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Received 21 November 2023  Dams are structures that demand a significant amount of concrete, making them
Accepted 27 May 2024 costly constructions. Hence, various alternative methods are employed for dam
construction, one of which is the use of Roller Compacted Concrete (RCC). This is
a case study, which focuses on examining the behavior of RCC dams with and

KGYWOI‘dS without galleries under seismic excitations, considering the Ak¢akoca RCC dam in
RCC dam Diizce Province. The seismic ground motion data from the 1999 Diizce earthquake
Eulerian-Lagrangian coupled were utilized. The impact of galleries inside the concrete dams was investigated
analysis through stress and displacement, considering both empty and full reservoir

conditions. The Eulerian-Lagrangian coupled (CEL) approach was employed for
two-dimensional fluid finite elements. This study revealed that reservoir water and
galleries have a notable influence on the behavior of dams under seismic forces. In
cases with reservoirs and galleries, stress and displacement values increased, and
critical changes in stresses were observed around gallery areas. Therefore, careful
design considerations are essential for dams with galleries under significant seismic
forces.
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1. Introduction

The roller-compacted concrete dam method involves enriching traditional granular fill or mass concrete
aggregates with cement. These enriched materials are placed and compacted in single or multiple layers using
conventional construction equipment, forming a dam. The concrete used in such dams is referred to as Roller
Compacted Concrete (RCC). RCC stands out from regular concrete due to its dense consistency and
appearance, resembling sand and gravel materials. Due to its solid state, it can only be compacted using
vibrators. The first RCC dam was constructed in 1981 at the Shimajigawa Dam in Japan. In Turkey, the RCC
method was initially applied in the foundation cutoffs of the Karakaya Dam and later in specific structures
of the Atatiirk, Sir, Berke, and Kiirtiin (foundation cutoff) dams. Additionally, RCC was used in the design
of the body structures of the Cindere Dam and Hydroelectric Power Plant, Cine Dam and Hydroelectric
Power Plant, as well as the Akkdy I Dam and Hydroelectric Power Plant, constructed within the borders of
Kiirtiin District in Glimiishane Province [1].
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In recent research studies, Noorzaei et al. [2] delved into the thermal behavior of Roller Compacted
Concrete (RCC) dams, shedding light on their thermal characteristics. Jaafar et al. [3] underscored the pivotal
role of thermal analyses in roller-compacted concrete dams, emphasizing the need for optimizing concrete
pouring processes based on temperature zones. Omidi et al. [4] employed a plastic damage model to simulate
irreversible damage occurring during the concrete failure process, providing insights into the structural
integrity of the dams. Huang et al. [5] highlighted the influence of rising water levels on seepage rates and
dynamic effects, contributing to a comprehensive understanding of dam behavior under varying hydrological
conditions. Araujo et al. [6] proposed an innovative method that takes into account the complex interaction
between dam, reservoir, and foundation, providing probabilistic solutions crucial for concrete gravity dams.
Yilmazturk et al. [7] conducted seismic analyses, considering the intricate interaction between dam,
reservoir, and ground, providing valuable insights into the seismic response of high Roller Compacted
Concrete (RCC) gravity dams. Liang et al. [8] developed robust reliability and probability theories to assess
sliding conditions in layered fill dams and slopes, revealing significant findings related to dam stability.
Xiong et al. [9] delved into the seismic behavior of dams during high-magnitude earthquakes, exploring the
influence of diverse material properties on dam responses under extreme seismic forces. Cheng et al. [10]
employed modal analysis techniques to monitor dam safety, offering recommendations on modal parameter
identification methods tailored for concrete gravity dams, crucial for ongoing structural evaluations. Zhong
et al. [11] highlighted crucial factors such as cracks and material property collapse that significantly impact
the stability of high concrete dams under strong seismic events, providing essential insights for dam safety
assessments. Additionally, Li et al. [12] conducted meticulous examinations on RCC dams, focusing on
various waterproof concrete layers in tension and leakage conditions on the upstream face. Their findings
emphasized the imperative need for impermeability in the top layer to ensure long-term dam integrity.

Various studies have been conducted using Finite Element Analysis (FEM) techniques to evaluate the
seismic performance of Roller Compacted Concrete (RCC) dams. Sharma et al. [13] applied FEM for
nonlinear dynamic failure analysis in a concrete gravity dam. Wang et al. [14] conducted a three-dimensional
dynamic nonlinear finite element analysis, revealing significant damage concentrated in the middle
monoliths of the riverbed in seismic scenarios. Calayir and Karaton [15] utilized FEM for two-dimensional
seismic analyses of the Koyna gravity dam, incorporating 1967 Koyna earthquake records for dam-reservoir
interaction simulations. Bayraktar et al. [16] explored the impact of reservoir length on the seismic
performance of gravity dams against near and far fault ground motions. Kartal [17] studied the seismic
response of 3D roller-compacted concrete dams using FEM to observe the behavior of SSB dams. Huang
[18] developed a numerical framework for seismic failure analysis in dam-reservoir-rock-soil interactive
systems. Kartal et al. [19] investigated the seismic response of 2D roller-compacted concrete dams under
different reservoir lengths. Zhuo et al. [20] conducted a numerical study on the seismic behavior of Shapai
SSB arch dams. Mejia et al. [21] discussed evaluating dam improvement alternatives, design criteria, and
seismic retrofitting using detailed analysis. Wang et al. [22] introduced the Extended Finite Element Method
(XFEM) to describe crack propagation in concrete gravity dams under seismic loads. Hariri et al. [23]
examined the impact of various earthquake accelerations on dam-reservoir-ground models using the
Lagrangian-Eulerian approach, analyzing near-fault and far-fault earthquakes' influence on crack formation.
Jiang et al. [24] investigated crack behavior in concrete gravity dams using the finite element method. These
studies collectively contribute to our understanding of RCC dam seismic responses and inform critical
aspects of their design and analysis.

Hariri et al. [25] the seismic response of gravity dams is analyzed using random field theory,
incorporating uncertainty in material properties. The research focuses on the Koyna Gravity Dam, employing
numerical simulations where concrete properties like modulus of elasticity, mass density, and tensile strength
are treated as random fields. The study explores various factors such as correlation length, material
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distribution, ground motion intensity, and dam class. The results highlight the significance of considering
concrete heterogeneity in seismic performance evaluation for structural assessment and risk analysis. For
dams exceeding a height of 30 meters, the presence of galleries is essential for studying and observing dam
behavior. Additionally, galleries are important for creating drainage and injection holes in the foundation
and establishing areas for leakage drainage. It is crucial to position the galleries in a way that does not obstruct
dam construction [26].

In the numerical analysis of roller compacted concrete (RCC) dams under static and dynamic loads, the
dam body is traditionally considered solid without considering the presence of galleries inside. However,
galleries usually exist within the body, and it is expected that stress accumulations occur in these areas. To
accurately determine these stress accumulations and assess whether they pose a risk, a finite element mesh
refinement may be performed around the gallery. This study aims to compare the maximum stresses in two-
dimensional numerical models considering galleries or not. In this study, two-dimensional (2D) finite
element models of RCC dams were designed, taking galleries into account, using the actual coordinate data
of the dam. The mechanical material properties of the rock foundation and concrete used in the design,
considering the geological conditions of the dam region, such as modulus of elasticity and Poisson's ratio,
into the ABAQUS software. The presented study focused on the Akgakoca RCC dam located in the Diizce
province.

2. Formulation of Eulerian-Lagrangian coupled approach for dam-reservoir-foundation
interaction

The Eulerian-Lagrangian Coupled Approach provides a robust framework to investigate the intricate
interactions within dams, considering both the broader spatial context and the behavior of individual
elements. This comprehensive analysis aids in making informed decisions regarding dam safety, structural
integrity, and risk assessment. In the context of fluid dynamics and continuum mechanics, the Eulerian and
Lagrangian descriptions are two fundamental approaches used to analyze the motion and behavior of
materials.

In the Eulerian description, the focus is on specific points or regions in space, and equations are
formulated based on the properties observed at these fixed spatial locations. The Eulerian approach tracks
how properties (such as velocity, pressure, or temperature) change over time at these fixed points. In contrast,
the Lagrangian description follows the motion of individual particles or elements of a material. Here, each
particle is tracked as it moves through space and time. The equations are formulated based on the properties
associated with each specific particle, considering its position and velocity at any given time.

The connection between material and spatial time derivatives can be articulated in the following manner:

Do 09

Dt at
where @ represents the arbitrary solution variable, v denotes the material velocity. D@ /Dt represents the
material time derivative, and d®/dt represents the spatial time derivative. The conservation equations for
mass, momentum, and energy, initially formulated in the Lagrangian framework, are converted into Eulerian
conservation equations (involving spatial derivatives) as detailed in the provided reference. [27].
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de

at
where p represents density, o denotes the Cauchy stress, b is the vector of body forces, e stands for strain
energy, and D represents velocity strain. The equations in the Eulerian framework (Eqgs. 2 to 4) can be
reformulated in conservative formats as follows [28]:
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The Eulerian governing equations (5) to (7) have a general form:
¢
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where ¢ represents the flux function, and S represents the source term. Eq. (8) is divided into two equations
and solved sequentially using operator splitting, as described in reference.
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where Eq. (9) includes the source term, which signifies the Lagrangian step, whereas Eg. (10) incorporates
the convective term, symbolizing the Eulerian step. A visual depiction of this split operator is presented in
Fig. 1.

To solve Eq. (10), the distorted mesh from the Lagrangian step is moved to the fixed Eulerian mesh, and the
volume of material transferred between neighboring elements is computed. The Lagrangian solution
parameters like mass, stress, and energy are modified to accommodate the material flow between adjacent
elements. The principle of virtual work is employed in the Lagrangian step as described in reference [29].
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In the Lagrangian step, the updated Lagrangian formulation is suitable because it corresponds to the
current configuration in the Eulerian approach, aligning with the reference configuration at time t. However,
predicting the configuration of the body at t+At, as described in Eqg. (11), is generally challenging. This
prediction includes unknown factors such as the volume of integration and density, which both depend on
the deformations of the body. Moreover, determining the Cauchy stress at t+At is not straightforward, as it
cannot be obtained by merely adding the stress increment to the Cauchy stress at t. This complexity arises
because the components of the Cauchy stress tensor change when the material undergoes rigid body rotations.
To handle these challenges practically, alternative strain and stress measures come into play, such as the
Green-Lagrange strain tensor and the second Piola-Kirchoff stress tensor. These measures are employed in
the principle of virtual displacements (Eq. 11) to accurately represent the behavior of the material under
deformation [30].
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Fig. 2. Volume fraction parameter estimation in computational analysis [34]

In the context of simulations involving the Eulerian mesh, understanding the presence or distribution of
materials is crucial. To achieve this, a parameter called the volume fraction (VF) is introduced [31]. This
parameter essentially represents the ratio of the volume occupied by materials within the Eulerian mesh to
the total volume available. To begin this calculation, researchers need to establish the initial volume fraction,
which essentially means determining how much space the materials occupy within the fixed, predefined
Eulerian mesh. This initial volume fraction is a vital reference point, allowing researchers to assess the
distribution and presence of materials accurately. Fig. 2 likely provides a visual representation of this
reference volume, helping researchers understand the initial configuration within the Eulerian mesh.

3. Mathematical model of Akcakoca RCC Dam

3.1. Akcakoca Dam

The Akcakoca dam, situated around 17 km north of Diizce, was built in 2016 by the State Hydraulic Works
of Tirkiye. It is located at the mouth of Akcakoca and was designed as a roller-compacted concrete dam
(Fig. 3). Primarily utilized for irrigation, the dam's crest spans 150 meters in length and 8 meters in width.
The dam reaches a maximum height of 66 meters, and the reservoir's water level is maintained at a maximum
of 62 meters.



89 Yigit et al.

Fig. 3. Akgakoca Dam

3.2. Characteristics of materials used in Akcakoca RCC Dam

The 2D finite element simulation of the Akcakoca dam incorporates a single-layered foundation made of
gneiss rock. Details of the material properties for both the dam body and the foundation of the Akcakoca
roller compacted concrete dam can be found in Table 1.

3.3. Finite element models of Akcakoca Dam

This study utilizes a two-dimensional finite element model (FEM) for the Akcakoca RCC dam. In this model,
the dam's height is denoted as 'H'. The foundation rock extends 'H' units in both the downstream river
direction and gravity direction. Furthermore, the foundation rock and reservoir water model extend '3H' units
in the upstream direction (Fig. 4.). Wilson and Khalvati (1983) introduced an innovative Lagrangian
approach designed to remove specific zero energy modes, resulting in a fluid element displaying optimal
behavior. Within the solid elements, the dam body (C3D8) is structured with a 2x2 integration point, the
foundation rock (C3D8) also employs a 2x2 pattern, and the fluid element (EC3D8) incorporates 2x2

integration points.
= = T = v

H=60 m |
X

Ux=Acc(t)

Ux=Acc(t)

Uy=0

Uy=0

Ux=Acc(t) Uy=0
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Fig. 4. Finite element model of dam
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Table 1. Material properties of Akcakoca roller compacted concrete dam

Modulus of Elasticity

Element (GPa) Poisson’s ratio Mass density (kg/m?3)
Concrete (Dam Body) 28 0.2 2500

Gneiss 18 0.15 2800

Water 2.2 - 1000

In this research, we simulated the behavior of the RCC dam with and without galleries to assess the
impact of galleries on the dam's response to seismic activity. Using ABAQUS software, we created a two-
dimensional finite element model specifically focusing on the critical section of the Akcakoca RCC dam. By
varying the dam height, we calculated the maximum tensile and compressive stresses. Subsequently, we
analyzed the maximum principal tensile and compressive stresses experienced by the upstream side of the
dam body during an earthquake. These stress components were visualized through contour diagrams. Four
distinct scenarios were investigated to identify the most vulnerable conditions of the dam in this study.
a) The first case involves an empty reservoir and galleries are excluded from the dam body. This model
has a total of 6092 nodal points and 2844 elements (Fig. 5).

b) The second case involves a full reservoir and galleries are excluded from the dam body. This model
has a total of 13542 nodal points and 6427 elements (Fig. 6).

¢) The third case involves an empty reservoir and considering galleries in the dam. This model has a
total of 6230 nodal points and 2907 elements (Fig. 7).

d) The fourth case involves a full reservoir and considering galleries in the dam. This model has a total
of 6592 elements and 13888 nodal points (Fig. 8).

L.

Fig. 5. Finite element model for empty reservoir
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3.4. The seismic event that occurred in Diizce in 1999

The earthquake in Diizce, which struck on November 12, 1999, at 18:57 local time (16:57 UTC) with a
moment magnitude of 7.2, resulted in significant damage, causing 845 fatalities and 4,948 injuries in Diizce,
Tiirkiye. The earthquake's epicenter was located at coordinates 40.768, and 31.148, with a moment
magnitude of 6.2 (Mb = 6.2, Ms = 7.4). The seismic moment was Mo = 4.5x1019 Nm, and the magnitude
was Mw = 7.1 [33]. In this study, we utilized the north-south component of the 1999 Diizce accelerogram,
as shown in Fig. 9.

3.5. Optimum mesh density choose

In numerical studies, achieving accurate results relies on creating a finite element mesh that suits the analysis
requirements. To identify the optimal mesh, various finite element splitting models need to be analyzed and
their outcomes compared. Particularly in areas where stress spikes occur abruptly, such as around galleries,
the choice of finite element mesh significantly impacts stress values. Investigations were conducted using
different discretizations to observe stress variations due to sudden section loss around the gallery. Fig. 10
illustrates the findings of this investigation, determining the optimal number of finite elements for the gallery
perimeter based on numerical analysis results.
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Fig. 9. 1999 Diizce N-S earthquake accelerogram
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Fig. 10. Evaluation for optimum finite element mesh around upstream face thalweg
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4. Dynamic analysis results

We investigated five different aspects due to the four cases as indicated preceding section. In the numerical
solutions, we did not describe any friction elements between the dam body and foundation rock interface and
considered welded contact as conventional modeling. First of all, we investigated the tensile stress change
by height of the dam (Figs. 11-12). The second one is that horizontal displacement change is studied by the
height of the dam (Figs. 13-14). Then, we researched the horizontal displacement changing by time at the
top point of the crest (Figs. 15-16). The fourth one is the tensile and compressive stress change during the
earthquake at the bottom point of the upstream side (Figs. 17-20). In this case, the contour diagrams for the
most critical principal stresses are also shown (Figs. 21-24). Finally, the last one is the tensile and
compressive stress change at the selected critical points around galleries inside the dam (Figs. 25-29). The
contour diagrams for the most critical principal stresses around galleries are also shown (Figs. 30-33).

4.1. Stresses by height

The variation of tensile stresses with the dam height in both empty and full conditions of both the dam
without and with a gallery is shown in Figs. 11 and 12, respectively. There was a significant increase in
maximum tensile stresses in the dam with a gallery. In the case of the dam with a gallery being empty, the
tensile stress was 3.66 MPa (Fig. 11a), while an increase occurred in the tensile stress when the dam was
full, reaching 4.11 MPa (Fig. 12a). However, the rise in compressive stress values was relatively minor (Fig.
11b, Fig. 12b).
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Fig. 11. Principal stress chancing by height without gallery condition
70 .1 70
60 \‘ = = = Empty = = =Empty ,, 60
50 Full _ Full , 50
E 40 £ 40
£ 30 = 30
Ry 5}
£ 20 I 20
10 10
0 0
0 2 4 6 0
Stress (MPa) Stress (MPa)
a) Maximum tensile principal stress b) Minimum compressive principal stress

Fig. 12. Principal stress chancing by height including gallery condition
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4.2. Displacements by height

In this section, Figs. 13 and 14 illustrate the changes in dam height concerning displacement under seismic
excitations, considering different scenarios: empty and full reservoir, both with and without a gallery. There
was an increase in displacements along the height in both scenarios. Significantly, displacement experiences
a notable increase due to the hydrostatic pressure force in the full condition. At the peak, with the gallery
filled, a displacement of 2.24 cm (Fig. 14b) was noted, whereas, without a gallery under similar full
conditions, the displacement measured 2.11 cm (Fig. 13a). The inclusion of a gallery in the dam has resulted
in increased displacements, irrespective of whether the dam reservoir is empty or full.

4.3. Displacements during earthquake

The displacement variations over time under earthquake effects for different dam conditions, including
empty and full reservoir conditions, as well as with and without galleries, are illustrated in Figs. 15-16.
Displacements in empty dams, with or without galleries, exhibited similarity, with minimal difference
between the two scenarios. Nonetheless, in filled conditions, whether with or without galleries, the stresses
observed over time were higher compared to those in empty dams, primarily due to the influence of water.
When the dam is full, damping (the decrease in displacement over time) was relatively lower compared to
empty scenarios, suggesting a slower reduction in displacement under the influence of earthquake forces.
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Fig. 13. Horizontal relative displacements chancing by height without gallery condition
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Fig. 14. Horizontal relative displacement chancing by height including gallery condition
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Fig. 16. Horizontal displacement changes at crest during earthquake including gallery model

4.4. Stresses during earthquake

For the dam without galleries, stress-time graphs for the upstream thalweg under earthquake forces for both
empty and full reservoir conditions are presented in Figs. 17 and 18, respectively. In the empty condition,
the maximum principal tensile stress was 1.16 MPa, while in the full condition, it increased significantly to
3.50 MPa. Similarly, when the reservoir was empty the maximum principal compressive stress values
measured at -6.77 MPa, and slightly decreased to -7.45 MPa when the reservoir was full. The stress-time
graphs for the dam with a gallery, in both empty and full reservoir conditions, are respectively illustrated in
Figs. 19 and 20. The maximum principal tensile stress in the empty state was 1.31 MPa, increasing to 4.11
MPa in the full state. The maximum principal compressive stress values were -6.86 MPa in the empty state,
and they decreased slightly to -7.55 MPa in the full state. The analysis shows that the stress values in the full
conditions are higher than in the empty condition, and the highest stress values occur in the full gallery dam
model. The presence of water and gallery shows that it has a significant impact on the structural behavior of
the dam under earthquake forces.

4.5. Principal stress distributions

The maximum and minimum principal stress distributions of empty and full dams without galleries are given
in Figs. 21-22. In the empty state, the maximum and minimum principal stress values were 1.161 MPa and -
6.77 MPa, respectively. In the full state, both stress values increased, reaching 3.661 MPa for the maximum
principal stress and -7.456 MPa for the minimum principal stress. These elevated stress levels were notably
concentrated at the corner points where the body and the head part of the structure meet (upstream face
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thalweg). Fig. 23 and Fig. 24 represent the distributions of maximum principal stress and minimum principal
stress in the dam under both empty and full conditions with a gallery, respectively. In the empty state, the
maximum principal stress and minimum principal stress values were 1.114 MPa and -6.863 MPa,
respectively. In the full state, these stress values increased to 4.112 MPa for the maximum principal stress
and -7.552 MPa for the minimum principal stress. The areas experiencing the highest stresses were identified
as the upstream face thalweg.
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Fig. 17. Stress change at thalweg for empty reservoir condition during the earthquake without galleries
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Fig. 19. Stress change at thalweg for empty reservoir condition during the earthquake including galleries
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Fig. 24. Maximum principal stresses at the upstream side in the full reservoir including gallery conditions

This analysis demonstrates that the stress levels are significantly higher in the gallery and filled dam
models, emphasizing the importance of considering these factors in understanding the structural behavior
and stress distribution in the dam under different states.

4.6. Stresses around galleries

Details of the galleries and the mesh model are given in Fig. 25. When the dam is empty, the stress time
graph of the point around the upper gallery is given in Fig. 26 and the point around the lower gallery is given
in Fig. 27. If the dam is full, the stress time graph of the point around the upper gallery is given in Fig. 28
and the point around the lower gallery is given in Fig. 29. In Fig. 30, the top gallery node 889 experienced
maximum tensile stress of 0.276 MPa at 3.30 seconds when the dam was empty. Simultaneously, the
minimum compressive stress reached -2.317 MPa at 3.65 seconds. In Fig. 32, under full conditions, the
maximum tensile stress rose substantially to 0.965 MPa, while the minimum compressive stress reached -
2.613 MPa. This increase in maximum tensile stress in the full condition was primarily attributed to the
hydrostatic pressure exerted by the water. The stress values observed in both empty and full states align with
the stress-time graphs presented in Figs. 26 and 28. These figures collectively demonstrate the variation of
stresses over time and provide a clear comparison between the stress states of the dam under different
conditions.

In Fig. 31, when the dam was empty, the maximum tensile stress and minimum compressive stress values
at the bottom gallery node 878 were 0.448 MPa and -4.171 MPa, respectively. In Fig. 33, under full
conditions, the maximum tensile stress and minimum compressive stress values at the bottom gallery node
878 increased significantly to 2.105 MPa and -4.443 MPa, respectively. This indicates an approximately 5-
fold increase in the maximum tensile stress value when the dam is in a full state. The stress values observed
in the galleries, as depicted in Figs. 31-33, align with the stress-time graphs presented in Figs. 27-29. These
figures collectively illustrate the variation of stresses over time and provide a clear comparison between the
stress states of the dam in the presence and absence of water, emphasizing the significant impact of water on
stress distribution within the galleries.

When the dam is full, the maximum tensile stress values at both the top gallery node 889 and the bottom
gallery node 878 increased significantly, rising by 4 and 5 times, respectively, compared to the empty
situation. Additionally, there was a 10% increase in tensile stresses within the galleries when compared to
the empty condition. This highlights the substantial impact of the water-filled state on the tensile stresses
experienced in the galleries of the dam.
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Fig. 28. Stress changing at Element 889 for full reservoir condition during the earthquake



Journal of Structural Engineering & Applied Mechanics 100

25
2
15
1
05
0
-0,5
-1
-15

1
N P O -

'
w

Stress (MPa)

1
ESN

Stress (MPa)

[
(S2]

0 5 10 15 0

5 10 15
Time (s) Time (s)

a) Maximum principal tensile stress b) Maximum principal compressive stress
Fig. 29. Stress changing at Element 878 for full reservoir condition during the earthquake
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Fig. 30. Maximum and minimum principal stresses at top gallery element 889 in empty condition
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Fig. 31. Maximum and minimum principal stresses at bottom gallery element 878 in empty condition
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Fig. 32. Maximum principal stresses at top gallery element 889 in full condition
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Fig. 33. Maximum principal stresses at bottom gallery element 878 in full condition

5. Conclusions

In this study, we investigated the effect of galleries on a selected dam’s responses. Therefore, maximum
principal stress components and horizontal displacements are investigated. In addition to this, the effect of
the hydrodynamic pressure of the reservoir water on dam response was also examined. Elastic material
behavior and geometrically linear behavior are utilized in analyses. The fixed boundary conditions and
welded contact between the dam and foundation were taken into consideration in this paper. We can conclude
from several results from the realized study.

e The performed numerical analyses indicate that larger principal tensile and compressive stresses
were obtained under hydrodynamic pressure effects. The presence of reservoir water increased the
maximum tensile stresses by approximately 215% and the compressive stresses by approximately
10%.

e Reservoir water effects increase horizontal displacements at the crest. The presence of reservoir
water increased the horizontal displacement by approximately 11% in the upstream direction and by
approximately 52% in the downstream direction.

e |t has been observed that sudden stress changes occur around the galleries inside the dam due to
sudden discontinuity.

e Using the combined Eulerian-Lagrangian approach, it was possible to observe the turbulence and
surface fluctuations of the reservoir water. Around 1.0 meters of water surge was recorded on the
water surface near the crest.

According to this study, the reservoir water and the galleries within the dam body should be included in

numerical models for researchers as the most critical conditions are obtained.

Beyond these results, it can be proposed that further studies may be needed to better understand the
response of these types of dams. Dynamic materially non-linear analysis should be carried out to determine
the earthquake performance of the dam. On the other hand, different dam-foundation interaction models can
be considered and the results should be discussed in later studies. The viscous, nonreflecting, silent, or quiet
boundary conditions should be taken into account to determine the more realistic response of the dam under
strung ground motion effects. On the other hand, it is advised that optimum galleries’ shape and geometry
should be investigated for this type of dam. Three-dimensional finite element analyses of this type of dams
should be considered.
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