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This study aims to improve the parameters of the modified fractional derivative
constitutive model (MFDCM) for viscoelastic dampers (VEDS), as these parameters
are extremely important in reducing and resisting structural responses to dynamic
loads, such as seismic and wind loads. The MFDCM, with its nonlinear and
frequency-dependent characteristics, is a complex model, which directly affects the
storage modulus (Gs) and loss factor (n) of VEDs, leading to great difficulty in
accurately predicting the damper behavior under different conditions. The problem
studied is inherently multi-objective, involving trade-offs between errors in the
storage modulus (Gg) and loss factor (). First, a multi-objective approach is
employed to identify a set of potential solutions and generate a Pareto front, which
provides insights into the trade-offs between competing objectives. Precise weights
are then determined from the Pareto front to transform the multi-objective problem
into a single-objective problem, allowing further refinement using single-objective
optimization techniques. Four advanced meta-heuristic optimization techniques—
Non-dominated Sorting Genetic Algorithm Il (NSGA-II), Teaching—Learning-
Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony
Search Algorithm (HSA)—are employed to systematically reduce the error rates in
the storage modulus (Gs) and loss factor (n) predictions compared to experimental
data. The results of this study demonstrate that, by incorporating multiple
optimization techniques, the prediction accuracy of the MFDCM can be
significantly enhanced. This improved modeling ability thus enables better design
of VEDs, improving their performance and reliability in practical engineering
applications. Comparative analysis of different algorithms provides insights into
their effectiveness and efficiency, offering valuable guidance for choosing
appropriate optimization strategies in engineering optimization problems.
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1. Introduction

Optimization is becoming more important in many areas of science and is now a key part of fields like
engineering, economics, and management [1]. It helps solve complex problems in logistics, decision-making,
and system design, and it is widely used in operations research, computer science, and engineering [2]. Over
time, researchers have developed different methods to find solutions, and recent advances in technology and
the growing complexity of real-world problems have made optimization even more necessary [3]. These
techniques are now commonly used in engineering to solve a variety of challenges in areas like materials
science and computer systems [4,5]. However, choosing the best optimization technique can still be difficult,
especially for problems that are very complex or have many variables [6,7].

The modified fractional derivative constitutive model (MFDCM) is a useful tool for understanding how
viscoelastic dampers (VEDSs) behave under different conditions [8]. VEDs are important for reducing the
impact of dynamic loads, such as those caused by earthquakes and wind loads. Despite its usefulness, the
MFDCM is challenging to optimize because of its complexity and reliance on experimental data. This makes
it hard to improve the model’s accuracy in predicting how VEDs perform in real situations. To address this
issue, advanced optimization techniques are needed to handle the trade-offs between different objectives.
Many studies have shown how optimization techniques can improve engineering solutions [9-13]. For
instance, Altun et al. [14] compared five algorithms to show how different methods perform under various
conditions. Jain et al. [15] tested Multi-Objective Particle Swarm Optimization (MOPSO), Non-Dominated
Sorting Genetic Algorithm 11 (NSGA-II), and other techniques to balance costs and emissions in power
systems. Wen et al. [16] introduced an improved version of NSGA-I1 to solve scheduling problems, proving
its effectiveness. Kashani et al. [17] highlighted how NSGA-II and MOPSO can optimize the design of
retaining walls, showing NSGA-II’s ability to manage competing goals like cost and safety. Other studies
have used similar methods to solve complex problems, further proving their value [18-25].

This research focuses on improving the parameters of the MFDCM using four optimization methods:
Non-dominated Sorting Genetic Algorithm Il (NSGA-I11), Teaching—Learning-Based Optimization (TLBO),
Particle Swarm Optimization (PSO), and Harmony Search Algorithm (HSA). First, a multi-objective
approach is used to explore different solutions, and then weights from the Pareto front are applied to convert
the problem into a single-objective one for further optimization. This approach ensures that the parameters
are adjusted to achieve better model accuracy. [26] By applying these techniques to experimental data, this
study provides a clear comparison of their performance and offers guidance for improving models of VEDs
in practical engineering applications.[27].

2. Modified fractional derivative constitutive model (MFDCM)

Fig. 1. shows the structure of the modified fractional derivative constitutive model (MFDCM). This model
consists of two main components: an elastic spring and a fractional Kelvin element. The elastic spring
represents the solid-like, elastic behavior of the material, while the fractional Kelvin element accounts for
the time-dependent, viscous properties of viscoelastic materials (VEMS). Together, these elements enable
the MFDCM to capture both elastic and viscoelastic responses under varying loading conditions.

MFDCM offers a significant advantage over conventional integer derivative models. Its ability to
describe the behavior of VEMs across a wide frequency range with fewer parameters makes it particularly
efficient and accurate [28,29]. This capability reduces the complexity of parameter fitting, enhancing its
applicability in modeling real-world materials.
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Fig. 1. Modified fractional derivative constitutive model (MFDCM) [11]

MFDCM offers a significant advantage over conventional integer derivative models. Its ability to
describe the behavior of VEMs across a wide frequency range with fewer parameters makes it particularly
efficient and accurate [28,29]. This capability reduces the complexity of parameter fitting, enhancing its
applicability in modeling real-world materials.
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where p;, qo, and g, the coefficients related to the VEMs, that can be determined by experimental data. 7(t)
and y (t) are the shear stress and strain at physical time ¢, respectively. D¢ is the fractional derivative operator
with a power of a, where 0 < a < 1, at value a = 1, the model considers as classic three-parameter model.

MFDCM provides a comprehensive framework to characterize the behavior of viscoelastic dampers
(VEDs) under varying dynamic conditions. The governing equations of the model account for the nonlinear
and frequency-dependent properties of the system, essential for accurately predicting the performance of
VEDs. The storage modulus (G;) and loss factor (n). are described as:
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To adapt these equations for practical applications, the coefficients q,, q;, and p, are reformulated in
terms of displacement amplitude as follows:
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The parameters qgef and qfef represent the original values derived from the standard fractional derivative

model. The terms G, and G, denote the shear modulus of the respective components in the system,
while n indicates the viscosity of the fractional dashpot. The coefficients C; and C, govern the softening rates
for q, and g; under varying shear strains.
The reference shear strain y,..¢ is defined as:
U
Yrer = t_ (10)

v

where, u, is the maximum displacement of the intermediate steel plate and t,, is the thickness of the VEM
layer.

These equations form the foundation for modeling and optimizing the parameters of the MFDCM,
ensuring that it captures the nonlinearities and dynamic responses of VEDs with precision. By incorporating
these refined formulations, the model aligns with the primary objective of improving the accuracy and
reliability of VED simulations under real-world conditions.

3. Problem definition and optimization framework

The modified fractional derivative constitutive model (MFDCM) parameters play a crucial role in accurately
representing the behavior of viscoelastic dampers (VEDs). This includes defining the objectives, error
functions, and constraints, as well as outlining the approach used to address these through optimization
techniques.

3.1. Problem statement

The error functions are critical in assessing the accuracy of the modified fractional derivative constitutive
model (MFDCM) by measuring the differences between the model-predicted values and experimental data
for two important viscoelastic properties: the storage modulus G, and the loss factor n. Minimizing these
discrepancies ensures that the model reliably reflects real-world material behavior under dynamic loading
conditions. The use of these error functions varies depending on whether a single-objective or multi-objective
optimization framework is applied.

3.2. Error functions for multi-objective optimization

In multi-objective optimization, the goal is to simultaneously minimize two independent error functions: the
storage modulus error (Errorg ) and the loss factor error (Errorn). These objectives are inherently
conflicting, as reducing the error in one parameter may lead to an increase in the error of the other.

3.2.1. Storage modulus error (Errorg )
Quantifies the absolute difference between the predicted storage modulus G™°%¢! and the experimental
storage modulus G:*"?**across all frequencies:

Erro‘rGS = Z|G;nodel(w) _ Gstarget(w)| (11)
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where Errorg_ The total error in the storage modulus across all frequencies, GMo%l(y) The predicted value

of the storage modulus from the model at a specific frequency (w), G:*"9% (w) the experimental target value

of the storage modulus at the same frequency (w), w The angular frequency of the excitation.

3.2.2. Loss factor error (Error_n)
Quantifies the absolute difference between the predicted loss factor (n™°%¢") and the experimental loss factor
(ntarget).

ETT‘OT‘n — Zlnmodel(w) _ ntarget(w)l (13)
w
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where Error, The total error in the loss factor across all frequencies, n™o@el () The predicted value of the

loss factor from the model at a specific frequency (w), nt*"9¢ (w) the experimental target value of the loss
factor at the same frequency (w), w The angular frequency of the excitation.

For each frequency, the model predictions are computed using the equations outlined above. The absolute
differences between the predicted and experimental values are summed across all frequencies to compute the
total errors for storage modulus (G,) and loss factor ().

3.3. Error function for single-objective optimization

In single-objective optimization, the storage modulus error (Error,,) and the loss factor error (Error;,) are
combined into a single fitness function. This transformation simplifies the optimization process and allows
the use of efficient single-objective optimization algorithms.

This transformation simplifies the optimization process and allows for the application of efficient single-
objective optimization. The fitness function is constructed as a weighted summation of the two error
functions, enabling the balancing of conflicting objectives by adjusting their relative importance.
The fitness function is expressed mathematically as:

F = Wg . Errorg. + W, .Error, (15)

where Wy, is the weight assigned to the storage modulus error and I, is the weight assigned to the loss factor
error.

These weights represent the relative importance of each objective in the context of the application. By
varying weights, the optimization process can prioritize one objective over the other, such as emphasizing
stiffness (G,) or energy dissipation (1), or achieving a balanced trade-off. This single fitness function acts
as the objective for the optimization process. Combining the errors into a single scalar value enhances
computational efficiency, enabling Teaching—Learning-Based Optimization (TLBO), Particle Swarm
Optimization (PSO), and Harmony Search Algorithm (HSA) to converge rapidly to an optimal solution. This
approach also offers flexibility, as modifying the weights allows the optimization process to adapt to specific
performance goals or application priorities.

3.4. Justification for multi-objective and single-objective optimization
Using both multi-objective and single-objective optimization approaches in this study ensures a thorough
and effective parameter optimization process for the modified fractional derivative constitutive model
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(MFDCM). Each method brings distinct advantages, and their combined use is crucial for obtaining accurate
and dependable results.

3.4.1. Multi-objective optimization

Multi-objective optimization is especially effective for addressing problems with conflicting objectives, such
as simultaneously minimizing the errors in the storage modulus (G,) and loss factor (n). These two
parameters often embody competing performance criteria in modeling viscoelastic dampers (VEDS).
Employing a multi-objective optimization, such as Non-dominated Sorting Genetic Algorithm 1l (NSGA-
I1), facilitates the generation of a Pareto front, offering a comprehensive visualization of the trade-offs
between G and n [30].

The Pareto front provides engineers and researchers with a spectrum of optimal solutions, enabling
flexibility in choosing the most suitable solution based on specific application requirements. For example,
some applications may prioritize energy dissipation (n) over stiffness (G,), while others may require a
balance between the two. Additionally, multi-objective optimization offers valuable insights into parameter
interactions, revealing how variations in one parameter impact the other [31]. This comprehensive
perspective is essential for understanding the behavior of the modified fractional derivative constitutive
model (MFDCM) and ensuring that the optimization process effectively addresses all relevant trade-offs.

3.4.2. Single-objective optimization

While multi-objective optimization is crucial for examining trade-offs, single-objective optimization plays a
key role in fine-tuning and meeting specific performance targets. By consolidating the errors in storage
modulus (G;) and loss factor (n) into a single fitness function, the optimization process becomes streamlined
and focused, enabling efficient convergence toward the desired performance outcomes. Single-objective
optimization simplifies the problem and enables efficient parameter adjustments [32]. The weighting
mechanism weight assigned to the storage modulus (W) and the weight assigned to the loss factor
error (W) provides the flexibility to prioritize objectives according to specific application needs. For
instance, assigning a higher weight to W;_ places greater emphasis on reducing the error in the storage
modulus, while increasing W}, focuses on minimizing the loss factor error. This adaptability ensures that the
optimization aligns with engineering requirements, whether the goal is maximizing stiffness, enhancing
damping, or achieving a balanced trade-off between the two [33].

In addition to flexibility, single-objective optimization offers computational efficiency. Algorithms like
Teaching—Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search
Algorithm (HSA) can quickly converge to an optimal solution due to the simplicity of optimizing a single
fitness function. This rapid convergence makes single-objective optimization particularly effective for
refining solutions identified through multi-objective approaches [34,35].

The integration of multi-objective and single-objective optimization ensures a comprehensive framework
for parameter optimization in this study. Multi-objective optimization explores the solution space and
identifies Pareto-optimal solutions, highlighting trade-offs between G, and n, which inform the weighting
scheme for single-objective optimization. Single-objective optimization then refines these solutions for
precise parameter adjustments. This hybrid approach combines the broad exploration of multi-objective
methods with the targeted refinement of single-objective techniques, achieving accurate and reliable
parameter estimation for engineering applications involving viscoelastic dampers (VEDS).

4. Parameter boundaries and weight selection for single-objective optimization

In this study, the parameter boundaries and weight values for single-objective optimization were
meticulously defined to ensure consistency, physical relevance, and applicability to viscoelastic dampers
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(VEDs). These configurations were uniformly applied across all optimization techniques Teaching—
Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search
Algorithm (HSA)—to maintain a standardized and comparable framework.

4.1. Weight selection

The weights W; =1 and W, = 5.5 were determined as optimal through extensive testing and insights
gained from multi-objective optimization using Non-dominated Sorting Genetic Algorithm Il (NSGA-II).
The Pareto front generated by NSGA-11 revealed the trade-offs between storage modulus (G,) and loss factor
(n), facilitating an informed selection of weights to balance these conflicting objectives.

The chosen weights reflect the study's practical needs, prioritizing W;, = 5.5 to ensure the accuracy of 7,
which is highly sensitive to variations and crucial for capturing the damping performance of viscoelastic
dampers (VEDs). In contrast, W;_ =1 assigns a lower weight to the G, maintaining balance without
compromising its accuracy.

This deliberate selection process highlights the effort to align the weights with the study's practical
requirements rather than relying on arbitrary values. The selected weights provide a balanced optimization
framework that captures the engineering importance of both objectives effectively.

4.2. Parameter boundaries

The parameter boundaries were selected to ensure physical relevance to viscoelastic dampers (VEDs). and
adherence to prior research, thereby guaranteeing realistic and meaningful optimization results. The
fractional derivative parameter « is bound between 0 and 1, as suggested by foundational studies on
fractional derivatives. This range ensures that the damping behavior modeled by a remains physically
meaningful and aligns with theoretical expectations.

The material parameters (C;, C;, G,, G,) are constrained within 0.01 to 1000, reflecting experimentally
observed ranges for viscoelastic dampers. These bounds encompass the practical ranges of material
properties influencing both the storage modulus (G;) and loss factor (7).

The friction parameter is restricted to values between 0.01 and 1, representing the typical range for
viscoelastic materials (VEMS) used in damping systems. This ensures that the frictional component remains
realistic and accurately represents the materials under investigation.

5. Non-dominated sorting genetic algorithm 2 (NSGA-II)

The Non-dominated Sorting Genetic Algorithm Il (NSGA-II) is a sophisticated algorithm designed for multi-
objective optimization, offering effective solutions to complex optimization problems. Originally introduced
by Deb et al. [36], it operates on the principle of selecting dominant solutions among a set of potential
candidates. The flowchart of the NSGA-II is shown in Fig.2 [37]. A brief overview of this algorithm’s
approach is provided as follows [38].
a) Initialization of population Po of size N using a uniform distribution.
b) Generate new offspring population Qt by utilizing binary tournament selection which is based on
crowding comparison operator, crossover, and mutation operation on the parent population (P;).
Here, t denotes the number of generations. The entire population R, is the combination of the
offspring population Q, and its parent population P;.
¢) Non-dominated fronts of different objective functions are obtained by performing a fast non-
dominated sorting approach on the entire population (R,).
d) Generate a new parent population (P, ) from the obtained fronts.
e) This process is continued until the maximum number of iterations is reached.
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The Non-dominated Sorting Genetic Algorithm Il (NSGA-11) was implemented in MATLAB R2024b,
leveraging its robust optimization toolbox to handle the complexities of multi-objective optimization.
MATLAB's platform offered the flexibility to define objective functions Erorrg and Erorr, set parameter
boundaries and establish stopping criteria. Furthermore, it facilitated the efficient processing of large datasets
and iterative computations, ensuring accurate and computationally efficient optimization results.

The population size was set to 50, a value determined after extensive experimentation with varying sizes.
Initial tests with smaller populations of 20 and 30 individuals showed limited diversity, which restricted the
algorithm's ability to thoroughly explore the Pareto front. By increasing the population size to 50, a balance
was achieved, enabling more comprehensive coverage of the solution space while maintaining computational
efficiency.

The maximum number of generations was set to 5,000, a value determined through iterative testing. Trials
with smaller limits, such as 2,000 and 3,000 generations, resulted in incomplete convergence, failing to
capture the full trade-offs between Erorrg, and Erorr,. Extending the limit to 5,000 ensured stabilizations
of the Pareto front, providing a comprehensive understanding of the trade-offs between the conflicting
objectives.

The function tolerance was set to 1 x 10~?, ensuring that the optimization process considered only
significant improvements in the objective values, thereby maintaining precision, and avoiding convergence
to suboptimal solutions. Additionally, the maximum stall generations parameter was configured to 5,000,
effectively preventing premature termination caused by stagnation, and allowing the algorithm sufficient
opportunity to explore and refine the Pareto front.

I Initiahze Population gen=() I
]

[}

Front=1

T

w Ne—s-| Identify non dominated
gen =gen +1 1

Y
l Front = Front +1

crowded tournament selection

i
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!

Selection and Crossover
and Mutation

N
\d

Fig. 2. Flowchart of NSGA-II [37]
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The crossover and mutation operations were strategically configured to preserve diversity within the
population while simultaneously refining promising solutions. A simulated binary crossover (SBX) operator,
with a distribution index of 20, was employed to ensure effective exploration of the search space. For
mutation, a polynomial mutation technique was applied, using a distribution index of 20 and a mutation
probability of 1/n,,. , Wwhere n,,,,.c represents the number of variables (six in this study).

Additionally, MATLAB's built-in visualization tools were leveraged to dynamically plot and analyze the
Pareto front. This real-time monitoring capability enabled the identification of optimization trends and
facilitated parameter adjustments as needed, ensuring a robust and effective optimization process.

NSGA-II generated a Pareto front that effectively visualized the trade-offs between Errorg, and Error,.
This Pareto front, depicted, offered critical insights into the relative importance of minimizing errors in the
storage modulus (G,) and loss factor (n).

The solutions along the Pareto front were carefully analyzed to derive the weights W, and W, for the
single-objective optimization phase. This multi-objective analysis provided a foundation for the subsequent
optimization steps, enabling a balanced approach that addressed both objectives comprehensively.

6. Harmony search algorithm (HSA)

The Harmony Search Algorithm (HSA) was first introduced by Zong Woo Geem in 2001 [39]. Inspired by
the improvisation process used by musicians, HSA mimics how musicians try to find the best harmony by
playing different notes. This analogy is applied to optimization problems, where different solutions are
generated and improved iteratively to find the best solution. The algorithm works through three key
operations: memory consideration, pitch adjustment, and randomization. Over the years, HSA has been
successfully applied in various fields, particularly in engineering optimization problems, such as material
optimization.

The flowchart of the Harmony Search Algorithm is shown in Fig. 3 [40], which provides a visual
representation of the key steps in the algorithm, including initialization, improvisation, memory update, and
termination. For a comprehensive explanation of this methodology, readers are encouraged to refer to the
foundational references [40, 41].

The Harmony Search Algorithm (HSA) was implemented using MATLAB R2024b, with meticulously
chosen parameters to achieve an optimization process that is both effective and efficient. These parameters
were iteratively refined through extensive testing of various configurations to strike an optimal balance
between computational cost and accuracy. The use of MATLAB R2024b facilitated the simulation of
complex scenarios and enabled the fine-tuning of parameters within a robust computational environment.
The parameter boundaries were carefully defined to remain within physically meaningful and positive
ranges, ensuring consistency with the practical characteristics of viscoelastic dampers (VEDs) and
guaranteeing the reliability of the optimization results.

The Harmony Memory Size (HMS) was set to 50 after iterative testing with smaller values, such as 5 and
10, which demonstrated limited exploration capabilities and often resulted in suboptimal solutions. By
gradually increasing the HMS, the algorithm gained the ability to explore the solution space more thoroughly.
At HMS = 50, the optimization process showed significant improvements in solution quality without
substantially increasing computational costs. Further increases beyond this point yielded diminishing returns,
solidifying HMS = 50 as the optimal choice for balancing efficiency and performance.

The Harmony Memory Consideration Rate (HMCR) was configured at 0.9 to ensure a high likelihood of
selecting values from the existing Harmony Memory (HM). This setting allowed the algorithm to
predominantly utilize promising solutions stored in HM while preserving a degree of randomness necessary
for effective exploration. The high HMCR value proved crucial in leveraging the stored information
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efficiently, striking a balance between exploiting good solutions and maintaining sufficient diversity to
prevent premature convergence.

The Pitch Adjustment Rate (PAR) was set to 0.3 to achieve a balance between exploration and
exploitation. A lower PAR led to inadequate refinement of the harmonies, limiting the algorithm's ability to
fine-tune solutions. Conversely, higher PAR values caused excessive disruptions, particularly in stable
regions of the solution space, hindering convergence. The chosen value of 0.3 provided an optimal trade-off,
enabling precise local adjustments around promising solutions while maintaining overall stability in the
optimization process.

The Bandwidth (bw) was set to 0.05 to allow for fine-grained adjustments during the pitch adjustment
phase. This narrow adjustment range was specifically chosen to address the sensitivity of the modified
fractional derivative constitutive model's (MFDCM) parameters, as even small variations can significantly
influence the model's performance. By using this carefully selected bandwidth, the algorithm was able to
refine solutions with precision, ensuring that the optimization process captured the intricate dynamics of the
model while avoiding overshooting optimal parameter values.

Initialize
HM

Generate random
number rand(0,1)

Variables are randomly . Variables are randomly generated
" - g N » 3 H i
selected in HM within the allowable range

J

Adjust variables with

: vari
PAR Probability Are all n variables generate

is the new solution better
han the worst solution in HM?

Y N

¥
Update HM

Avre the stopping
conditions met ?

v
¥
output
result

Fig. 3. Flowchart of HSA [40]
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The Maximum Iterations were determined to be 20,000 after an extensive analysis of the relationship
between the number of iterations and error reduction. Early tests with 5,000 and 10,000 iterations revealed
that the algorithm had not fully converged, leaving room for further improvement. Increasing the iterations
to 20,000 allowed the optimization process to consistently achieve convergence and yield optimal results.
Beyond this threshold, additional iterations offered negligible improvements, validating the efficiency and
sufficiency of this setting for capturing the model's optimal parameters.

7. Teaching-learning-based optimization (TLBO)

The Teaching-Learning-Based Optimization (TLBO), introduced by Rao et al. [42], is a population-based
optimization technique inspired by the teaching-learning in classroom. This algorithm divides the
optimization process into two main phases: the Teacher Phase and the Learner Phase As illustrated in Fig. 4
[42].

In the Teacher Phase, the teacher represents the best solution found so far, to increase the mean level of
knowledge (or fitness) of the learners (population). The goal is to shift the class mean, M, toward the
teacher’s level, denoted by X;eqcner- The mean difference is calculated as:

DM =7 X (Mye,, — TF X Myyq) (16)

where M,,4 is the current mean, M,,,,, is the new target mean defined by the teacher’s influence, TF is the
teaching factor, randomly set to 1 or 2 to control the extent of influence, r is a random number between 0
and 1.so this update for each learner X; in this phase is given by

= Xoia,i + Dr (17)

X new,i

In the Learner Phase, learners improve through peer-to-peer interactions. Each learner randomly selects
another learner and updates their position based on their fitness values. If learner X; has a lower fitness than
the selected peer, X;then X; is updated as:

Xnewi = Xowai +7 % (X; — X;) (18)
If X; has a better fitness, then the update equation is
Xnew,i = Xowa,i T 17X (Xi - X]) (19)

This peer exchange enables diversity in the population, helping avoid local minima by allowing learners to
adopt parts of their peers' solutions.

Teaching-Learning-Based Optimization (TLBO) for the modified fractional derivative constitutive
model (MFDCM) was efficiently implemented using MATLAB R2024b. This setup allowed for optimal
computational efficiency and precise parameter tuning through iterative adjustments. MATLAB's
capabilities facilitated the handling of complex characteristics inherent to the MFDCM, ensuring an effective
balance between computational speed and accuracy of the optimization process.

The population size was configured to be 60 learners, a value determined through iterative testing with
smaller and larger populations. Initial experiments with 20 and 40 learners demonstrated inadequate
diversity, which often resulted in premature convergence to suboptimal solutions. Expanding the population
size to 60 facilitated a more comprehensive exploration of the search space while preserving computational
efficiency, striking a balance between solution quality and processing time.

The maximum number of generations was determined to be 10,000 after iterative testing. Early trials with
2,000 and 5,000 generations showed incomplete convergence, with the algorithm failing to achieve optimal
parameter settings. Extending the number of generations to 10,000 allowed sufficient iterations for the error
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rate to stabilize, ensuring the reliability and accuracy of the results. This choice provided a balance between
computational cost and achieving robust optimization outcomes.

During the early stages (generations 1-1,000), the algorithm utilized a higher level of randomness (¢ =
0.7) to promote extensive global exploration and avoid premature convergence. In the mid-stage
(generations 1,001-3,000), randomness was reduced to ¢ = 0.3, enabling the algorithm to concentrate on
refining solutions around promising areas identified earlier. In the final stage (generations 3,001-10,000),
randomness was further minimized to ¢ = 0.05, allowing for precise fine-tuning of the solutions to achieve
optimal parameter settings.

The teaching factor was dynamically set to either 1 or 2, based on the algorithm's internal logic. This
adaptive setting allowed the teacher to effectively guide the learners, enhancing their convergence toward
improved solutions by balancing exploration and exploitation throughout the optimization process.

| Initialize number of students (populaicn), wermination criterion |

| Calculaie the mean of each design variables |-— .
| Identify the best solution (teacher) |
Modify solution based on best solution Teacher
Kore= Xoti¥ P Xivcrers{ T )Mo} p|'|.‘|‘=it"

15 new V:I!I.I.IIIIJII
hetter than existing, ?

Select any two solutions randomly Xi and
Xj

Studemt
phase

l

15 termination
criteria satisfied #

Fig. 4. Flowchart of TLBO [42]
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To maintain feasibility, all new solutions generated during the teacher and learner phases were restricted
within the predefined parameter boundaries. These boundaries, consistently applied across all optimization
algorithms, were designed to reflect the physical relevance of the viscoelastic dampers (VEDS). parameters,
ensuring that the optimization results remained valid and practically applicable.

8. Particle swarm optimization (PSO)

The Particle Swarm Optimization (PSO) was introduced by James Kennedy and Russell Eberhart in 1995
[43], as explained by Genovesi et al. [20], PSO is an evolutionary approach to the collective behavior seen
in bird flocks. In PSO, each particle stands for a possible solution and moves through a multi-dimensional
space affected by three main factors: its momentum, feedback from its personal best position, and guidance
from the swarm's best position found so far. The flowchart of the PSO is illustrated in Fig. 5 [44]. The
equation for this update is given as [44,45]:

Vigr = WV + 1. 11 Ppest — Xi) + C2.T2- (Gpest — Xi) (20)
Where w is the inertia weight, determining the degree to which previous velocity is retained, c; is the
cognitive coefficient, which weighs the particle’s personal best position pyes:, C,iS the social coefficient,
which weighs the global best position g,.; discovered by the swarm, r; and r, are random factors between
0 and 1, introducing randomness to help avoid local minima.
The new position of the particle is then updated using:

Xit1 = X T Vigq (21)

By balancing exploration (global search) and exploitation (local refinement), this multi-step iteration of
velocity and position updates enables particles to converge toward the optimal solution. The PSO preserves
simplicity and efficiency while searching the search space, which makes it particularly useful for problems
involving continuous variables.

t=t+1 -
| Initialization of control parametersl 1
l Update the velocity and
Initialization of particle position of each particle

position and velocity

:

Evaluate the fitness function for
each particle for local and global
best

|

the best position and the
best optimum is obtained

Evaluate the fitness
function for each particle
for local and global best

N

End

Fig. 5. Flowchart of PSO [44]
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To optimize the computational efficiency of the Particle Swarm Optimization (PSO) implementation, we
utilized MATLAB’s parallel computing capabilities from the outset. By setting 'UseParallel’, true, the
optimization process was executed across multiple cores, specifically leveraging the eight-core configuration
of our computing system. This parallel execution allowed for simultaneous function evaluations,
significantly speeding up the convergence process by enabling a more extensive search within a reduced
timeframe.

PSO was implemented with carefully selected parameters to ensure a balance between effectiveness and
computational efficiency. These parameters were iteratively adjusted and refined through experimental trials,
aiming to achieve reliable convergence while minimizing computational overhead. This approach ensured
that the optimization process remained both accurate and practically applicable to engineering challenges.

The swarm size was configured to 50 particles, determined through iterative testing. Initial experiments
with smaller sizes, such as 10 and 20, revealed limited search space exploration, often resulting in premature
convergence. By increasing the swarm size to 50, the algorithm enhanced its ability to explore the solution
space comprehensively, achieving a balance between computational efficiency and solution quality. Further
increases in swarm size provided minimal gains in performance while substantially raising computation time,
affirming 50 as the optimal choice.

The maximum number of iterations was configured to be 200 based on an in-depth analysis of the
relationship between iteration count and error reduction. Initial trials with 100 iterations showed incomplete
convergence, highlighting the need for additional iterations to refine the solutions. Increasing the iteration
limit to 200 consistently led to optimal results, with the error stabilizing effectively. Further increases in the
iteration count provided negligible improvements, confirming that 200 iterations were sufficient to achieve
convergence and optimize the solution efficiently.

The inertia weight (w) was dynamically varied throughout the optimization process to balance
exploration and exploitation effectively. It was initialized at 0.9 to promote extensive global exploration
during the early stages of optimization, enabling the algorithm to traverse a wide solution space. As the
process advanced, ® was gradually reduced to 0.4, shifting the focus toward local exploitation to refine
solutions around promising regions. This adaptive approach improved the algorithm's efficiency and
significantly enhanced its ability to identify optimal solutions by leveraging both broad search capabilities
and fine-tuning adjustments.

9. Case study

9.1. Experimental data overview

The experimental performance data used in this study were sourced from benchmark research conducted by
T. Zhang et al. [8]. This data forms the cornerstone for the parameter optimization of the modified fractional
derivative constitutive model (MFDCM). The experimental setup, depicted in Fig. 6, was designed to
measure the force—displacement hysteresis behavior of viscoelastic dampers (VEDSs). under cyclic loading.
This setup effectively highlights the energy dissipation and stiffness characteristics of VEDs across a range
of frequencies and amplitudes.
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Fig. 6. VED test setup [8]

9.2. Force—displacement hysteresis and optimization relevance

The force—displacement hysteresis loops, depicted in Fig. 7, offer valuable insights into the dynamic behavior
of viscoelastic dampers (VEDSs). These loops illustrate the force-displacement relationship under varying
frequencies and amplitudes, enabling the derivation of critical viscoelastic materials (VEMS) properties.
These properties, extracted from the elliptical representation of the hysteresis loops (as shown in Fig. 8),
formed the basis for defining the optimization objectives: the storage modulus (G,) and loss factor (n). Rather
than focusing on the experimental procedures, the emphasis is on the utilization of these hysteresis data for
optimization.

The extracted parameters were utilized as benchmarks for minimizing errors during the optimization
process. These calculated error functions informed the application of single-objective optimization methods
Teaching—Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and Harmony Search
Algorithm (HSA)—and the multi-objective optimization method Non-dominated Sorting Genetic Algorithm
Il (NSGA-II), to effectively tune the MFDCM’s parameters. By integrating these experimental data, the
optimization framework closely mirrors the physical behavior of VED, thereby enhancing the model's
reliability and predictive accuracy.

1.5 3
1 2t
—~ 05 ~ L}
A z
= =
s 0 0
= 2
< 0.5 = Sample point | J = By + Sample point
—— 0.3 Hz ——0.3 Hz
-1 —— 1 Hz 1 ot —— 1 Hz
2 Hz 2 Hz
1.5 ! -3t .
-1.5 -1 0.5 )] 0.5 | 1.5 -4 -3 =2 -1 0 1 2 3 4
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(@)u=1mm (b) u =3 mm

Fig. 7. Force—displacement hysteresis curves of viscoelastic damper (VED). at identical displacement amplitudes but
varying frequencies [8]
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Fig. 8. Characteristic hysteresis loop of the experimental VED [8]

10. Results and discussion

To evaluate the effectiveness of the modified fractional derivative constitutive model (MFDCM) for the
viscoelastic damper (VED), the experimental results were compared with the model's calculated outcomes,
as shown in Table 1. The comparison highlights two key dynamic properties: storage modulus (Gs) and loss
factor (n). Additionally, to illustrate the effectiveness of the meta-heuristic optimization used in this study,
the results are compared with those from Zhang et al. [8] who employed the Multi-Objective Goal Attainment
Optimization as displayed in Table 1.

The parameters of the MFDCM were identified through a combination of experimental data and model
fitting, as shown in Table 2. These six parameters C;, C,G,, G,, @, and n play a critical role in defining VED
behavior under varying frequencies and shear strains. Here G, and G, represent stiffness contribution of the
respective components in the MFDCM. Higher values of G, indicate a stiffer system, while G, contributes
to the overall energy dissipation. n represents the viscosity parameter that controls the rate of energy
dissipation during cyclic loading. Higher values of n indicate improved damping capabilities. « is the
fractional derivative order, which adjusts the frequency dependency of the MFDCM. Values close to 1 imply
a more linear response, while lower values suggest more complex VED behavior. C;, C, are coefficients that
adjust the softening behavior of the VED under different shear strains. These parameters ensure that MFDCM
captures the nonlinearity observed in experimental data, especially under high shear conditions.

Table 3. provides error percentages for each opt Optimization Techniques. The errors were determined
by comparing the calculated values from the model with the corresponding experimental data. For all
optimization techniques, the highest error for the G, occurs at a frequency of 2 Hz and a shear strain of 0.3.
Similarly, the worst-case scenario for the 7 is observed at a frequency of 0.3 Hz and a shear strain of 0.3.
The consistency in the relationship between error values and the frequency-shear strain combination suggests
that this behavior is linked to the MFDCM.

According to Zhang et al. [8], the maximum relative error between the experimental and model calculated
values for the storage modulus G is 11.86%, while for the loss factor 5, it reaches 15.35%. In contrast, the
meta-heuristic optimization techniques proposed in this study significantly improved MFDCM by reducing
the largest relative error for the storage modulus G, to 11.41%, 10.66%, 11.16%, and 11.12%, for NSGA-II,
TLBO, HSA, and PSO, respectively. Similarly, the largest relative error for the loss factor n was reduced to
14.89%, 14.77%, 12.68%, and 12.77% for NSGA-II, TLBO, HSA, and PSO, respectively. Relatively TLBO
demonstrated the best relative error for the storage modulus, add to HSA demonstrated the best relative error
for loss factor modulus.
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Table 1. Storage modulus and Loss Factor comparison between experimental and the MFDCM results

Storage modulus G (MPa) Loss Factor n
~
T 5 . 5 = 5
P o —_— c —_—
%) n [ £ = S IS =
c - c ) o c : ]
= 5§ £ s 3 3 § @ £ g 3 = § 3
g < I < 3] = T o L < N = T a
< 0 X = d X = zZ
I | S w S
o o
03 005 1136 1.099 1.1345 1.1097 1.1003 1.099 0.232 0.222 0.2237 0.2238 0.2278 0.228

1 0.05 1298 1.291 1.3311 1.3016 1.2949 1.294 0.384 0.413 0.4127 0.4089 0.4117 0.412
2 0.05 1.473 1509 1.5479 15089 1.5032 1.502 0.542 0.542 0.5457 0.5411 0.5418 0.542
0.3 0.1 1.089 1.058 1.0837 1.0650 1.0580 1.057 0.231 0.213 0.2134 0.2140 0.2185 0.218
1 0.1 1235 1235 1.2629 1.2412 1.2375 1.237 0.378 0.398 0.3963 0.3936 0.3973 0.397
2 0.1 1.399 1437 1.4604 1.4313 1.4295 1.429 0.526 0.526 0.5270 0.5235 0.5255 0.525
03 015 1050 1.021 1.0386 1.0248 1.0197 1.019 0.227 0.205 0.2052 0.2060 0.2107 0.211
1 0.15 1189 1.185 1.2037 1.1880 1.1866 1.186 0.369 0.386 0.3832 0.3809 0.3852 0.385
2 0.15 1.325 1.373 1.3856 1.3642 1.3652 1.364 0.522 0.512 0.5118 0.5088 0.5116 0.511
0.3 0.2 1.005 0.987 0.9982 0.9886 0.9851 0.985 0.228 0.199 0.1988 0.1996 0.2045 0.204
1 0.2 1.142 1141 1.1520 1.1411 1.1415 1.141 0.365 0.376 0.3729 0.3707 0.3753 0.375
2 0.2 1242 1317 13215 1.3058 1.3089 1.308 0.515 0.500 0.4998 0.4969 0.5002 0.500
03 025 0973 0.956 0.9621 0.9558 0.9536 0.953 0.227 0.194 0.1940 0.1947 0.1995 0.199
1 0.25 1101 1.101 1.1068 1.0996 1.1013 1.101 0.356 0.368 0.3651 0.3627 0.3674 0.367
2 025 1176 1.267 1.2662 1.2549 1.2593 1.259 0.499 0.490 0.4907 0.4875 0.4909 0.490
0.3 0.3 0943 0.927 0.9297 0.9261 0.9249 0.925 0.224 0.190 0.1906 0.1909 0.1956 0.195
1 03 1.062 1066 1.0670 1.0627 1.0653 1.065 0.346 0.361 0.3596 0.3566 0.3612 0.361
2 0.3 1.094 1223 1.2184 1.2102 1.2156 1.215 0.478 0.483 0.4842 0.4803 0.4836 0.483

Table 2. Parameters of the MFDCM

G, (MPa) G,(MPa) 1n (MPa s%) a (5 C,
Goal attainment [8] 5.4488 0.5449 0.1224 0.6836 1.3508 3.4651
NSGA-II 8.0143 0.5451 0.1247 0.6649 1.6433 4.2354
TLBO 9.6399 0.5205 0.1198 0.6520  1.4363  3.8764
HSA 9.998 0.5102 0.1207 0.6451  1.3582  3.6259

PSO 9.988 0.5096 0.1207 0.6450  1.3488  3.6368
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Table 3. Error comparison for different optimization techniques

_ Storage modulus Gg (error value %) Loss Factor n (error value %)
g 5 — —
L o o

0} 0}
03 005 324 0.14 2.32 3.15 323 443 3.54 351 1.78 1.75
1 005 0.56 2.54 0.27 0.24 032 7.39 7.36 6.37 7.09 7.11
2 005 244 5.05 241 2.02 195 0.02 0.69 0.15 0.01 0.01
03 0.1 2.80 0.45 2.17 2.81 2.88 7.84 7.47 7.21 5.27 5.27
1 0.1 0.01 2.27 0.51 0.21 0.14 5.49 4.99 4.26 5.24 5.22
2 01 2.68 4.37 2.30 2.17 210 0.01 0.28 0.38 0.01 0.03
03 015 283 1.14 2.44 2.93 298 981 9.70 9.33 7.24 7.27
1 015 031 1.23 0.08 0.20 025 4.68 3.93 331 4.48 4.44
2 0.15 3.58 4.54 2.93 3.00 2.94 1.92 1.88 2.45 1.92 1.96
03 0.2 1.86 0.72 1.68 2.03 207 1291 12.84 12.48 10.36 1041
1 0.2 013 0.83 0.12 0.09 013  3.04 2.25 1.65 2.92 2.85
2 0.2 5.98 6.36 5.09 5.34 5.29 2.93 2.95 3.51 2.88 2.95
03 025 182 117 1.82 2.05 207 1451 14.33 14.05 11.93 12.00
1 0.25 0.00 0.50 0.16 0.00 0.04 3.18 251 1.82 3.14 3.05
2 025 771 7.62 6.66 7.04 6.99 1.71 1.64 2.29 1.61 1.69
03 03 1.69 1.45 1.83 1.95 1.97 15.3 14.89 14.77 12.68 12.77
1 0.3 0.31 0.42 0.02 0.27 0.24 4.42 4.01 3.15 4.48 4.37
2 0.3 1187 1141 10.66 1116 1112 1.08 1.37 0.56 1.26 1.16

10.1. Results for harmonic search algorithm (HSA)

The Harmonic Search Algorithm (HSA) showcased exceptional effectiveness in optimizing the parameters
of the modified fractional derivative constitutive model (MFDCM). The algorithm minimized discrepancies
in both storage modulus (G,) and loss factor (n), demonstrating its capability to enhance the model's accuracy
and dependability.

Through the application of weights W_and W, the optimization process achieved a substantial reduction
in errors in Fig. 9. Starting at an initial error rate of 39.6% in the first iteration, the process saw a dramatic
decline to 7.75% by the 627th iteration. The optimization stabilized by the 16,136th iteration, achieving a
final error rate of 2.1% for the objective function.

The error reduction trend, depicted in Fig. 9, clearly illustrates the algorithm's efficiency in addressing
the optimization challenge, with a steady decline in error rates signifying effective parameter tuning and
convergence.
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Fig. 9. Iterations vs. average error HSA

10.2. Results for particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) demonstrated strong effectiveness in optimizing the parameters of the
modified fractional derivative constitutive model (MFDCM). Its rapid exploration of the parameter space
and efficient convergence highlight its capability to minimize errors in both storage modulus (G) and loss
factor (n). The optimized parameter values for the MFDCM, obtained through PSO, are shown in Table 2.
These results align with the physical behavior of viscoelastic dampers and have been successfully validated
using experimental data.

A swarm size of 50 exhibited a strong performance. During the initial iterations, a significant reduction
in the error rate was observed, as illustrated in Fig. 10. This trend indicates that PSO effectively explores the
parameter space and quickly identifies regions with improved solutions. As iterations progress, minor
fluctuations in the error rate occur, reflecting the particles' exploration of various areas in the solution space,
which may temporarily lead to local optima. The error stabilizes at 1.92% after 191 iterations. This discussion
highlights that PSO outperforms the other optimization methods studied, both in minimizing the total error
rate and in reducing computational time.

The optimized parameters obtained through PSO for the MFDCM, as presented in Table 2, show strong
alignment with the physical properties of viscoelastic dampers. These parameters have been thoroughly
validated against experimental data, confirming their accuracy and relevance for modeling the behavior of
Viscoelastic dampers (VEDs) under dynamic conditions.

10.3. Results for teaching—learning-based optimization (TLBO)

The Teaching—Learning-Based Optimization (TLBO) demonstrated significant effectiveness in optimizing
the modified fractional derivative constitutive model (MFDCM). By leveraging its structured optimization
approach, TLBO successfully minimized errors in both storage modulus (G,) and loss factor (1), while
maintaining computational efficiency.

Implemented with a population size of 60, TLBO ensured adequate diversity to explore the parameter
space comprehensively. The error vs. generation plot, illustrated in Fig. 11, depicts the optimization
trajectory. During the initial generations, a rapid reduction in error was observed, driven by the algorithm's
capacity to exploit the random initial population and promptly identify superior solutions. This early
convergence highlights TLBO's ability to refine solutions effectively during the initial stages of the
optimization process.
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Fig. 11. Iterations vs. average error TLBO

As the generations advanced, the rate of improvement gradually diminished, indicating the algorithm's
convergence towards optimal or near-optimal solutions. By the 8,597th generation, the error stabilized at
2.4%, signifying that further improvements were either negligible or had ceased entirely, marking the
conclusion of the optimization process.

10.4. Results for non-dominated sorting genetic algorithm ii (NSGA-II)
The Non-dominated Sorting Genetic Algorithm 11 (NSGA-I11) was utilized to optimize the parameters of the
modified fractional derivative constitutive model (MFDCM). By addressing the conflicting objectives of
minimizing Errorg, and Error,, NSGA-II effectively generated a set of Pareto-optimal solutions, offering
critical insights into the trade-offs between these objectives.

NSGA-II was initiated with a population size of 50, ensuring sufficient diversity for comprehensive
exploration of the solution space. The Pareto front, depicted in Fig. 12, represents the set of non-dominated
solutions where further reduction in Errorg, and Error, is not possible without compromising the other.
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NSGA-II demonstrated significant advancements in the initial generations, with the Pareto front stabilizing
after approximately 4,800 generations. The solutions along the Pareto front underline the balance between
minimizing Errorg_and Error,, providing a range of optimal trade-offs for informed decision-making.
The Pareto front generated by NSGA-II is illustrated in Fig. 13, with each point representing a unique
solution where further reduction in one error metric Errorg_ and Error, results in an increase in the other.
This multi-objective optimization approach offers valuable insights into the trade-offs between these
conflicting objectives. Engineers can utilize the Pareto front to select solutions tailored to application-specific
needs, such as prioritizing energy dissipation (n) or stiffness (G;). NSGA-II demonstrated robust
convergence behavior, progressively improving solution quality over successive generations. During the
initial stages, the algorithm emphasized global exploration to uncover diverse solutions across the search
space. In later stages, the crowding distance mechanism refined the population, enhancing both the quality
and diversity of solutions on the Pareto front. By the 4,800th generation, the Pareto front exhibited minimal
changes, signifying convergence, and providing a stable set of optimal trade-offs.
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The results for storage modulus show in Fig. 13(a) indicate that the error achieved by the NSGA-II
reached 2.6% after 5000 generations for the storage modulus. And reached 2.9 % after 5000 generations as
shown in the Fig. 13(b) for the loss factor modulus. However, the plot reveals minor oscillations in the error
values, suggesting that the optimization did not reach complete stability throughout the optimization process.
This observation highlights the need for careful evaluation of the optimization trajectory and underscores the
potential for further refinement in future iterations.

11. Conclusions

This study effectively optimized the parameters of the modified fractional derivative constitutive
model (MFDCM). for viscoelastic dampers (VEDs) by integrating multi-objective and single-
objective optimization strategies. Using Non-dominated Sorting Genetic Algorithm 11 (NSGA-I1),
Teaching—Learning-Based Optimization (TLBO), Particle Swarm Optimization (PSO), and
Harmony Search Algorithm (HSA), the research showcased the efficiency of these methods in
reducing errors in both storage modulus (G,) and loss factor (1), thereby enhancing the model's
accuracy and reliability.

The optimization problem was approached as a multi-objective challenge, addressing the conflicting
goals of minimizing errors in storage modulus (G;) and loss factor (), Non-dominated Sorting
Genetic Algorithm 11 (NSGA-11) was employed to construct a Pareto front, which provided valuable
insights into the trade-offs between these objectives. This analysis guided the selection of weights
(Wg, = 1, W, = 5.5) to transform the multi-objective problem into a single-objective framework.

The single-objective optimization techniques then utilized these weights to fine-tune the parameters
with precision, achieving a robust balance between computational efficiency and model fidelity.
Non-dominated Sorting Genetic Algorithm Il (NSGA-II) generated a comprehensive Pareto front,
offering tailored solutions that cater to specific application requirements. The trade-offs illustrated
by the Pareto front provided valuable insights into the interaction between storage modulus (G;) and
loss factor (1), facilitating informed weight selection for optimization. The Pareto front reached
stability after approximately 4,800 generations, demonstrating the robustness and reliability of
NSGA-II in addressing conflicting objectives effectively

Harmonic Search Algorithm (HSA) effectively reduced errors, achieving a final error rate of 2.1%
after 16,136 iterations. The algorithm maintained a balanced strategy between exploration and
exploitation, ensuring both computational efficiency and high accuracy in the optimization results.
Particle Swarm Optimization (PSO) demonstrated superior convergence speed compared to the
other algorithms, stabilizing at an error rate of 1.92% within just 191 iterations. Its adaptive strategy
for balancing global exploration and local exploitation proved highly effective, especially in
optimization scenarios constrained by computational resources.

Teaching—Learning-Based Optimization (TLBO) reached a stable error rate of 2.4% after 8,597
generations. Its structured approach to exploration and refinement facilitated robust convergence to
near-optimal solutions, highlighting its dependability in addressing complex multi-parameter
optimization challenges.

The transformation from a multi-objective to a single-objective optimization problem was
accomplished by selecting weights derived from the Non-dominated Sorting Genetic Algorithm 11
(NSGA-11) Pareto front. The weights (W, = 1, W;, = 5.5) were optimized to balance the errors in
storage modulus (G,) and loss factor (1), effectively. Additionally, parameter boundaries were
carefully established within physically meaningful ranges, ensuring both the validity and reliability
of the optimization process and its outcomes.
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