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Keywords displacement field of TSDT is included in the fully homogeneous equation under
TSDT vibration of FGM plates. The determinant of the coefficient matrix in dynamic
FGM equilibrium differential equations under vibration can be represented in the fully
Nonlinear fifth-order polynomial equation, thus the natural frequency can be found. The
Fully homogeneous equation natural frequency with/without the nonlinear ¢; term of displacement fields is
Frequency investigated. It is a significant novelty with the consideration of the nonlinear ¢,

term in the frequency computation.

1. Introduction

Some investigations in the free vibration frequency with shear deformation effect of displacement fields for
the laminated, functionally graded material (FGM) plates. Abualnour et al. [1] presented a quasi-3D
trigonometric displacement field theory used for the free vibration of FGM plates. Some numerical results
of natural frequencies were obtained for the materials Al/AI203 and Al/ZrO2. Mercan et al. [2] presented a
first-order shear deformation theory (FSDT) used for the free vibration of FGM/CNT (carbon nano tube)
annular thick plates. Some numerical results of frequencies were obtained by using the discrete the discrete
singular convolution (DSC) method. Vu et al. [3] presented a refined simple third-order shear deformation
theory (R-STSDT) used for the free vibration of FGM plates. Some numerical results of natural frequencies
were obtained for the thick materials Al/ZrO2 by using the mesh-free technique. Endo [4] presented the one-
half order and FSDT theory used for the exact frequency relationships of general polygonal plates. Gupta
and Talha [5] presented a new hyperbolic higher-order shear and normal deformation theory (HHSNDT)
used for the free vibration of FGM plates. Some numerical nonlinear and linear frequency results were
obtained for the materials SUS304/Si3N4. Rezaei et al. [6] presented a simple FSDT used for the free
vibration of FGM plates. Some numerical results of natural frequencies were obtained. Singh and Singh [7]
presented two new trigonometric deformation theories (TDT) and trigonometric-hyperbolic deformation
theory (THDT) used for the free vibration of laminated plates. Some numerical results of natural frequencies
were obtained. Thai et al. [8] presented a simple higher-order shear deformation theory (HSDT) used for the
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free vibration of isotropic plates. Some numerical results of frequencies were obtained. Senjanovic et al. [9]
presented a new FSDT used for the free vibration of moderately thick plates. Some numerical results of
frequencies were obtained. Mahi et al. [10] presented a new hyperbolic shear deformation theory used for
the free vibration of isotropic plates and FGM plates. Some numerical results of frequencies were obtained
for the materials Al/AI203 and SUS304/Si3N4. Akavci [11] presented an efficient shear deformation theory
used for the FGM plates in the free vibration of an electric foundation. Some numerical results of frequencies
were obtained for the materials Al/AI203 and Al/ZrO2. Jha et al. [12] presented a higher-order shear and
normal deformation theory (HOSNDT) used for the free vibration of FGM plates. Some numerical results of
natural frequencies were obtained for the materials Al/ZrO2.

Some frequency investigations in the composited FGM plates of TSDT models with the effects of varied
modified shear correction factors were presented. Hong [13] presented the frequency of FGM plates by
considering the effects of the nonlinear varied modified shear correction factor. Hong [14] presented the
frequency of FGM plates by considering the effect of a linear shear correction factor. There were a lot of
published papers in this FGM area that usually used the traditional homogeneous equation without
considering the effect of thermal environment temperature. The main novelty and contribution of the present
work is to present the computed vibration frequency by using a fully homogeneous equation and considering
the effect of thermal environment temperature on the thick FGM plates. The difference between this present
study and the previous work, i.e., Ref. [13], is the type of shear correction factor. The linear shear correction
coefficient type is used in this present study, while the advanced nonlinear shear correction coefficient type
is used in [13]. It is interesting to investigate the natural frequency in the approach of the TSDT model and
the varied effects of linear shear correction coefficient of FGM thick plates under vibration with fully
homogeneous equations and four edges in simply supported boundary conditions. Parametric effects of the
nonlinear coefficient ¢; the term, environment temperature and FGM power law index on the vibration
frequency of FGM thick plates under a thermal environment are investigated.

2. Formulation

For the frequency study of a two-material thick FGM plate under thermal environment temperature T with
thickness 4, and h, of FGM material 1 and FGM material 2, respectively. Fig. 1 shows the geometry of two-
material FGM plates under T. The material properties of the power-law function of thick FGM plates are
considered in standard variation form of the power-law exponent parameter R,,. The properties in individual
constituent materials are functions of T. The formula for the variation of material constants and individual
properties P; in the FGM included as follows [13]:

Pi=P0(P_1T_1+1+P1T+P2T2+P3T3) (l)

in which Py, P_,, P;, P, and P; are the temperature constants.

= T 3

‘A_ FGM Material 2

3
] | |
I a | FGM Material 1

Fig. 1. Geometry of two-material FGM plates under T
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The time-dependent displacements u and v of thick FGM plates are assumed to contain the displacements
u®, v° on the middle-plane, shear rotations v, ¥, and nonlinear coefficient ¢, terms of TSDT equations

[13,15]. The non-linearity types of uandwv are in function of z3 with ¢; = (n*)z —— terms, in which h* is the total

thickness of FGM plates. The displacement field of TSDT is added as follows such that the transverse
displacement w includes the transverse displacement on the mid-surface only.

w =100y, ) + 2 (1,9, 1) — €123 (Y + ‘Z—f) )
d

v =100y, ) + 2, (6,3, 1) — €123 (W, + %) 3)

w=w(xy,t) @)

where t is time.
The integrals of density parameters are defined as follows:
=38 [ p® Zldz (i=0,1, 2.,...,6) (5)
in which N* is the total number of layers, p® is the density of kth constituent ply.

Ji=1L —cliys (i=1,4) (6)

Kz = 12 - 2C114_ + C1216 (7)
The integrals of stiffness parameters are given as follows.

n*

(Al ]s,BLs]s,Dl ]s,Els]s, Fls]s,H S s) = fiQ_isjs (1,2,22,23,24,26)d2 (is,js = 1,2,6) (8)
2

h*

(Agj, Birjo, Dirje, Ege jo, Fiojo, Hir o) = f i koQij+ (1,2,2%, 2%, 2%, 2°)dz @,j =45 (9

where Q_isjs and Qi*j* are transformed reduced stiffness for FGM plates can be used in the simple forms in
2007 by Shen [16]. k, is the shear correction coefficient. A short formulation for the material properties of
the power-law function in FGM material gradation law is added as follows [17]:

Erom = (B, — BNy 4 (10)
Vigm = (Vo + 1) /2 (11)
Prgm = (P2 +p1)/2 (12)
Ugm = (@ + a;)/2 (13)
Krgm = (K + K1) /2 (14)
Corgm = (Coy + Cyy)/2, (15)

in which E is Young’s modulus, v is Poission’s ratio, p is the density, « is the thermal expansion coefficient,
kis the thermal conductivity, C, is the specific heat. With the subscript fgm denoting the FGM plate, the
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subscripts 1 and 2 denote the constituent material 1 and 2, respectively. The constituent terms of Young’s
modulus E;, E,; the Poission’s ratio v;,v,; the density p,, p,; the thermal expansion coefficient a4, a,; the
thermal conductivity k4, kc,; the specific heat C,,,C,, can be expressed in the form corresponding to P; of
(1). Young’s modulus is the dominant major parameter represented in the material gradation parameters only,
the others are assumed in the average form for the numerical calculation of reduced stiffness. Thus the ¢, the
effect only on the gradation parameter Young’s modulus E 4, in (10) with the relation h* = 3;;.

For the computed-varied values of lineark, are functions of h*, R,, and T by Hong [17], it is based on
FSDT and without the function of ¢; term. For the values of nonlinear k, are functions of ¢;, R, and T by
Hong [13], it is based on TSDT and without the function of hA* term. Also, a constant value k,= 5/6 =
0.833333 could be used usually in the traditional analysis.

3. Numerical results

The FGM SUS304/Si3N4 is used to study the numerical frequency of vibration under T. The constituent
material 1 is SUS304 located at the lower position and material 2 is Si3N4 located at the upper position of
FGM plates with a/b = 1 and h; = h,. Values of linear k, are used for frequency calculations of the free
vibration with no external loads and no temperature difference in AT = 0 for the TSDT of FGM plates.
Preliminary considering only under four sides simply supported (SSSS) boundary conditions plate in this
present study added as follows:

(@) Simply supported (SS) on x = 0 and x = a, assumed that

ou’ d
%=UO=W=6‘(I;’C=1/)J/=O (16)
(b) Simply supported (SS) on y = 0 and y = b, assumed that
ov° oy
uo:W=W:¢X:O_yy:0 (%))

This method is also effective for the other boundary conditions, e.g. clamp and free added as follows, and
will be studied in future work.
(c) Clamponx = 0,x = a,y = 0andy = b, assumed that
wW=v"=w=19,=19,=0 (18)
(d) Free on y=0 and y=b, assumed that:

ou’ ov® ov® ow _aw_o (19)

ax  dy 0y _wx_ax_‘/’y_ay_
The present studies of vibrations are in the following time sinusoidal displacements for u°, v°, w and
shear rotations v, ¥, that forms under SSSS plate boundary conditions with amplitudes @, bmn, Cmn,

dmnl €mn-
u® = a,,, cos(mnx/a) sin(nmy/b) sin(w,,t) (20)
v° = b, sin(mmrx/a) cos(nmy/b) sin(w,,t) (21)
W = Cpp Sin(mmx /a) sin(nmy/b) sin(wy,,t) (22)

W, = dpp cos(mmx/a) sin(nicy/b) sin(wpy,t) (23)
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Yy = by, sin(mmx/a) cos(nmy/b) sin(wp,nt) (24)

where a is the length and b is the width of the plates, w,,, is the natural frequency in mode shape subscript
numbers m and n in the x and y directions, respectively.

It is a significant novelty with the consideration of nonlinear term ¢, in the frequency computation. By
substituting (20)-(24) into dynamic equilibrium differential equations with TSDT of thick FGM plates in
terms of partial derivatives of displacements and shear rotations under free vibration, thus the fully
homogeneous equation can be obtained in the following form [18].

Ab=0 (25)

Explicit form of Eq. (25) is given in the Appendix. For the zero determinant of the coefficient matrix of (25),
the polynomial equation in the fifth order of A,,,, can be obtained, thus the natural frequency w,,, can be
calculated. That is the w,,,, (1/s) according to mode shape numbers m and n can be computed. The subscript
values m =n =1 used for the fundamental natural frequency w,,. The calculated value of dimensional w,,
(1/s) vs.R,, for TDST and FSDT modes under linear k,, SUS304/SisN4 plate, h*=1.2mm, a/h*=10 and
T=300K are shown in Fig. 2. The w,; values in TSDT mode are smaller than that in FSDT mode. That is the
values of w,, are overestimated in FSDT. And the values of w,, have linear with R,, in TDST.

Three non-dimensional frequency parameters f~, o™ and 2 are defined for the FGM plates and presented
under the values effects of ¢;= 0.925925/mm?,..., 0.000001/mm? (in TSDT case) and ¢;= 0 (in FSDT case)
as follows. The frequency parameter f* = w, h*\/p,/E, values under the effects of ¢, values are
investigated, in which p, and E, are the density and Young’s modulus of constituent material 2, respectively.
The frequency parameter w* = (w4, b?/m?)./1, /D, values under the effects of ¢, values are investigated, in

h* h*
which Iy = [ 3. p;dz, Dg = [%.Q,2%dz, Q, = E;/(1 — v;?), where p;, E; and v, are the density, Young’s
2 2

modulus and Poisson’s ratio of constituent material 1, respectively. The frequency parameter 2 =

(w1102 /") p1 (1 —v,2)/E; values under the effects of c; values are investigated. It is interesting to
compare the present vibration values of frequency with some authors' work as shown in the Tables 1-3.

@
0.040
0035 -
0.030 -

—— TDST

0025 r
0020 - -8— FSDT
0015 +
0.010 /
0.005 +
0.000 I I I I | R”

0 2 4 6 8 10

Fig. 2. wqq (1/s) vs.R,, for TDST and FSDT with linear k, and a/h* = 10
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Table 1. Comparison of frequency f* for SUS304/SisN4 and Al/ZrO2
£
c1 h* Present method, a/h*=10, T=300K,
(/mm?) (mm) linear k,, for SUS304/SisNa Jhax};:.o[zlg]
R,=0.5 R,=1 R,=2
0.925925 12 0.000285 0.000292 0.000318 -
0.333333 2 0.003667 0.003753 0.003880 -
0.000033 200 0.018220 0.018219 0.017421 -
0.000014 300 0.027235 0.027235 0.027246 -
0.000003 600 0.054278 0.054278 0.054289 -
0.000001 900 0.081320 0.081320 0.081331 0.0839
0.0 (FSDT) 1.2 0.001119 0.001890 0.001484 -
0.0 (FSDT) 2 0.001687 0.001698 0.001688 -
Table 2. Comparison of frequency w* for SUS304/SisN4
o
1) h* Present method, a/h*=10, T=300K,
(L/mm?) (mm) linear k, Kim Ducetal.
2005 [20] 2017 [21]
R,=0.5 R,=1 R,=2
0.925925 1.2 0.000285 0.000292 0.000318 - -
0.333333 2 0.279275 0.022240 0.024256 - -
0.000033 200 1.387335 0.285811 0.295457 - -
0.000014 300 2.073790 1.387284 1.399714 - -
0.000003 600 4.132891 2.073762 2.074595 - -
0.000001 900 6.191909 4.132897 4.133752 4.1165 3.99244
0.0 (FSDT) 1.2 0.085207 6.191933 6.192795 - -
0.0 (FSDT) 2 0.128498 0.143962 0.113001 - -

The values of f* vs. h* for SUS304/Si3N4 plate under a/h*=10 and T=300K with varied linear k, and ¢,
effects are shown in Table 1, value f*=0.081331 at A*=900mm, R,=2 is close to f*=0.0839 with Al/ZrO,
under no T effect by Jha et al. [19] with HOSNT12 in which 12 degrees of freedom were considered for the
model based on higher order shear-normal deformations theory (HOSNT). The transverse displacement field
including the cubic of z for the transverse shear deformations based on higher order refined HOSNT. In the
present study, the transverse displacement field is not a function of z, i.e., w = w(x, y, t). The varied values
of linear k,, are also considered in present study.

The values of w* vs. h* for SUS304/SisN4 under a/h*=10 and T=300K with varied linear k, and c,
effects are shown in Table 2, value w*= 4.132891 at h*=600mm, R,,= 0.5 is close to w*= 4.1165 with h*=
200mm under the vibration of AT= 0 by Kim [20]. Also, compare the present results with the analytical
FSDT results w*= 3.99244 of uniform distribution (UD) in CNTRC FGM plates on elastic foundation by
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Duc et al. [21]. The effect of the elastic foundation hasn't been considered in the comparative analysis of the
present study.

The values of 2 vs. h* for SUS304/SisN4 under a/h*=10 and T=700K with varied lineark, and c; values
effects are shown in Table 3, value 2 =5.258703 at h*=250mm, R,,=2 is in close to 2 =5.359 under vibration
of AT =400K by Ungbhakorn & Wattanasakulpong [22].

Table 3. Comparison of frequency 2 for SUS304/SisN4

0
) h* Present method, a/h*=10, T=300K, Ungbhakorn &
(1/mm?) (mm) linear k,, for SUS304/SisN4 Wattanasakulpong
R,=0.5 R,=1 R,=2 [22]
0.925925 1.2 0.068259 0.069521 0.074970 -
0.333333 2 0.895579 0.918318 0.952123 -
0.000033 200 4.214166 4.214113 4.216926 -
0.000021 250 5.255862 5.255844 5.258703 5.359
0.000014 300 6.297458 6.297467 6.300357 -
0.0 (FSDT) 1.2 0.253848 0.051565 0.057851 -
0.0 (FSDT) 2 0.389862 1.083966 1.132692 -
Table 4. Fundamental natural frequency w4 for h*=1.2 mm
w11 (1/s)
a/k* Ry o -
(1/mm?) T=1K T=100K T=300K T=600K T=1000K
5 05 0.925925 0.002601 0.002681 0.002811 0.002902 0.002846
' 0 0.012373 0.012851 0.013432 0.013206 0.012668
1 0.925925 0.002643 0.002729 0.002867 0.002951 0.002860
0 0.022565 0.031207 0.032271 0.036829 0.013303
’ 0.925925 0.002852 0.002950 0.003102 0.003168 0.003009
0 0.022964 0.022753 0.023310 0.027759 0.015038
10 0.925925 0.005188 0.005470 0.005817 0.005575 0.004544
0 0.019975 0.019802 0.019823 0.020893 0.029001
8 05 0.925925 0.003456 0.003573 0.003765 0.003892 0.003773
' 0 0.018848 0.018483 0.017907 0.017266 0.017479
1 0.925925 0.003522 0.003648 0.003850 0.003967 0.003807
0 0.019877 0.019512 0.018765 0.018322 0.017349
9 0.925925 0.003814 0.003958 0.004180 0.004277 0.004029
0 0.032777 0.032918 0.034597 0.046080 0.017535
10 0.925925 0.007043 0.007451 0.007980 0.007693 0.006245
0 0.030320 0.030089 0.030109 0.031466 0.040707
10 05 0.925925 0.004243 0.004396 0.004649 0.004818 0.004660
' 0 0.018796 0.018587 0.018233 0.038390 0.018519
1 0.925925 0.004328 0.004492 0.004759 0.004917 0.004707
0 0.025488 0.028110 0.030806 0.018401 0.018175
5 0.925925 0.004704 0.004893 0.005190 0.005326 0.005003
0 0.039603 0.035096 0.024180 0.031271 0.018011
10 0.925925 0.009212 0.009847 0.010733 0.010415 0.008237

0 0.037185 0.036912 0.036918 0.038390 0.019461
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The values of w,; vs. R,, with varied linear k, and the effects of ¢;= 0.925925/mm? in TSDT and ¢,;= 0
in FSDT for the SUS304/SisN4 plate, h*=1.2mm, a/h*=5, 8, and 10 under T=1K, 100K, 300K, 600K, and
1000K are shown in Table 4. The w,, values in TSDT mode are smaller than that in FSDT mode. That is the
values of w,, are overestimated in FSDT and have small change values with T in TSDT.

The natural frequency w,,, (1/s) vs. R,, and T of free vibration in AT=0 according to mode shape numbers
m=1 and n from 1 to 9 for the SUS304/SisN4 plate are calculated. Fig. 3 shows the values of w,, VS. R, in
FGM plate for thick a/h*=5, 10 respectively, with the effects of varied linear k, and ¢;=0.925925/mm?
under T=300K. Generally the values of w,,, are oscillating and converging to around 0.006 with values of n
from 1 to 9 for a/h*=5, R,=0.5, 1 and 10. The greatest value of w,,=0.038328/s is found, then decreasing
to the value w,,=0.001/s for a/h*=5, R,=1. The values of w,,, are oscillating and diverging to around 0.05
with values of n from 1 to 9 for a/h*=10, R,=0.5 and 10. The smallest value of w,4=0.001/s is found, then
increasing to the value w,4=0.054613/s for a/h*=10, R,=10.

@y
0.045

0.040 r
0.035 r
0.030
0.025 r
0.020 r
0.015 ¢
0.010 r
0.005 r
0.000

01 2 3 4 5 6 7 8 9 10
(2) Wi, VS.R, for a/h* =5
0.06
0.05 |
0.04
0.03
0.02

0.01 |

n

0.00

0 1 2 3 4 5 6 7 8 9 10
(b) w4, VS.R, fora/h* = 10

Fig. 3. wy, (1/s) vs.R, for a/h* = 5 and 10 with linear k,
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01 2 3 4 5 6 7 8 9 10

(b) w1 VS.R, for a/h* =10

Fig. 4. wqy, (Us) vs. T (K) for a/h™ = 5 and 10 with linear k,

The Fig. 4 shows the values of w,, vs. T in FGM plate for thick a/h*=5, 10 respectively, under the
effects of varied linear k,, ¢;= 0.925925/mm? and R,,=0.5. Generally, the values of w,,, are oscillating and
converging to around 0.005 with values of n from 1 to 9 for a/h*=5, T=300K, 600K and 1000K. The greatest
value of w,,=0.042167/s is found, then decreasing to the value w,,=0.001/s for a/h*=5, T=1000K. The
values of w4, can stand for higher temperatures on a/h*=10. The greatest value of w,,=0.056317/s is found
for a/h*=10, T=600K, thus decreasing to value w,,=0.004738, T=1000K.

4, Conclusions

The natural frequency w,,,,, and frequency parameters are studied by using the polynomial equation in the
fifth order of A, in the fully homogeneous equation for the vibration of thick four sides simply supported
FGM nplates. Effects of nonlinear c¢; term, shear correction coefficient linear k, and environment
temperatureT on the frequency calculations are studied. It is valuable to estimate the frequency under free
vibration with the effects of nonlinear term c; and linear k, on the TDST of FGM plates. The effects of the
power-law exponent and temperature variation on the natural frequency numerical results are summarized
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as follows. The w;, valuesin TSDT are smaller than that in FSDT and the values of w;, have linear variation
with R,, in TDST. The values of w,,, can stand on the higher temperature of 1000K for a/h*=10, since the
greatest value of w,,=0.056317/s is found on T=600K, smaller value w,,=0.004738 is found on T=1000K.
This method is also effective for the other boundary conditions, e.g. clamp and free boundary conditions will
be studied in future work.
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Appendix
The following is the explicit form of Eq. (25).
[ IoA
FHy, — 22 FHy,
Iy
)
FHy, FH,, — 21
Iy
..... - 2.
C113 ( a )lmn C113 (T) Amn
FHys + ; FH,s + ;
0 0
2
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FHye FH,s _h 1;""
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