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The effects of third-order shear deformation theory (TSDT) and varied linear shear 

correction coefficient on the vibration frequency of thick functionally graded 

material (FGM) plates with fully homogeneous equations under thermal 

environment and power law are investigated. The nonlinear coefficient 𝑐1 term of 

displacement field of TSDT is included in the fully homogeneous equation under 

vibration of FGM plates. The determinant of the coefficient matrix in dynamic 

equilibrium differential equations under vibration can be represented in the fully 

fifth-order polynomial equation, thus the natural frequency can be found. The 

natural frequency with/without the nonlinear 𝑐1 term of displacement fields is 

investigated. It is a significant novelty with the consideration of the nonlinear 𝑐1 

term in the frequency computation. 
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1. Introduction 

Some investigations in the free vibration frequency with shear deformation effect of displacement fields for 

the laminated, functionally graded material (FGM) plates. Abualnour et al. [1] presented a quasi-3D 

trigonometric displacement field theory used for the free vibration of FGM plates. Some numerical results 

of natural frequencies were obtained for the materials Al/Al2O3 and Al/ZrO2. Mercan et al. [2] presented a 

first-order shear deformation theory (FSDT) used for the free vibration of FGM/CNT (carbon nano tube) 

annular thick plates. Some numerical results of frequencies were obtained by using the discrete the discrete 

singular convolution (DSC) method. Vu et al. [3] presented a refined simple third-order shear deformation 

theory (R-STSDT) used for the free vibration of FGM plates. Some numerical results of natural frequencies 

were obtained for the thick materials Al/ZrO2 by using the mesh-free technique. Endo [4] presented the one-

half order and FSDT theory used for the exact frequency relationships of general polygonal plates. Gupta 

and Talha [5] presented a new hyperbolic higher-order shear and normal deformation theory (HHSNDT) 

used for the free vibration of FGM plates. Some numerical nonlinear and linear frequency results were 

obtained for the materials SUS304/Si3N4. Rezaei et al. [6] presented a simple FSDT used for the free 

vibration of FGM plates. Some numerical results of natural frequencies were obtained. Singh and Singh [7] 

presented two new trigonometric deformation theories (TDT) and trigonometric-hyperbolic deformation 

theory (THDT) used for the free vibration of laminated plates. Some numerical results of natural frequencies 

were obtained. Thai et al. [8] presented a simple higher-order shear deformation theory (HSDT) used for the 
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free vibration of isotropic plates. Some numerical results of frequencies were obtained. Senjanovic et al. [9] 

presented a new FSDT used for the free vibration of moderately thick plates. Some numerical results of 

frequencies were obtained. Mahi et al. [10] presented a new hyperbolic shear deformation theory used for 

the free vibration of isotropic plates and FGM plates. Some numerical results of frequencies were obtained 

for the materials Al/Al2O3 and SUS304/Si3N4. Akavci [11] presented an efficient shear deformation theory 

used for the FGM plates in the free vibration of an electric foundation. Some numerical results of frequencies 

were obtained for the materials Al/Al2O3 and Al/ZrO2. Jha et al. [12] presented a higher-order shear and 

normal deformation theory (HOSNDT) used for the free vibration of FGM plates. Some numerical results of 

natural frequencies were obtained for the materials Al/ZrO2. 

 Some frequency investigations in the composited FGM plates of TSDT models with the effects of varied 

modified shear correction factors were presented. Hong [13] presented the frequency of FGM plates by 

considering the effects of the nonlinear varied modified shear correction factor. Hong [14] presented the 

frequency of FGM plates by considering the effect of a linear shear correction factor. There were a lot of 

published papers in this FGM area that usually used the traditional homogeneous equation without 

considering the effect of thermal environment temperature. The main novelty and contribution of the present 

work is to present the computed vibration frequency by using a fully homogeneous equation and considering 

the effect of thermal environment temperature on the thick FGM plates. The difference between this present 

study and the previous work, i.e., Ref. [13], is the type of shear correction factor. The linear shear correction 

coefficient type is used in this present study, while the advanced nonlinear shear correction coefficient type 

is used in [13]. It is interesting to investigate the natural frequency in the approach of the TSDT model and 

the varied effects of linear shear correction coefficient of FGM thick plates under vibration with fully 

homogeneous equations and four edges in simply supported boundary conditions. Parametric effects of the 

nonlinear coefficient 𝑐1 the term, environment temperature and FGM power law index on the vibration 

frequency of FGM thick plates under a thermal environment are investigated. 

 

2. Formulation 

For the frequency study of a two-material thick FGM plate under thermal environment temperature 𝑇 with 

thickness ℎ1 and ℎ2 of FGM material 1 and FGM material 2, respectively. Fig. 1 shows the geometry of two-

material FGM plates under 𝑇. The material properties of the power-law function of thick FGM plates are 

considered in standard variation form of the power-law exponent parameter 𝑅𝑛. The properties in individual 

constituent materials are functions of 𝑇. The formula for the variation of material constants and individual 

properties 𝑃𝑖  in the FGM included as follows [13]: 

𝑃𝑖 = 𝑃0(𝑃−1𝑇
−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) (1) 

in which 𝑃0, 𝑃−1, 𝑃1, 𝑃2 and 𝑃3 are the temperature constants. 

 

 

Fig. 1. Geometry of two-material FGM plates under 𝑇 
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 The time-dependent displacements 𝑢 and 𝑣 of thick FGM plates are assumed to contain the displacements 

𝑢0, 𝑣0 on the middle-plane, shear rotations 𝜓𝑥, 𝜓𝑦 and nonlinear coefficient 𝑐1 terms of TSDT equations 

[13,15]. The non-linearity types of 𝑢and𝑣 are in function of 𝑧3 with 𝑐1 =
4

3(ℎ∗)2
 terms, in which ℎ∗ is the total 

thickness of FGM plates. The displacement field of TSDT is added as follows such that the transverse 

displacement w includes the transverse displacement on the mid-surface only. 

𝑢 = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡) − 𝑐1𝑧
3(𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) (2) 

𝑣 = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡) − 𝑐1𝑧
3(𝜓𝑦 +

𝜕𝑤

𝜕𝑦
) (3) 

𝑤 = 𝑤(𝑥, 𝑦, 𝑡) (4) 

where t is time.  

 The integrals of density parameters are defined as follows: 

𝐼𝑖 = ∑ ∫ 𝜌(𝑘)
𝑘+1

𝑘
𝑁∗

𝑘=1 𝑧𝑖𝑑𝑧               (i=0,1, 2,…,6) (5) 

in which 𝑁∗ is the total number of layers, 𝜌(𝑘) is the density of 𝑘th constituent ply. 

𝐽𝑖 = 𝐼𝑖 − 𝑐1𝐼𝑖+2               (i=1,4) (6) 

𝐾2 = 𝐼2 − 2𝑐1𝐼4 + 𝑐1
2𝐼6 (7) 

 The integrals of stiffness parameters are given as follows. 

(𝐴𝑖𝑠𝑗𝑠 , 𝐵𝑖𝑠𝑗𝑠 , 𝐷𝑖𝑠𝑗𝑠 , 𝐸𝑖𝑠𝑗𝑠 , 𝐹𝑖𝑠𝑗𝑠 , 𝐻𝑖𝑠𝑗𝑠) = ∫ 𝑄̄𝑖𝑠𝑗𝑠
ℎ∗

2
−ℎ∗

2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧               (𝑖𝑠, 𝑗𝑠 = 1,2,6) (8) 

(𝐴𝑖∗𝑗∗ , 𝐵𝑖∗𝑗∗ , 𝐷𝑖∗𝑗∗ , 𝐸𝑖∗𝑗∗ , 𝐹𝑖∗𝑗∗ , 𝐻𝑖∗𝑗∗) = ∫ 𝑘𝛼𝑄̄𝑖∗𝑗∗
ℎ∗

2
−ℎ∗

2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧5)𝑑𝑧               (𝑖∗, 𝑗∗ = 4,5) (9) 

where 𝑄̄𝑖𝑠𝑗𝑠 and 𝑄̄𝑖∗𝑗∗ are transformed reduced stiffness for FGM plates can be used in the simple forms in 

2007 by Shen [16]. 𝑘𝛼 is the shear correction coefficient. A short formulation for the material properties of 

the power-law function in FGM material gradation law is added as follows [17]: 

𝐸𝑓𝑔𝑚 = (𝐸2 − 𝐸1)(
𝑧 + ℎ∗/2

ℎ∗
)𝑅𝑛 + 𝐸1 (10) 

𝜈𝑓𝑔𝑚 = (𝜈2 + 𝜈1)/2 (11) 

𝜌𝑓𝑔𝑚 = (𝜌2 + 𝜌1)/2 (12) 

𝛼𝑓𝑔𝑚 = (𝛼2 + 𝛼1)/2 (13) 

𝜅𝑓𝑔𝑚 = (𝜅2 + 𝜅1)/2 (14) 

𝐶𝑣𝑓𝑔𝑚 = (𝐶𝑣2 + 𝐶𝑣1)/2, (15) 

in which 𝐸 is Young’s modulus, 𝜈 is Poission’s ratio, 𝜌 is the density, 𝛼 is the thermal expansion coefficient, 

𝜅is the thermal conductivity, 𝐶𝑣 is the specific heat. With the subscript 𝑓𝑔𝑚 denoting the FGM plate, the 



189    Hong  

 

subscripts 1 and 2 denote the constituent material 1 and 2, respectively. The constituent terms of Young’s 

modulus 𝐸1, 𝐸2; the Poission’s ratio 𝜈1,𝜈2; the density 𝜌1, 𝜌2; the thermal expansion coefficient 𝛼1, 𝛼2; the 

thermal conductivity 𝜅1, 𝜅2; the specific heat 𝐶𝑣1,𝐶𝑣2 can be expressed in the form corresponding to 𝑃𝑖  of 

(1). Young’s modulus is the dominant major parameter represented in the material gradation parameters only, 

the others are assumed in the average form for the numerical calculation of reduced stiffness. Thus the 𝑐1 the 

effect only on the gradation parameter Young’s modulus 𝐸𝑓𝑔𝑚 in (10) with the relation ℎ∗ = √
4

3𝑐1
. 

 For the computed-varied values of linear𝑘𝛼 are functions of ℎ∗, 𝑅𝑛 and 𝑇 by Hong [17], it is based on 

FSDT and without the function of 𝑐1 term. For the values of nonlinear 𝑘𝛼 are functions of 𝑐1, 𝑅𝑛 and 𝑇 by 

Hong [13], it is based on TSDT and without the function of ℎ∗ term. Also, a constant value 𝑘𝛼= 5/6 = 

0.833333 could be used usually in the traditional analysis. 

 

3. Numerical results 

The FGM SUS304/Si3N4 is used to study the numerical frequency of vibration under 𝑇. The constituent 

material 1 is SUS304 located at the lower position and material 2 is Si3N4 located at the upper position of 

FGM plates with 𝑎/𝑏 = 1 and ℎ1 = ℎ2. Values of linear 𝑘𝛼 are used for frequency calculations of the free 

vibration with no external loads and no temperature difference in Δ𝑇 = 0 for the TSDT of FGM plates. 

Preliminary considering only under four sides simply supported (SSSS) boundary conditions plate in this 

present study added as follows: 

(a) Simply supported (SS) on 𝑥 =  0 and 𝑥 =  𝑎, assumed that 

𝜕𝑢0

𝜕𝑥
= 𝑣0 = 𝑤 =

𝜕𝜓𝑥
𝜕𝑥

= 𝜓𝑦 = 0 (16) 

(b) Simply supported (SS) on 𝑦 = 0 and 𝑦 = 𝑏, assumed that 

𝑢0 =
𝜕𝑣0

𝜕𝑦
= 𝑤 = 𝜓𝑥 =

𝜕𝜓𝑦

𝜕𝑦
= 0 (17) 

 This method is also effective for the other boundary conditions, e.g. clamp and free added as follows, and 

will be studied in future work. 

(c) Clamp on 𝑥 =  0, 𝑥 =  𝑎, 𝑦 = 0 and 𝑦 = 𝑏, assumed that 

𝑢0 = 𝑣0 = 𝑤 = 𝜓𝑥 = 𝜓𝑦 = 0 (18) 

(d) Free on y=0 and y=b, assumed that: 

𝜕𝑢0

𝜕𝑥
=
𝜕𝑣0

𝜕𝑦
=
𝜕𝑣0

𝜕𝑦
= 𝜓𝑥 =

𝜕𝑤

𝜕𝑥
= 𝜓𝑦 =

𝜕𝑤

𝜕𝑦
= 0 (19) 

 The present studies of vibrations are in the following time sinusoidal displacements for 𝑢0, 𝑣0, 𝑤 and 

shear rotations 𝜓𝑥, 𝜓𝑦 that forms under SSSS plate boundary conditions with amplitudes 𝑎𝑚𝑛, 𝑏𝑚𝑛, 𝑐𝑚𝑛, 

𝑑𝑚𝑛, 𝑒𝑚𝑛. 

𝑢0 = 𝑎𝑚𝑛 cos(𝑚𝜋𝑥 𝑎⁄ ) sin(𝑛𝜋𝑦 𝑏⁄ ) sin(𝜔𝑚𝑛𝑡) (20) 

𝑣0 = 𝑏𝑚𝑛 sin(𝑚𝜋𝑥 𝑎⁄ ) cos(𝑛𝜋𝑦 𝑏⁄ ) sin(𝜔𝑚𝑛𝑡) (21) 

𝑤 = 𝑐𝑚𝑛 sin(𝑚𝜋𝑥 𝑎⁄ ) sin(𝑛𝜋𝑦 𝑏⁄ ) sin(𝜔𝑚𝑛𝑡) (22) 

𝜓𝑥 = 𝑑𝑚𝑛 cos(𝑚𝜋𝑥 𝑎⁄ ) sin(𝑛𝜋𝑦 𝑏⁄ ) sin(𝜔𝑚𝑛𝑡) (23) 
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𝜓𝑦 = 𝑏𝑚𝑛 sin(𝑚𝜋𝑥 𝑎⁄ ) cos(𝑛𝜋𝑦 𝑏⁄ ) sin(𝜔𝑚𝑛𝑡) (24) 

where 𝑎 is the length and 𝑏 is the width of the plates, 𝜔𝑚𝑛 is the natural frequency in mode shape subscript 

numbers 𝑚 and 𝑛 in the x and y directions, respectively. 

 It is a significant novelty with the consideration of nonlinear term 𝑐1 in the frequency computation. By 

substituting (20)-(24) into dynamic equilibrium differential equations with TSDT of thick FGM plates in 

terms of partial derivatives of displacements and shear rotations under free vibration, thus the fully 

homogeneous equation can be obtained in the following form [18]. 

𝚲 𝐛 = 𝟎 (25) 

Explicit form of Eq. (25) is given in the Appendix. For the zero determinant of the coefficient matrix of (25), 

the polynomial equation in the fifth order of λmn can be obtained, thus the natural frequency 𝜔𝑚𝑛 can be 

calculated. That is the 𝜔𝑚𝑛 (1/s) according to mode shape numbers 𝑚 and 𝑛 can be computed. The subscript 

values 𝑚 =𝑛 =1 used for the fundamental natural frequency 𝜔11. The calculated value of dimensional 𝜔11 

(1/s) vs.𝑅𝑛 for TDST and FSDT modes under linear 𝑘𝛼, SUS304/Si3N4 plate, ℎ∗=1.2mm, 𝑎/ℎ∗=10 and 

T=300K are shown in Fig. 2. The 𝜔11 values in TSDT mode are smaller than that in FSDT mode. That is the 

values of 𝜔11 are overestimated in FSDT. And the values of 𝜔11 have linear with 𝑅𝑛 in TDST. 

 Three non-dimensional frequency parameters 𝑓∗, 𝜔∗ and 𝛺 are defined for the FGM plates and presented 

under the values effects of 𝑐1= 0.925925/mm2,…, 0.000001/mm2 (in TSDT case) and 𝑐1= 0 (in FSDT case) 

as follows. The frequency parameter 𝑓∗ = 𝜔11ℎ
∗√𝜌2/𝐸2 values under the effects of 𝑐1 values are 

investigated, in which 𝜌2 and 𝐸2 are the density and Young’s modulus of constituent material 2, respectively. 

The frequency parameter 𝜔∗ = (𝜔11𝑏
2/𝜋2)√𝐼𝑠/𝐷𝑠 values under the effects of 𝑐1 values are investigated, in 

which 𝐼𝑠 = ∫ 𝜌1

ℎ∗

2

−
ℎ∗

2

𝑑𝑧, 𝐷𝑠 = ∫ 𝑄1𝑧
2

ℎ∗

2

−
ℎ∗

2

𝑑𝑧, 𝑄1 = 𝐸1/(1 − 𝜈1
2), where 𝜌1, 𝐸1 and 𝜈1 are the density, Young’s 

modulus and Poisson’s ratio of constituent material 1, respectively. The frequency parameter 𝛺 =

(𝜔11𝑎
2/ℎ∗)√𝜌1(1 − 𝜈1

2)/𝐸1 values under the effects of 𝑐1 values are investigated. It is interesting to 

compare the present vibration values of frequency with some authors' work as shown in the Tables 1-3.  

 

 

Fig. 2. 𝜔11 (1/s) vs.𝑅𝑛 for TDST and FSDT with linear 𝑘𝛼 and 𝑎/ℎ∗ = 10 
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Table 1. Comparison of frequency 𝑓∗ for SUS304/Si3N4 and Al/ZrO2 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝑓∗ 

Present method, 𝑎/ℎ∗=10, T=300K, 

linear 𝑘𝛼 for SUS304/Si3N4 Jha et al. [19] 

Al/ZrO2 
𝑅𝑛=0.5 𝑅𝑛=1 𝑅𝑛=2 

0.925925 1.2 0.000285 0.000292 0.000318 - 

0.333333 2 0.003667 0.003753 0.003880 - 

0.000033 200 0.018220 0.018219 0.017421 - 

0.000014 300 0.027235 0.027235 0.027246 - 

0.000003 600 0.054278 0.054278 0.054289 - 

0.000001 900 0.081320 0.081320 0.081331 0.0839 

0.0 (FSDT) 1.2 0.001119 0.001890 0.001484 - 

0.0 (FSDT) 2 0.001687 0.001698 0.001688 - 

 

Table 2. Comparison of frequency 𝜔∗ for SUS304/Si3N4 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝜔∗ 

Present method, 𝑎/ℎ∗=10, T=300K, 

linear 𝑘𝛼 
Kim 

2005 [20] 

Duc et al. 

2017 [21] 
𝑅𝑛=0.5 𝑅𝑛=1 𝑅𝑛=2 

0.925925 1.2 0.000285 0.000292 0.000318 - - 

0.333333 2 0.279275 0.022240 0.024256 - - 

0.000033 200 1.387335 0.285811 0.295457 - - 

0.000014 300 2.073790 1.387284 1.399714 - - 

0.000003 600 4.132891 2.073762 2.074595 - - 

0.000001 900 6.191909 4.132897 4.133752 4.1165 3.99244 

0.0 (FSDT) 1.2 0.085207 6.191933 6.192795 - - 

0.0 (FSDT) 2 0.128498 0.143962 0.113001 - - 

 

 The values of 𝑓∗ vs. ℎ∗ for SUS304/Si3N4 plate under 𝑎/ℎ∗=10 and T=300K with varied linear 𝑘𝛼 and 𝑐1 

effects are shown in Table 1, value 𝑓∗=0.081331 at ℎ∗=900mm, 𝑅𝑛=2 is close to 𝑓∗= 0.0839 with Al/ZrO2 

under no T effect by Jha et al. [19] with HOSNT12 in which 12 degrees of freedom were considered for the 

model based on higher order shear-normal deformations theory (HOSNT). The transverse displacement field 

including the cubic of z for the transverse shear deformations based on higher order refined HOSNT. In the 

present study, the transverse displacement field is not a function of 𝑧, i.e., 𝑤 = 𝑤(𝑥, 𝑦, 𝑡). The varied values 

of linear 𝑘𝛼 are also considered in present study. 

 The values of 𝜔∗ vs. ℎ∗ for SUS304/Si3N4 under 𝑎/ℎ∗=10 and T=300K with varied linear 𝑘𝛼 and 𝑐1 

effects are shown in Table 2, value 𝜔∗= 4.132891 at ℎ∗=600mm, 𝑅𝑛= 0.5 is close to 𝜔∗= 4.1165 with ℎ∗= 

200mm under the vibration of 𝛥𝑇= 0 by Kim [20]. Also, compare the present results with the analytical 

FSDT results 𝜔∗= 3.99244 of uniform distribution (UD) in CNTRC FGM plates on elastic foundation by 
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Duc et al. [21]. The effect of the elastic foundation hasn't been considered in the comparative analysis of the 

present study.  

 The values of 𝛺 vs. ℎ∗ for SUS304/Si3N4 under 𝑎/ℎ∗=10 and T=700K with varied linear𝑘𝛼 and 𝑐1 values 

effects are shown in Table 3, value 𝛺 =5.258703 at ℎ∗=250mm, 𝑅𝑛=2 is in close to 𝛺 =5.359 under vibration 

of 𝛥𝑇 =400K by Ungbhakorn & Wattanasakulpong [22]. 

 

Table 3. Comparison of frequency 𝛺 for SUS304/Si3N4 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝛺 

Present method, 𝑎/ℎ∗=10, T=300K, 

linear 𝑘𝛼 for SUS304/Si3N4 
Ungbhakorn & 

Wattanasakulpong 

[22] 𝑅𝑛=0.5 𝑅𝑛=1 𝑅𝑛=2 

0.925925 1.2 0.068259 0.069521 0.074970 - 

0.333333 2 0.895579 0.918318 0.952123 - 

0.000033 200 4.214166 4.214113 4.216926 - 

0.000021 250 5.255862 5.255844 5.258703 5.359 

0.000014 300 6.297458 6.297467 6.300357 - 

0.0 (FSDT) 1.2 0.253848 0.051565 0.057851 - 

0.0 (FSDT) 2 0.389862 1.083966 1.132692 - 

 

Table 4. Fundamental natural frequency 𝜔11 for ℎ∗=1.2 mm 

𝑎/ℎ∗ 𝑅𝑛 
𝑐1 

(1/mm2) 

𝜔11 (1/s) 

T=1K T=100K T=300K T=600K T=1000K 

5 0.5 
0.925925 

0 

0.002601 

0.012373 

0.002681 

0.012851 

0.002811 

0.013432 

0.002902 

0.013206 

0.002846 

0.012668 

 1 
0.925925 

0 

0.002643 

0.022565 

0.002729 

0.031207 

0.002867 

0.032271 

0.002951 

0.036829 

0.002860 

0.013303 

 2 
0.925925 

0 

0.002852 

0.022964 

0.002950 

0.022753 

0.003102 

0.023310 

0.003168 

0.027759 

0.003009 

0.015038 

 10 
0.925925 

0 

0.005188 

0.019975 

0.005470 

0.019802 

0.005817 

0.019823 

0.005575 

0.020893 

0.004544 

0.029001 

8 0.5 
0.925925 

0 

0.003456 

0.018848 

0.003573 

0.018483 

0.003765 

0.017907 

0.003892 

0.017266 

0.003773 

0.017479 

 1 
0.925925 

0 

0.003522 

0.019877 

0.003648 

0.019512 

0.003850 

0.018765 

0.003967 

0.018322 

0.003807 

0.017349 

 2 
0.925925 

0 

0.003814 

0.032777 

0.003958 

0.032918 

0.004180 

0.034597 

0.004277 

0.046080 

0.004029 

0.017535 

 10 
0.925925 

0 

0.007043 

0.030320 

0.007451 

0.030089 

0.007980 

0.030109 

0.007693 

0.031466 

0.006245 

0.040707 

10 0.5 
0.925925 

0 

0.004243 

0.018796 

0.004396 

0.018587 

0.004649 

0.018233 

0.004818 

0.038390 

0.004660 

0.018519 

 1 
0.925925 

0 

0.004328 

0.025488 

0.004492 

0.028110 

0.004759 

0.030806 

0.004917 

0.018401 

0.004707 

0.018175 

 2 
0.925925 

0 

0.004704 

0.039603 

0.004893 

0.035096 

0.005190 

0.024180 

0.005326 

0.031271 

0.005003 

0.018011 

 10 
0.925925 

0 

0.009212 

0.037185 

0.009847 

0.036912 

0.010733 

0.036918 

0.010415 

0.038390 

0.008237 

0.019461 
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 The values of 𝜔11 vs. 𝑅𝑛 with varied linear 𝑘𝛼 and the effects of 𝑐1= 0.925925/mm2 in TSDT and 𝑐1= 0 

in FSDT for the SUS304/Si3N4 plate, ℎ∗=1.2mm, 𝑎/ℎ∗= 5, 8, and 10 under T=1K, 100K, 300K, 600K, and 

1000K are shown in Table 4. The 𝜔11 values in TSDT mode are smaller than that in FSDT mode. That is the 

values of 𝜔11 are overestimated in FSDT and have small change values with T in TSDT. 

 The natural frequency 𝜔𝑚𝑛 (1/s) vs. 𝑅𝑛 and 𝑇 of free vibration in 𝛥𝑇=0 according to mode shape numbers 

𝑚=1 and 𝑛 from 1 to 9 for the SUS304/Si3N4 plate are calculated. Fig. 3 shows the values of 𝜔1𝑛 vs. 𝑅𝑛 in 

FGM plate for thick 𝑎/ℎ∗=5, 10 respectively, with the effects of varied linear 𝑘𝛼 and 𝑐1=0.925925/mm2 

under 𝑇=300K. Generally the values of 𝜔1𝑛 are oscillating and converging to around 0.006 with values of 𝑛 

from 1 to 9 for 𝑎/ℎ∗=5, 𝑅𝑛=0.5, 1 and 10. The greatest value of 𝜔14=0.038328/s is found, then decreasing 

to the value 𝜔17=0.001/s for 𝑎/ℎ∗=5, 𝑅𝑛=1. The values of 𝜔1𝑛 are oscillating and diverging to around 0.05 

with values of 𝑛 from 1 to 9 for 𝑎/ℎ∗=10, 𝑅𝑛=0.5 and 10. The smallest value of 𝜔16=0.001/s is found, then 

increasing to the value 𝜔19=0.054613/s for 𝑎/ℎ∗=10, 𝑅𝑛=10. 

 

 
(a) 𝜔1𝑛 vs.𝑅𝑛 for 𝑎/ℎ∗ = 5 

 

 
(b) 𝜔1𝑛 vs.𝑅𝑛 for 𝑎/ℎ∗ = 10 

 

Fig. 3. 𝜔1𝑛 (1/s) vs.𝑅𝑛 for 𝑎/ℎ∗ = 5 and 10 with linear 𝑘𝛼 
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(a) 𝜔1𝑛 vs.𝑅𝑛 for 𝑎/ℎ∗ = 5 

 

 
(b) 𝜔1𝑛 vs.𝑅𝑛 for 𝑎/ℎ∗ = 10 

 

Fig. 4. 𝜔1𝑛 (1/s) vs. 𝑇 (K) for 𝑎/ℎ∗ = 5 and 10 with linear 𝑘𝛼 

 

 The Fig. 4 shows the values of 𝜔1𝑛 vs. 𝑇 in FGM plate for thick 𝑎/ℎ∗=5, 10 respectively, under the 

effects of varied linear 𝑘𝛼, 𝑐1= 0.925925/mm2 and 𝑅𝑛=0.5. Generally, the values of 𝜔1𝑛 are oscillating and 

converging to around 0.005 with values of 𝑛 from 1 to 9 for 𝑎/ℎ∗=5, T=300K, 600K and 1000K. The greatest 

value of ω14=0.042167/s is found, then decreasing to the value 𝜔17=0.001/s for 𝑎/ℎ∗=5, T=1000K. The 

values of 𝜔1𝑛 can stand for higher temperatures on 𝑎/ℎ∗=10. The greatest value of ω17=0.056317/s is found 

for 𝑎/ℎ∗=10, T=600K, thus decreasing to value ω17=0.004738, T=1000K. 

 

4. Conclusions 

The natural frequency 𝜔𝑚𝑛 and frequency parameters are studied by using the polynomial equation in the 

fifth order of λmn in the fully homogeneous equation for the vibration of thick four sides simply supported 

FGM plates. Effects of nonlinear 𝑐1 term, shear correction coefficient linear 𝑘𝛼 and environment 

temperature𝑇 on the frequency calculations are studied. It is valuable to estimate the frequency under free 

vibration with the effects of nonlinear term 𝑐1 and linear 𝑘𝛼 on the TDST of FGM plates. The effects of the 

power-law exponent and temperature variation on the natural frequency numerical results are summarized 
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as follows. The 𝜔11 values in TSDT are smaller than that in FSDT and the values of 𝜔11 have linear variation 

with 𝑅𝑛 in TDST. The values of 𝜔1𝑛 can stand on the higher temperature of 1000K for 𝑎/ℎ∗=10, since the 

greatest value of ω17=0.056317/s is found on T=600K, smaller value ω17=0.004738 is found on T=1000K. 

This method is also effective for the other boundary conditions, e.g. clamp and free boundary conditions will 

be studied in future work. 
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Appendix 

The following is the explicit form of Eq. (25).  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹𝐻11 −
𝐼0𝜆𝑚𝑛
𝐼0

𝐹𝐻12 𝐹𝐻13 +
𝑐1𝐼3 (

𝑚𝜋
𝑎
) 𝜆𝑚𝑛

𝐼0
𝐹𝐻14 −

𝐽1𝜆𝑚𝑛
𝐼0

𝐹𝐻15

⬚ ⬚ ⬚ ⬚ ⬚
⬚ ⬚ ⬚ ⬚ ⬚

𝐹𝐻12 𝐹𝐻22 −
𝐼0𝜆𝑚𝑛
𝐼0

𝐹𝐻23 +
𝑐1𝐼3 (

𝑛𝜋
𝑏
) 𝜆𝑚𝑛

𝐼0
𝐹𝐻24 𝐹𝐻25 −

𝐽1𝜆𝑚𝑛
𝐼0

⬚ ⬚ ⬚ ⬚ ⬚
⬚ ⬚ ⬚ ⬚ ⬚

𝐹𝐻13 +
𝑐1𝐼3 (

𝑚𝜋
𝑎
)𝜆𝑚𝑛

𝐼0
𝐹𝐻23 +

𝑐1𝐼3 (
𝑛𝜋
𝑏
)𝜆𝑚𝑛

𝐼0
𝐹𝐻33 − [𝐼0 + 𝑐1

2𝐼6 (
𝑚𝜋

𝑎
)
2

𝐹𝐻34 +
𝑐1𝐽4 (

𝑚𝜋
𝑎
)𝜆𝑚𝑛

𝐼0
𝐹𝐻35 +

𝑐1𝐽4 (
𝑛𝜋
𝑏
)𝜆𝑚𝑛

𝐼0

⬚ ⬚ +𝑐1
2𝐼6 (

𝑛𝜋

𝑏
)
2

]𝜆𝑚𝑛/𝐼0 ⬚ ⬚

⬚ ⬚ ⬚ ⬚ ⬚
⬚ ⬚ ⬚ ⬚ ⬚

𝐹𝐻14 −
𝐽1𝜆𝑚𝑛
𝐼0

𝐹𝐻24 𝐹𝐻34 +
𝑐1𝐽4 (

𝑚𝜋
𝑎
)𝜆𝑚𝑛

𝐼0
𝐹𝐻44 −

𝐾2𝜆𝑚𝑛
𝐼0

𝐹𝐻45

⬚ ⬚ ⬚ ⬚ ⬚
⬚ ⬚ ⬚ ⬚ ⬚

𝐹𝐻15 𝐹𝐻25 −
𝐽1𝜆𝑚𝑛
𝐼0

𝐹𝐻35 +
𝑐1𝐽4 (

𝑛𝜋
𝑏
)𝜆𝑚𝑛

𝐼0
𝐹𝐻45 𝐹𝐻55 −

𝐾2𝜆𝑚𝑛
𝐼0

⬚ ⬚ ⬚ ⬚ ⬚ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑎𝑚𝑛
𝑏𝑚𝑛
𝑐𝑚𝑛
𝑑𝑚𝑛
𝑒𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 

 

where 

𝜆𝑚𝑛 = 𝐼0𝜔𝑚𝑛
2,  

𝐹𝐻11 = 𝐴11(𝑚𝜋/𝑎)
2 + 𝐴66(𝑛𝜋/𝑏)

2,    𝐹𝐻12 = (𝐴12 + 𝐴66)(𝑚𝜋/𝑎)(𝑛𝜋/𝑏), 

𝐹𝐻13 = −𝑐1𝐸11(𝑚𝜋/𝑎)
3 − (𝑐1𝐸12 + 2𝑐1𝐸66)(𝑚𝜋/𝑎)(𝑛𝜋/𝑏)

2,    𝐹𝐻14 = (𝐵11 − 𝑐1𝐸11)(𝑚𝜋/𝑎)
2 + (𝐵66 − 𝑐1𝐸66)(𝑛𝜋/𝑏)

2, 

𝐹𝐻15 = (𝐵12 + 𝐵66 − 𝑐1𝐸12 − 𝑐1𝐸66)(𝑚𝜋/𝑎)(𝑛𝜋/𝑏),  

𝐹𝐻55 = (𝐷66 − 2𝑐1𝐹66 + 𝑐1
2𝐻66)(𝑚𝜋/𝑎)

2 + (𝐷22 − 2𝑐1𝐹22 + 𝑐1
2𝐻22)(𝑛𝜋/𝑏)

2 + 𝐴44 − 6𝑐1𝐷44 + 9𝑐1
2𝐹44 


