𝜔), 𝜔 The angular frequency of the excitation.  

3.2.2. Loss factor error (𝐸𝑟𝑟𝑜𝑟_𝜂 ) 

Quantifies the absolute difference between the predicted loss factor (𝜂𝑚𝑜𝑑𝑒𝑙) and the experimental loss factor 

(𝜂𝑡𝑎𝑟𝑔𝑒𝑡).  

𝐸𝑟𝑟𝑜𝑟𝜂 = ∑|𝜂𝑚𝑜𝑑𝑒𝑙(𝜔) − 𝜂𝑡𝑎𝑟𝑔𝑒𝑡(𝜔)|

𝜔

 (13) 

𝜂𝑚𝑜𝑑𝑒𝑙(𝜔) = 𝜆2.
(𝑞1 − 𝑞0𝑝1)𝜔 𝛼𝑠𝑖𝑛

𝜋𝛼
2

 

𝑞0 + 𝑝1𝑞1𝜔 2𝛼 + (𝑞0𝑝1 + 𝑞1)𝜔𝛼𝑐𝑜𝑠
𝜋𝛼
2

  
 (14) 

where 𝐸𝑟𝑟𝑜𝑟𝜂 The total error in the loss factor across all frequencies, 𝜂𝑚𝑜𝑑𝑒𝑙(𝜔) The predicted value of the 

loss factor from the model at a specific frequency (𝜔), 𝜂𝑡𝑎𝑟𝑔𝑒𝑡(𝜔) the experimental target value of the loss 

factor at the same frequency (𝜔), 𝜔 The angular frequency of the excitation.  

 For each frequency, the model predictions are computed using the equations outlined above. The absolute 

differences between the predicted and experimental values are summed across all frequencies to compute the 

total errors for storage modulus (𝐺𝑠) and loss factor (𝜂). 

3.3. Error function for single-objective optimization 

In single-objective optimization, the storage modulus error (𝐸𝑟𝑟𝑜𝑟𝐺𝑠
) and the loss factor error (𝐸𝑟𝑟𝑜𝑟𝜂) are 

combined into a single fitness function. This transformation simplifies the optimization process and allows 

the use of efficient single-objective optimization algorithms. 

 This transformation simplifies the optimization process and allows for the application of efficient single-

objective optimization. The fitness function is constructed as a weighted summation of the two error 

functions, enabling the balancing of conflicting objectives by adjusting their relative importance. 

The fitness function is expressed mathematically as: 

𝐹 = 𝑊𝐺𝑠
. 𝐸𝑟𝑟𝑜𝑟𝐺𝑠

+ 𝑊𝜂 . 𝐸𝑟𝑟𝑜𝑟𝜂 (15) 

where 𝑊𝐺𝑠
 is the weight assigned to the storage modulus error and 𝑊𝜂 is the weight assigned to the loss factor 

error. 

 These weights represent the relative importance of each objective in the context of the application. By 

varying weights, the optimization process can prioritize one objective over the other, such as emphasizing 

stiffness (𝐺𝑠) or energy dissipation (𝜂), or achieving a balanced trade-off. This single fitness function acts 

as the objective for the optimization process. Combining the errors into a single scalar value enhances 

computational efficiency, enabling Teaching–Learning-Based Optimization (TLBO), Particle Swarm 

Optimization (PSO), and Harmony Search Algorithm (HSA) to converge rapidly to an optimal solution. This 

approach also offers flexibility, as modifying the weights allows the optimization process to adapt to specific 

performance goals or application priorities. 

3.4. Justification for multi-objective and single-objective optimization 

Using both multi-objective and single-objective optimization approaches in this study ensures a thorough 

and effective parameter optimization process for the modified fractional derivative constitutive model 
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(MFDCM). Each method brings distinct advantages, and their combined use is crucial for obtaining accurate 

and dependable results. 

3.4.1. Multi-objective optimization 

Multi-objective optimization is especially effective for addressing problems with conflicting objectives, such 

as simultaneously minimizing the errors in the storage modulus (𝐺𝑠) and loss factor (𝜂). These two 

parameters often embody competing performance criteria in modeling viscoelastic dampers (VEDs). 

Employing a multi-objective optimization, such as Non-dominated Sorting Genetic Algorithm II (NSGA-

II), facilitates the generation of a Pareto front, offering a comprehensive visualization of the trade-offs 

between 𝐺𝑠 and 𝜂 [30]. 

 The Pareto front provides engineers and researchers with a spectrum of optimal solutions, enabling 

flexibility in choosing the most suitable solution based on specific application requirements. For example, 

some applications may prioritize energy dissipation (𝜂) over stiffness (𝐺𝑠), while others may require a 

balance between the two. Additionally, multi-objective optimization offers valuable insights into parameter 

interactions, revealing how variations in one parameter impact the other [31]. This comprehensive 

perspective is essential for understanding the behavior of the modified fractional derivative constitutive 

model (MFDCM) and ensuring that the optimization process effectively addresses all relevant trade-offs. 

3.4.2. Single-objective optimization 

While multi-objective optimization is crucial for examining trade-offs, single-objective optimization plays a 

key role in fine-tuning and meeting specific performance targets. By consolidating the errors in storage 

modulus (𝐺𝑠) and loss factor (𝜂) into a single fitness function, the optimization process becomes streamlined 

and focused, enabling efficient convergence toward the desired performance outcomes. Single-objective 

optimization simplifies the problem and enables efficient parameter adjustments [32]. The weighting 

mechanism weight assigned to the storage modulus (𝑊𝐺𝑠
)  and the weight assigned to the loss factor 

error (𝑊𝜂) provides the flexibility to prioritize objectives according to specific application needs. For 

instance, assigning a higher weight to 𝑊𝐺𝑠
 places greater emphasis on reducing the error in the storage 

modulus, while increasing 𝑊𝜂 focuses on minimizing the loss factor error. This adaptability ensures that the 

optimization aligns with engineering requirements, whether the goal is maximizing stiffness, enhancing 

damping, or achieving a balanced trade-off between the two [33]. 

 In addition to flexibility, single-objective optimization offers computational efficiency. Algorithms like 

Teaching–Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search 

Algorithm (HSA) can quickly converge to an optimal solution due to the simplicity of optimizing a single 

fitness function. This rapid convergence makes single-objective optimization particularly effective for 

refining solutions identified through multi-objective approaches [34,35]. 

 The integration of multi-objective and single-objective optimization ensures a comprehensive framework 

for parameter optimization in this study. Multi-objective optimization explores the solution space and 

identifies Pareto-optimal solutions, highlighting trade-offs between 𝐺𝑠 and 𝜂, which inform the weighting 

scheme for single-objective optimization. Single-objective optimization then refines these solutions for 

precise parameter adjustments. This hybrid approach combines the broad exploration of multi-objective 

methods with the targeted refinement of single-objective techniques, achieving accurate and reliable 

parameter estimation for engineering applications involving viscoelastic dampers (VEDs). 

 

4. Parameter boundaries and weight selection for single-objective optimization 

In this study, the parameter boundaries and weight values for single-objective optimization were 

meticulously defined to ensure consistency, physical relevance, and applicability to viscoelastic dampers 
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(VEDs). These configurations were uniformly applied across all optimization techniques Teaching–

Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search 

Algorithm (HSA)—to maintain a standardized and comparable framework. 

4.1. Weight selection 

The weights 𝑊𝐺𝑠
= 1 and 𝑊𝜂 = 5.5 were determined as optimal through extensive testing and insights 

gained from multi-objective optimization using Non-dominated Sorting Genetic Algorithm II (NSGA-II). 

The Pareto front generated by NSGA-II revealed the trade-offs between storage modulus (𝐺𝑠) and loss factor 

(𝜂), facilitating an informed selection of weights to balance these conflicting objectives.  

 The chosen weights reflect the study's practical needs, prioritizing 𝑊𝜂 = 5.5 to ensure the accuracy of 𝜂, 

which is highly sensitive to variations and crucial for capturing the damping performance of viscoelastic 

dampers (VEDs). In contrast, 𝑊𝐺𝑠
= 1 assigns a lower weight to the 𝐺𝑠, maintaining balance without 

compromising its accuracy. 

 This deliberate selection process highlights the effort to align the weights with the study's practical 

requirements rather than relying on arbitrary values. The selected weights provide a balanced optimization 

framework that captures the engineering importance of both objectives effectively. 

4.2. Parameter boundaries 

The parameter boundaries were selected to ensure physical relevance to viscoelastic dampers (VEDs). and 

adherence to prior research, thereby guaranteeing realistic and meaningful optimization results. The 

fractional derivative parameter 𝛼 is bound between 0 and 1, as suggested by foundational studies on 

fractional derivatives. This range ensures that the damping behavior modeled by 𝛼 remains physically 

meaningful and aligns with theoretical expectations. 

 The material parameters (𝐶1, 𝐶2, 𝐺1, 𝐺2) are constrained within 0.01 to 1000, reflecting experimentally 

observed ranges for viscoelastic dampers. These bounds encompass the practical ranges of material 

properties influencing both the storage modulus (𝐺𝑠) and loss factor (𝜂).  

 The friction parameter is restricted to values between 0.01 and 1, representing the typical range for 

viscoelastic materials (VEMs) used in damping systems. This ensures that the frictional component remains 

realistic and accurately represents the materials under investigation. 

 

5. Non-dominated sorting genetic algorithm 2 (NSGA-II) 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a sophisticated algorithm designed for multi-

objective optimization, offering effective solutions to complex optimization problems. Originally introduced 

by Deb et al. [36], it operates on the principle of selecting dominant solutions among a set of potential 

candidates. The flowchart of the NSGA-II is shown in Fig.2 [37]. A brief overview of this algorithm’s 

approach is provided as follows [38]. 

a) Initialization of population Po of size N using a uniform distribution.  

b) Generate new offspring population Qt by utilizing binary tournament selection which is based on 

crowding comparison operator, crossover, and mutation operation on the parent population (𝑃𝑡). 

Here, 𝑡 denotes the number of generations. The entire population 𝑅𝑡 is the combination of the 

offspring population 𝑄𝑡  and its parent population 𝑃𝑡.  

c) Non-dominated fronts of different objective functions are obtained by performing a fast non-

dominated sorting approach on the entire population (𝑅𝑡).  

d) Generate a new parent population (𝑃𝑡+1) from the obtained fronts.  

e) This process is continued until the maximum number of iterations is reached. 
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The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was implemented in MATLAB  R2024b, 

leveraging its robust optimization toolbox to handle the complexities of multi-objective optimization. 

MATLAB's platform offered the flexibility to define objective functions 𝐸𝑟𝑜𝑟𝑟𝐺𝑠
𝑎𝑛𝑑 𝐸𝑟𝑜𝑟𝑟𝜂  set parameter 

boundaries and establish stopping criteria. Furthermore, it facilitated the efficient processing of large datasets 

and iterative computations, ensuring accurate and computationally efficient optimization results. 

 The population size was set to 50, a value determined after extensive experimentation with varying sizes. 

Initial tests with smaller populations of 20 and 30 individuals showed limited diversity, which restricted the 

algorithm's ability to thoroughly explore the Pareto front. By increasing the population size to 50, a balance 

was achieved, enabling more comprehensive coverage of the solution space while maintaining computational 

efficiency. 

 The maximum number of generations was set to 5,000, a value determined through iterative testing. Trials 

with smaller limits, such as 2,000 and 3,000 generations, resulted in incomplete convergence, failing to 

capture the full trade-offs between 𝐸𝑟𝑜𝑟𝑟𝐺𝑠
 and 𝐸𝑟𝑜𝑟𝑟𝜂. Extending the limit to 5,000 ensured stabilizations 

of the Pareto front, providing a comprehensive understanding of the trade-offs between the conflicting 

objectives. 

 The function tolerance was set to 1 × 10−9, ensuring that the optimization process considered only 

significant improvements in the objective values, thereby maintaining precision, and avoiding convergence 

to suboptimal solutions. Additionally, the maximum stall generations parameter was configured to 5,000, 

effectively preventing premature termination caused by stagnation, and allowing the algorithm sufficient 

opportunity to explore and refine the Pareto front. 

 

 
Fig. 2. Flowchart of NSGA-II [37] 
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 The crossover and mutation operations were strategically configured to preserve diversity within the 

population while simultaneously refining promising solutions. A simulated binary crossover (SBX) operator, 

with a distribution index of 20, was employed to ensure effective exploration of the search space. For 

mutation, a polynomial mutation technique was applied, using a distribution index of 20 and a mutation 

probability of 1/𝑛𝑣𝑎𝑟𝑠 , where 𝑛𝑣𝑎𝑟𝑠 represents the number of variables (six in this study). 

 Additionally, MATLAB's built-in visualization tools were leveraged to dynamically plot and analyze the 

Pareto front. This real-time monitoring capability enabled the identification of optimization trends and 

facilitated parameter adjustments as needed, ensuring a robust and effective optimization process. 

NSGA-II generated a Pareto front that effectively visualized the trade-offs between 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 and 𝐸𝑟𝑟𝑜𝑟𝜂. 

This Pareto front, depicted, offered critical insights into the relative importance of minimizing errors in the 

storage modulus (𝐺𝑠) and loss factor (𝜂). 

 The solutions along the Pareto front were carefully analyzed to derive the weights 𝑊𝐺𝑆
 and 𝑊𝜂 for the 

single-objective optimization phase. This multi-objective analysis provided a foundation for the subsequent 

optimization steps, enabling a balanced approach that addressed both objectives comprehensively. 

 

6. Harmony search algorithm (HSA) 

The Harmony Search Algorithm (HSA) was first introduced by Zong Woo Geem in 2001 [39]. Inspired by 

the improvisation process used by musicians, HSA mimics how musicians try to find the best harmony by 

playing different notes. This analogy is applied to optimization problems, where different solutions are 

generated and improved iteratively to find the best solution. The algorithm works through three key 

operations: memory consideration, pitch adjustment, and randomization. Over the years, HSA has been 

successfully applied in various fields, particularly in engineering optimization problems, such as material 

optimization. 

 The flowchart of the Harmony Search Algorithm is shown in Fig. 3 [40], which provides a visual 

representation of the key steps in the algorithm, including initialization, improvisation, memory update, and 

termination. For a comprehensive explanation of this methodology, readers are encouraged to refer to the 

foundational references [40, 41]. 

 The Harmony Search Algorithm (HSA) was implemented using MATLAB R2024b, with meticulously 

chosen parameters to achieve an optimization process that is both effective and efficient. These parameters 

were iteratively refined through extensive testing of various configurations to strike an optimal balance 

between computational cost and accuracy. The use of MATLAB R2024b facilitated the simulation of 

complex scenarios and enabled the fine-tuning of parameters within a robust computational environment. 

The parameter boundaries were carefully defined to remain within physically meaningful and positive 

ranges, ensuring consistency with the practical characteristics of viscoelastic dampers (VEDs) and 

guaranteeing the reliability of the optimization results. 

 The Harmony Memory Size (HMS) was set to 50 after iterative testing with smaller values, such as 5 and 

10, which demonstrated limited exploration capabilities and often resulted in suboptimal solutions. By 

gradually increasing the HMS, the algorithm gained the ability to explore the solution space more thoroughly. 

At HMS = 50, the optimization process showed significant improvements in solution quality without 

substantially increasing computational costs. Further increases beyond this point yielded diminishing returns, 

solidifying HMS = 50 as the optimal choice for balancing efficiency and performance. 

 The Harmony Memory Consideration Rate (HMCR) was configured at 0.9 to ensure a high likelihood of 

selecting values from the existing Harmony Memory (HM). This setting allowed the algorithm to 

predominantly utilize promising solutions stored in HM while preserving a degree of randomness necessary 

for effective exploration. The high HMCR value proved crucial in leveraging the stored information 
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efficiently, striking a balance between exploiting good solutions and maintaining sufficient diversity to 

prevent premature convergence. 

 The Pitch Adjustment Rate (PAR) was set to 0.3 to achieve a balance between exploration and 

exploitation. A lower PAR led to inadequate refinement of the harmonies, limiting the algorithm's ability to 

fine-tune solutions. Conversely, higher PAR values caused excessive disruptions, particularly in stable 

regions of the solution space, hindering convergence. The chosen value of 0.3 provided an optimal trade-off, 

enabling precise local adjustments around promising solutions while maintaining overall stability in the 

optimization process. 

 The Bandwidth (𝑏𝑤) was set to 0.05 to allow for fine-grained adjustments during the pitch adjustment 

phase. This narrow adjustment range was specifically chosen to address the sensitivity of the modified 

fractional derivative constitutive model's (MFDCM) parameters, as even small variations can significantly 

influence the model's performance. By using this carefully selected bandwidth, the algorithm was able to 

refine solutions with precision, ensuring that the optimization process captured the intricate dynamics of the 

model while avoiding overshooting optimal parameter values. 

 

 

 

Fig. 3. Flowchart of HSA [40] 
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 The Maximum Iterations were determined to be 20,000 after an extensive analysis of the relationship 

between the number of iterations and error reduction. Early tests with 5,000 and 10,000 iterations revealed 

that the algorithm had not fully converged, leaving room for further improvement. Increasing the iterations 

to 20,000 allowed the optimization process to consistently achieve convergence and yield optimal results. 

Beyond this threshold, additional iterations offered negligible improvements, validating the efficiency and 

sufficiency of this setting for capturing the model's optimal parameters. 

 

7. Teaching-learning-based optimization (TLBO) 

The Teaching-Learning-Based Optimization (TLBO), introduced by Rao et al. [42], is a population-based 

optimization technique inspired by the teaching-learning in classroom. This algorithm divides the 

optimization process into two main phases: the Teacher Phase and the Learner Phase As illustrated in Fig. 4 

[42]. 

 In the Teacher Phase, the teacher represents the best solution found so far, to increase the mean level of 

knowledge (or fitness) of the learners (population). The goal is to shift the class mean, 𝑀, toward the 

teacher’s level, denoted by 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . The mean difference is calculated as: 

𝐷𝑀 = 𝑟 × (𝑀𝑛𝑒𝑤 − 𝑇𝐹 × 𝑀𝑜𝑙𝑑) (16) 

where 𝑀𝑜𝑙𝑑  is the current mean, 𝑀𝑛𝑒𝑤 is the new target mean defined by the teacher’s influence, 𝑇𝐹 is the 

teaching factor, randomly set to 1 or 2 to control the extent of influence, 𝑟  is a random number between 0 

and 1.so this update for each learner 𝑋𝑖 in this phase is given by 

𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝐷𝐹  (17) 

 In the Learner Phase, learners improve through peer-to-peer interactions. Each learner randomly selects 

another learner and updates their position based on their fitness values. If learner 𝑋𝑖  has a lower fitness than 

the selected peer, 𝑋𝑗then 𝑋𝑖 is updated as: 

𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝑟 × (𝑋𝑗 − 𝑋𝑖) (18) 

If 𝑋𝑖 has a better fitness, then the update equation is 

𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝑟 × (𝑋𝑖 − 𝑋𝑗) (19) 

This peer exchange enables diversity in the population, helping avoid local minima by allowing learners to 

adopt parts of their peers' solutions. 

 Teaching-Learning-Based Optimization (TLBO) for the modified fractional derivative constitutive 

model (MFDCM) was efficiently implemented using MATLAB R2024b. This setup allowed for optimal 

computational efficiency and precise parameter tuning through iterative adjustments. MATLAB's 

capabilities facilitated the handling of complex characteristics inherent to the MFDCM, ensuring an effective 

balance between computational speed and accuracy of the optimization process. 

 The population size was configured to be 60 learners, a value determined through iterative testing with 

smaller and larger populations. Initial experiments with 20 and 40 learners demonstrated inadequate 

diversity, which often resulted in premature convergence to suboptimal solutions. Expanding the population 

size to 60 facilitated a more comprehensive exploration of the search space while preserving computational 

efficiency, striking a balance between solution quality and processing time. 

 The maximum number of generations was determined to be 10,000 after iterative testing. Early trials with 

2,000 and 5,000 generations showed incomplete convergence, with the algorithm failing to achieve optimal 

parameter settings. Extending the number of generations to 10,000 allowed sufficient iterations for the error 
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rate to stabilize, ensuring the reliability and accuracy of the results. This choice provided a balance between 

computational cost and achieving robust optimization outcomes. 

 During the early stages (generations 1–1,000), the algorithm utilized a higher level of randomness (𝜎 =

 0.7) to promote extensive global exploration and avoid premature convergence. In the mid-stage 

(generations 1,001–3,000), randomness was reduced to 𝜎 =  0.3, enabling the algorithm to concentrate on 

refining solutions around promising areas identified earlier. In the final stage (generations 3,001–10,000), 

randomness was further minimized to 𝜎 =  0.05, allowing for precise fine-tuning of the solutions to achieve 

optimal parameter settings. 

 The teaching factor was dynamically set to either 1 or 2, based on the algorithm's internal logic. This 

adaptive setting allowed the teacher to effectively guide the learners, enhancing their convergence toward 

improved solutions by balancing exploration and exploitation throughout the optimization process. 

 

 
Fig. 4. Flowchart of TLBO [42] 
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 To maintain feasibility, all new solutions generated during the teacher and learner phases were restricted 

within the predefined parameter boundaries. These boundaries, consistently applied across all optimization 

algorithms, were designed to reflect the physical relevance of the viscoelastic dampers (VEDs). parameters, 

ensuring that the optimization results remained valid and practically applicable. 

 

8. Particle swarm optimization (PSO) 

The Particle Swarm Optimization (PSO) was introduced by James Kennedy and Russell Eberhart in 1995 

[43], as explained by Genovesi et al. [20], PSO is an evolutionary approach to the collective behavior seen 

in bird flocks. In PSO, each particle stands for a possible solution and moves through a multi-dimensional 

space affected by three main factors: its momentum, feedback from its personal best position, and guidance 

from the swarm's best position found so far. The flowchart of the PSO is illustrated in Fig. 5 [44]. The 

equation for this update is given as [44,45]: 

𝑣𝑖+1 = 𝑤. 𝑣𝑖 + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (20) 

Where 𝑤 is the inertia weight, determining the degree to which previous velocity is retained, 𝑐1 is the 

cognitive coefficient, which weighs the particle’s personal best position 𝑝𝑏𝑒𝑠𝑡 , 𝑐2is the social coefficient, 

which weighs the global best position 𝑔𝑏𝑒𝑠𝑡  discovered by the swarm, 𝑟1 and 𝑟2 are random factors between 

0 and 1, introducing randomness to help avoid local minima. 

 The new position of the particle is then updated using: 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 (21) 

 By balancing exploration (global search) and exploitation (local refinement), this multi-step iteration of 

velocity and position updates enables particles to converge toward the optimal solution. The PSO preserves 

simplicity and efficiency while searching the search space, which makes it particularly useful for problems 

involving continuous variables. 

 

 

 

Fig. 5. Flowchart of PSO [44] 
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 To optimize the computational efficiency of the Particle Swarm Optimization (PSO) implementation, we 

utilized MATLAB’s parallel computing capabilities from the outset. By  setting ′𝑈𝑠𝑒𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙′, 𝑡𝑟𝑢𝑒, the 

optimization process was executed across multiple cores, specifically leveraging the eight-core configuration 

of our computing system. This parallel execution allowed for simultaneous function evaluations, 

significantly speeding up the convergence process by enabling a more extensive search within a reduced 

timeframe. 

 PSO was implemented with carefully selected parameters to ensure a balance between effectiveness and 

computational efficiency. These parameters were iteratively adjusted and refined through experimental trials, 

aiming to achieve reliable convergence while minimizing computational overhead. This approach ensured 

that the optimization process remained both accurate and practically applicable to engineering challenges. 

 The swarm size was configured to 50 particles, determined through iterative testing. Initial experiments 

with smaller sizes, such as 10 and 20, revealed limited search space exploration, often resulting in premature 

convergence. By increasing the swarm size to 50, the algorithm enhanced its ability to explore the solution 

space comprehensively, achieving a balance between computational efficiency and solution quality. Further 

increases in swarm size provided minimal gains in performance while substantially raising computation time, 

affirming 50 as the optimal choice. 

 The maximum number of iterations was configured to be 200 based on an in-depth analysis of the 

relationship between iteration count and error reduction. Initial trials with 100 iterations showed incomplete 

convergence, highlighting the need for additional iterations to refine the solutions. Increasing the iteration 

limit to 200 consistently led to optimal results, with the error stabilizing effectively. Further increases in the 

iteration count provided negligible improvements, confirming that 200 iterations were sufficient to achieve 

convergence and optimize the solution efficiently. 

 The inertia weight (𝜔) was dynamically varied throughout the optimization process to balance 

exploration and exploitation effectively. It was initialized at 0.9 to promote extensive global exploration 

during the early stages of optimization, enabling the algorithm to traverse a wide solution space. As the 

process advanced, ω was gradually reduced to 0.4, shifting the focus toward local exploitation to refine 

solutions around promising regions. This adaptive approach improved the algorithm's efficiency and 

significantly enhanced its ability to identify optimal solutions by leveraging both broad search capabilities 

and fine-tuning adjustments. 

 

9. Case study 

9.1. Experimental data overview 

The experimental performance data used in this study were sourced from benchmark research conducted by 

T. Zhang et al. [8]. This data forms the cornerstone for the parameter optimization of the modified fractional 

derivative constitutive model (MFDCM). The experimental setup, depicted in Fig. 6, was designed to 

measure the force–displacement hysteresis behavior of viscoelastic dampers (VEDs). under cyclic loading. 

This setup effectively highlights the energy dissipation and stiffness characteristics of VEDs across a range 

of frequencies and amplitudes. 
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Fig. 6. VED test setup [8] 

9.2. Force–displacement hysteresis and optimization relevance 

The force–displacement hysteresis loops, depicted in Fig. 7, offer valuable insights into the dynamic behavior 

of viscoelastic dampers (VEDs). These loops illustrate the force-displacement relationship under varying 

frequencies and amplitudes, enabling the derivation of critical viscoelastic materials (VEMs) properties. 

These properties, extracted from the elliptical representation of the hysteresis loops (as shown in Fig. 8), 

formed the basis for defining the optimization objectives: the storage modulus (𝐺𝑠) and loss factor (𝜂). Rather 

than focusing on the experimental procedures, the emphasis is on the utilization of these hysteresis data for 

optimization.  

 The extracted parameters were utilized as benchmarks for minimizing errors during the optimization 

process. These calculated error functions informed the application of single-objective optimization methods 

Teaching–Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search 

Algorithm (HSA)—and the multi-objective optimization method Non-dominated Sorting Genetic Algorithm 

II (NSGA-II), to effectively tune the MFDCM’s parameters. By integrating these experimental data, the 

optimization framework closely mirrors the physical behavior of VED, thereby enhancing the model's 

reliability and predictive accuracy. 

 

 

Fig. 7. Force–displacement hysteresis curves of viscoelastic damper (VED). at identical displacement amplitudes but 

varying frequencies [8] 
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Fig. 8. Characteristic hysteresis loop of the experimental VED [8] 

 

10. Results and discussion 

To evaluate the effectiveness of the modified fractional derivative constitutive model (MFDCM)  for the 

viscoelastic damper (VED), the experimental results were compared with the model's calculated outcomes, 

as shown in Table 1. The comparison highlights two key dynamic properties: storage modulus (𝐺𝑠) and loss 

factor (𝜂). Additionally, to illustrate the effectiveness of the meta-heuristic optimization used in this study, 

the results are compared with those from Zhang et al. [8] who employed the Multi-Objective Goal Attainment 

Optimization as displayed in Table 1. 

 The parameters of the MFDCM were identified through a combination of experimental data and model 

fitting, as shown in Table 2. These six parameters 𝐶1, 𝐶2𝐺1, 𝐺2, 𝛼, 𝑎𝑛𝑑 𝜂 play a critical role in defining VED 

behavior under varying frequencies and shear strains. Here 𝐺1 and 𝐺2 represent stiffness contribution of the 

respective components in the MFDCM. Higher values of 𝐺1 indicate a stiffer system, while 𝐺2 contributes 

to the overall energy dissipation. 𝜂 represents the viscosity parameter that controls the rate of energy 

dissipation during cyclic loading. Higher values of 𝜂 indicate improved damping capabilities. 𝛼 is the 

fractional derivative order, which adjusts the frequency dependency of the MFDCM. Values close to 1 imply 

a more linear response, while lower values suggest more complex VED behavior. 𝐶1, 𝐶2 are coefficients that 

adjust the softening behavior of the VED under different shear strains. These parameters ensure that MFDCM 

captures the nonlinearity observed in experimental data, especially under high shear conditions.  

 Table 3. provides error percentages for each opt Optimization Techniques. The errors were determined 

by comparing the calculated values from the model with the corresponding experimental data. For all 

optimization techniques, the highest error for the 𝐺𝑠 occurs at a frequency of 2 Hz and a shear strain of 0.3. 

Similarly, the worst-case scenario for the 𝜂 is observed at a frequency of 0.3 Hz and a shear strain of 0.3. 

The consistency in the relationship between error values and the frequency-shear strain combination suggests 

that this behavior is linked to the MFDCM. 

 According to Zhang et al. [8], the maximum relative error between the experimental and model calculated 

values for the storage modulus 𝐺𝑠 is 11.86%, while for the loss factor 𝜂, it reaches 15.35%. In contrast, the 

meta-heuristic optimization techniques proposed in this study significantly improved MFDCM by reducing 

the largest relative error for the storage modulus 𝐺𝑠 to 11.41%, 10.66%, 11.16%, and 11.12%, for NSGA-II, 

TLBO, HSA, and PSO, respectively. Similarly, the largest relative error for the loss factor 𝜂 was reduced to 

14.89%, 14.77%, 12.68%, and 12.77% for NSGA-II, TLBO, HSA, and PSO, respectively. Relatively TLBO 

demonstrated the best relative error for the storage modulus, add to HSA demonstrated the best relative error 

for loss factor modulus. 
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Table 1. Storage modulus and Loss Factor comparison between experimental and the MFDCM results 
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0.3 0.05 1.136 1.099 1.1345 1.1097 1.1003 1.099 0.232 0.222 0.2237 0.2238 0.2278 0.228 

1 0.05 1.298 1.291 1.3311 1.3016 1.2949 1.294 0.384 0.413 0.4127 0.4089 0.4117 0.412 

2 0.05 1.473 1.509 1.5479 1.5089 1.5032 1.502 0.542 0.542 0.5457 0.5411 0.5418 0.542 

0.3 0.1 1.089 1.058 1.0837 1.0650 1.0580 1.057 0.231 0.213 0.2134 0.2140 0.2185 0.218 

1 0.1 1.235 1.235 1.2629 1.2412 1.2375 1.237 0.378 0.398 0.3963 0.3936 0.3973 0.397 

2 0.1 1.399 1.437 1.4604 1.4313 1.4295 1.429 0.526 0.526 0.5270 0.5235 0.5255 0.525 

0.3 0.15 1.050 1.021 1.0386 1.0248 1.0197 1.019 0.227 0.205 0.2052 0.2060 0.2107 0.211 

1 0.15 1.189 1.185 1.2037 1.1880 1.1866 1.186 0.369 0.386 0.3832 0.3809 0.3852 0.385 

2 0.15 1.325 1.373 1.3856 1.3642 1.3652 1.364 0.522 0.512 0.5118 0.5088 0.5116 0.511 

0.3 0.2 1.005 0.987 0.9982 0.9886 0.9851 0.985 0.228 0.199 0.1988 0.1996 0.2045 0.204 

1 0.2 1.142 1.141 1.1520 1.1411 1.1415 1.141 0.365 0.376 0.3729 0.3707 0.3753 0.375 

2 0.2 1.242 1.317 1.3215 1.3058 1.3089 1.308 0.515 0.500 0.4998 0.4969 0.5002 0.500 

0.3 0.25 0.973 0.956 0.9621 0.9558 0.9536 0.953 0.227 0.194 0.1940 0.1947 0.1995 0.199 

1 0.25 1.101 1.101 1.1068 1.0996 1.1013 1.101 0.356 0.368 0.3651 0.3627 0.3674 0.367 

2 0.25 1.176 1.267 1.2662 1.2549 1.2593 1.259 0.499 0.490 0.4907 0.4875 0.4909 0.490 

0.3 0.3 0.943 0.927 0.9297 0.9261 0.9249 0.925 0.224 0.190 0.1906 0.1909 0.1956 0.195 

1 0.3 1.062 1.066 1.0670 1.0627 1.0653 1.065 0.346 0.361 0.3596 0.3566 0.3612 0.361 

2 0.3 1.094 1.223 1.2184 1.2102 1.2156 1.215 0.478 0.483 0.4842 0.4803 0.4836 0.483 

 

 

Table 2. Parameters of the MFDCM 

 𝑮𝟏 (MPa) 𝑮𝟐(MPa) 𝜼 (MPa 𝒔𝜶) 𝜶 𝑪𝟏 𝑪𝟐 

Goal attainment [8] 5.4488 0.5449 0.1224 0.6836 1.3508 3.4651 

NSGA-II 8.0143 0.5451 0.1247 0.6649 1.6433 4.2354 

TLBO 9.6399 0.5205 0.1198 0.6520 1.4363 3.8764 

HSA 9.998 0.5102 0.1207 0.6451 1.3582 3.6259 

PSO 9.988 0.5096 0.1207 0.6450 1.3488 3.6368 
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Table 3. Error comparison for different optimization techniques 
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0.3 0.05 3.24 0.14 2.32 3.15 3.23 4.43 3.54 3.51 1.78 1.75 

1 0.05 0.56 2.54 0.27 0.24 0.32 7.39 7.36 6.37 7.09 7.11 

2 0.05 2.44 5.05 2.41 2.02 1.95 0.02 0.69 0.15 0.01 0.01 

0.3 0.1 2.80 0.45 2.17 2.81 2.88 7.84 7.47 7.21 5.27 5.27 

1 0.1 0.01 2.27 0.51 0.21 0.14 5.49 4.99 4.26 5.24 5.22 

2 0.1 2.68 4.37 2.30 2.17 2.10 0.01 0.28 0.38 0.01 0.03 

0.3 0.15 2.83 1.14 2.44 2.93 2.98 9.81 9.70 9.33 7.24 7.27 

1 0.15 0.31 1.23 0.08 0.20 0.25 4.68 3.93 3.31 4.48 4.44 

2 0.15 3.58 4.54 2.93 3.00 2.94 1.92 1.88 2.45 1.92 1.96 

0.3 0.2 1.86 0.72 1.68 2.03 2.07 12.91 12.84 12.48 10.36 10.41 

1 0.2 0.13 0.83 0.12 0.09 0.13 3.04 2.25 1.65 2.92 2.85 

2 0.2 5.98 6.36 5.09 5.34 5.29 2.93 2.95 3.51 2.88 2.95 

0.3 0.25 1.82 1.17 1.82 2.05 2.07 14.51 14.33 14.05 11.93 12.00 

1 0.25 0.00 0.50 0.16 0.00 0.04 3.18 2.51 1.82 3.14 3.05 

2 0.25 7.71 7.62 6.66 7.04 6.99 1.71 1.64 2.29 1.61 1.69 

0.3 0.3 1.69 1.45 1.83 1.95 1.97 15.3 14.89 14.77 12.68 12.77 

1 0.3 0.31 0.42 0.02 0.27 0.24 4.42 4.01 3.15 4.48 4.37 

2 0.3 11.87 11.41 10.66 11.16 11.12 1.08 1.37 0.56 1.26 1.16 

10.1. Results for harmonic search algorithm (HSA) 

The Harmonic Search Algorithm (HSA) showcased exceptional effectiveness in optimizing the parameters 

of the modified fractional derivative constitutive model (MFDCM). The algorithm minimized discrepancies 

in both storage modulus (𝐺𝑠) and loss factor (𝜂), demonstrating its capability to enhance the model's accuracy 

and dependability. 

 Through the application of weights 𝑊𝐺𝑠
 and 𝑊𝜂 the optimization process achieved a substantial reduction 

in errors in Fig. 9. Starting at an initial error rate of 39.6% in the first iteration, the process saw a dramatic 

decline to 7.75% by the 627th iteration. The optimization stabilized by the 16,136th iteration, achieving a 

final error rate of 2.1% for the objective function. 

 The error reduction trend, depicted in Fig. 9, clearly illustrates the algorithm's efficiency in addressing 

the optimization challenge, with a steady decline in error rates signifying effective parameter tuning and 

convergence. 
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Fig. 9. Iterations vs. average error HSA 

10.2. Results for particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) demonstrated strong effectiveness in optimizing the parameters of the 

modified fractional derivative constitutive model (MFDCM). Its rapid exploration of the parameter space 

and efficient convergence highlight its capability to minimize errors in both storage modulus (𝐺𝑠) and loss 

factor (𝜂). The optimized parameter values for the MFDCM, obtained through PSO, are shown in Table 2. 

These results align with the physical behavior of viscoelastic dampers and have been successfully validated 

using experimental data. 

 A swarm size of 50 exhibited a strong performance. During the initial iterations, a significant reduction 

in the error rate was observed, as illustrated in Fig. 10. This trend indicates that PSO effectively explores the 

parameter space and quickly identifies regions with improved solutions. As iterations progress, minor 

fluctuations in the error rate occur, reflecting the particles' exploration of various areas in the solution space, 

which may temporarily lead to local optima. The error stabilizes at 1.92% after 191 iterations. This discussion 

highlights that PSO outperforms the other optimization methods studied, both in minimizing the total error 

rate and in reducing computational time. 

 The optimized parameters obtained through PSO for the MFDCM, as presented in Table 2, show strong 

alignment with the physical properties of viscoelastic dampers. These parameters have been thoroughly 

validated against experimental data, confirming their accuracy and relevance for modeling the behavior of 

Viscoelastic dampers (VEDs) under dynamic conditions. 

10.3. Results for teaching–learning-based optimization (TLBO) 

The Teaching–Learning-Based Optimization (TLBO) demonstrated significant effectiveness in optimizing 

the modified fractional derivative constitutive model (MFDCM). By leveraging its structured optimization 

approach, TLBO successfully minimized errors in both storage modulus (𝐺𝑠) and loss factor (𝜂), while 

maintaining computational efficiency. 

 Implemented with a population size of 60, TLBO ensured adequate diversity to explore the parameter 

space comprehensively. The error vs. generation plot, illustrated in Fig. 11, depicts the optimization 

trajectory. During the initial generations, a rapid reduction in error was observed, driven by the algorithm's 

capacity to exploit the random initial population and promptly identify superior solutions. This early 

convergence highlights TLBO's ability to refine solutions effectively during the initial stages of the 

optimization process. 
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Fig. 10. Iterations vs. average error PSO 

 

 

Fig. 11. Iterations vs. average error TLBO 

 

 As the generations advanced, the rate of improvement gradually diminished, indicating the algorithm's 

convergence towards optimal or near-optimal solutions. By the 8,597th generation, the error stabilized at 

2.4%, signifying that further improvements were either negligible or had ceased entirely, marking the 

conclusion of the optimization process. 

10.4. Results for non-dominated sorting genetic algorithm ii (NSGA-II) 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was utilized to optimize the parameters of the 

modified fractional derivative constitutive model (MFDCM). By addressing the conflicting objectives of 

minimizing 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 and 𝐸𝑟𝑟𝑜𝑟𝜂 , NSGA-II effectively generated a set of Pareto-optimal solutions, offering 

critical insights into the trade-offs between these objectives. 

 NSGA-II was initiated with a population size of 50, ensuring sufficient diversity for comprehensive 

exploration of the solution space. The Pareto front, depicted in Fig. 12, represents the set of non-dominated 

solutions where further reduction  in 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 and 𝐸𝑟𝑟𝑜𝑟𝜂  is not possible without compromising the other. 
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NSGA-II demonstrated significant advancements in the initial generations, with the Pareto front stabilizing 

after approximately 4,800 generations. The solutions along the Pareto front underline the balance between 

minimizing 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 and 𝐸𝑟𝑟𝑜𝑟𝜂 , providing a range of optimal trade-offs for informed decision-making. 

The Pareto front generated by NSGA-II is illustrated in Fig. 13, with each point representing a unique 

solution where further reduction in one error metric 𝐸𝑟𝑟𝑜𝑟𝐺𝑠
 and 𝐸𝑟𝑟𝑜𝑟𝜂  results in an increase in the other. 

This multi-objective optimization approach offers valuable insights into the trade-offs between these 

conflicting objectives. Engineers can utilize the Pareto front to select solutions tailored to application-specific 

needs, such as prioritizing energy dissipation (𝜂) or stiffness (𝐺𝑠). NSGA-II demonstrated robust 

convergence behavior, progressively improving solution quality over successive generations. During the 

initial stages, the algorithm emphasized global exploration to uncover diverse solutions across the search 

space. In later stages, the crowding distance mechanism refined the population, enhancing both the quality 

and diversity of solutions on the Pareto front. By the 4,800th generation, the Pareto front exhibited minimal 

changes, signifying convergence, and providing a stable set of optimal trade-offs. 

 

 

Fig. 12. Pareto optimal points by NSGA-II 

 

  

a) Storage modulus b) Loss factor 

Fig. 13. Iterations vs. average error NSGA2 
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 The results for storage modulus show in Fig. 13(a) indicate that the error achieved by the NSGA-II 

reached 2.6% after 5000 generations for the storage modulus. And reached 2.9 % after 5000 generations as 

shown in the Fig. 13 )b( for the loss factor modulus. However, the plot reveals minor oscillations in the error 

values, suggesting that the optimization did not reach complete stability throughout the optimization process. 

This observation highlights the need for careful evaluation of the optimization trajectory and underscores the 

potential for further refinement in future iterations. 

 

11. Conclusions 

• This study effectively optimized the parameters of the modified fractional derivative constitutive 

model (MFDCM). for viscoelastic dampers (VEDs) by integrating multi-objective and single-

objective optimization strategies. Using Non-dominated Sorting Genetic Algorithm II (NSGA-II), 

Teaching–Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and 

Harmony Search Algorithm (HSA), the research showcased the efficiency of these methods in 

reducing errors in both storage modulus (𝐺𝑠) and loss factor (𝜂), thereby enhancing the model's 

accuracy and reliability. 

• The optimization problem was approached as a multi-objective challenge, addressing the conflicting 

goals of minimizing errors in storage modulus (𝐺𝑠) and loss factor (𝜂), Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) was employed to construct a Pareto front, which provided valuable 

insights into the trade-offs between these objectives. This analysis guided the selection of weights 

(𝑊𝐺𝑠
= 1, 𝑊𝜂 = 5.5) to transform the multi-objective problem into a single-objective framework. 

• The single-objective optimization techniques then utilized these weights to fine-tune the parameters 

with precision, achieving a robust balance between computational efficiency and model fidelity. 

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) generated a comprehensive Pareto front, 

offering tailored solutions that cater to specific application requirements. The trade-offs illustrated 

by the Pareto front provided valuable insights into the interaction between storage modulus (𝐺𝑠) and 

loss factor (𝜂), facilitating informed weight selection for optimization. The Pareto front reached 

stability after approximately 4,800 generations, demonstrating the robustness and reliability of 

NSGA-II in addressing conflicting objectives effectively 

• Harmonic Search Algorithm (HSA) effectively reduced errors, achieving a final error rate of 2.1% 

after 16,136 iterations. The algorithm maintained a balanced strategy between exploration and 

exploitation, ensuring both computational efficiency and high accuracy in the optimization results. 

• Particle Swarm Optimization (PSO) demonstrated superior convergence speed compared to the 

other algorithms, stabilizing at an error rate of 1.92% within just 191 iterations. Its adaptive strategy 

for balancing global exploration and local exploitation proved highly effective, especially in 

optimization scenarios constrained by computational resources. 

• Teaching–Learning-Based Optimization (TLBO) reached a stable error rate of 2.4% after 8,597 

generations. Its structured approach to exploration and refinement facilitated robust convergence to 

near-optimal solutions, highlighting its dependability in addressing complex multi-parameter 

optimization challenges. 

• The transformation from a multi-objective to a single-objective optimization problem was 

accomplished by selecting weights derived from the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) Pareto front. The weights (𝑊𝐺𝑠
= 1, 𝑊𝜂 = 5.5) were optimized to balance the errors in 

storage modulus (𝐺𝑠) and loss factor (𝜂), effectively. Additionally, parameter boundaries were 

carefully established within physically meaningful ranges, ensuring both the validity and reliability 

of the optimization process and its outcomes. 
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