
Journal of Structural Engineering & Applied Mechanics (2024) 7(2):84-103  

DOI 10.31462/jseam.2024.02084103 
 

RESEARCH ARTICLE 
 

 

Dynamic response of Akcakoca RCC Dam including galleries  

Muhammet Ensar Yiğit1* , Murat Emre Kartal2 , Fethi Şermet3 , Emin Hökelekli4  

1 Manisa Celal Bayar University, Faculty of Engineering, Civil Engineering Department, Manisa, Türkiye 
2 İzmir Demokrasi University, Faculty of Engineering, Civil Engineering Department, İzmir, Türkiye 
3 Iğdır University, Faculty of Engineering, Civil Engineering Department, Iğdır, Türkiye 
4 Bartın University, Faculty of Engineering, Civil Engineering Department, Bartın, Türkiye 

Article History  Abstract 

Received 

Accepted 

21 November 2023 

27 May 2024 

Dams are structures that demand a significant amount of concrete, making them 

costly constructions. Hence, various alternative methods are employed for dam 

construction, one of which is the use of Roller Compacted Concrete (RCC). This is 

a case study, which focuses on examining the behavior of RCC dams with and 

without galleries under seismic excitations, considering the Akçakoca RCC dam in 

Düzce Province. The seismic ground motion data from the 1999 Düzce earthquake 

were utilized. The impact of galleries inside the concrete dams was investigated 

through stress and displacement, considering both empty and full reservoir 

conditions. The Eulerian-Lagrangian coupled (CEL) approach was employed for 

two-dimensional fluid finite elements. This study revealed that reservoir water and 

galleries have a notable influence on the behavior of dams under seismic forces. In 

cases with reservoirs and galleries, stress and displacement values increased, and 

critical changes in stresses were observed around gallery areas. Therefore, careful 

design considerations are essential for dams with galleries under significant seismic 

forces. 
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1. Introduction 

The roller-compacted concrete dam method involves enriching traditional granular fill or mass concrete 

aggregates with cement. These enriched materials are placed and compacted in single or multiple layers using 

conventional construction equipment, forming a dam. The concrete used in such dams is referred to as Roller 

Compacted Concrete (RCC). RCC stands out from regular concrete due to its dense consistency and 

appearance, resembling sand and gravel materials. Due to its solid state, it can only be compacted using 

vibrators. The first RCC dam was constructed in 1981 at the Shimajigawa Dam in Japan. In Turkey, the RCC 

method was initially applied in the foundation cutoffs of the Karakaya Dam and later in specific structures 

of the Atatürk, Sır, Berke, and Kürtün (foundation cutoff) dams. Additionally, RCC was used in the design 

of the body structures of the Cindere Dam and Hydroelectric Power Plant, Çine Dam and Hydroelectric 

Power Plant, as well as the Akköy I Dam and Hydroelectric Power Plant, constructed within the borders of 

Kürtün District in Gümüşhane Province [1]. 
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 In recent research studies, Noorzaei et al. [2] delved into the thermal behavior of Roller Compacted 

Concrete (RCC) dams, shedding light on their thermal characteristics. Jaafar et al. [3] underscored the pivotal 

role of thermal analyses in roller-compacted concrete dams, emphasizing the need for optimizing concrete 

pouring processes based on temperature zones. Omidi et al. [4] employed a plastic damage model to simulate 

irreversible damage occurring during the concrete failure process, providing insights into the structural 

integrity of the dams. Huang et al. [5] highlighted the influence of rising water levels on seepage rates and 

dynamic effects, contributing to a comprehensive understanding of dam behavior under varying hydrological 

conditions. Araujo et al. [6] proposed an innovative method that takes into account the complex interaction 

between dam, reservoir, and foundation, providing probabilistic solutions crucial for concrete gravity dams. 

Yilmazturk et al. [7] conducted seismic analyses, considering the intricate interaction between dam, 

reservoir, and ground, providing valuable insights into the seismic response of high Roller Compacted 

Concrete (RCC) gravity dams. Liang et al. [8] developed robust reliability and probability theories to assess 

sliding conditions in layered fill dams and slopes, revealing significant findings related to dam stability. 

Xiong et al. [9] delved into the seismic behavior of dams during high-magnitude earthquakes, exploring the 

influence of diverse material properties on dam responses under extreme seismic forces. Cheng et al. [10] 

employed modal analysis techniques to monitor dam safety, offering recommendations on modal parameter 

identification methods tailored for concrete gravity dams, crucial for ongoing structural evaluations. Zhong 

et al. [11] highlighted crucial factors such as cracks and material property collapse that significantly impact 

the stability of high concrete dams under strong seismic events, providing essential insights for dam safety 

assessments. Additionally, Li et al. [12] conducted meticulous examinations on RCC dams, focusing on 

various waterproof concrete layers in tension and leakage conditions on the upstream face. Their findings 

emphasized the imperative need for impermeability in the top layer to ensure long-term dam integrity. 

 Various studies have been conducted using Finite Element Analysis (FEM) techniques to evaluate the 

seismic performance of Roller Compacted Concrete (RCC) dams. Sharma et al. [13] applied FEM for 

nonlinear dynamic failure analysis in a concrete gravity dam. Wang et al. [14] conducted a three-dimensional 

dynamic nonlinear finite element analysis, revealing significant damage concentrated in the middle 

monoliths of the riverbed in seismic scenarios. Calayir and Karaton [15] utilized FEM for two-dimensional 

seismic analyses of the Koyna gravity dam, incorporating 1967 Koyna earthquake records for dam-reservoir 

interaction simulations. Bayraktar et al. [16] explored the impact of reservoir length on the seismic 

performance of gravity dams against near and far fault ground motions. Kartal [17] studied the seismic 

response of 3D roller-compacted concrete dams using FEM to observe the behavior of SSB dams. Huang 

[18] developed a numerical framework for seismic failure analysis in dam-reservoir-rock-soil interactive 

systems. Kartal et al. [19] investigated the seismic response of 2D roller-compacted concrete dams under 

different reservoir lengths. Zhuo et al. [20] conducted a numerical study on the seismic behavior of Shapai 

SSB arch dams. Mejia et al. [21] discussed evaluating dam improvement alternatives, design criteria, and 

seismic retrofitting using detailed analysis. Wang et al. [22] introduced the Extended Finite Element Method 

(XFEM) to describe crack propagation in concrete gravity dams under seismic loads. Hariri et al. [23] 

examined the impact of various earthquake accelerations on dam-reservoir-ground models using the 

Lagrangian-Eulerian approach, analyzing near-fault and far-fault earthquakes' influence on crack formation. 

Jiang et al. [24] investigated crack behavior in concrete gravity dams using the finite element method. These 

studies collectively contribute to our understanding of RCC dam seismic responses and inform critical 

aspects of their design and analysis. 

 Hariri et al. [25] the seismic response of gravity dams is analyzed using random field theory, 

incorporating uncertainty in material properties. The research focuses on the Koyna Gravity Dam, employing 

numerical simulations where concrete properties like modulus of elasticity, mass density, and tensile strength 

are treated as random fields. The study explores various factors such as correlation length, material 
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distribution, ground motion intensity, and dam class. The results highlight the significance of considering 

concrete heterogeneity in seismic performance evaluation for structural assessment and risk analysis. For 

dams exceeding a height of 30 meters, the presence of galleries is essential for studying and observing dam 

behavior. Additionally, galleries are important for creating drainage and injection holes in the foundation 

and establishing areas for leakage drainage. It is crucial to position the galleries in a way that does not obstruct 

dam construction [26]. 

 In the numerical analysis of roller compacted concrete (RCC) dams under static and dynamic loads, the 

dam body is traditionally considered solid without considering the presence of galleries inside. However, 

galleries usually exist within the body, and it is expected that stress accumulations occur in these areas. To 

accurately determine these stress accumulations and assess whether they pose a risk, a finite element mesh 

refinement may be performed around the gallery. This study aims to compare the maximum stresses in two-

dimensional numerical models considering galleries or not. In this study, two-dimensional (2D) finite 

element models of RCC dams were designed, taking galleries into account, using the actual coordinate data 

of the dam. The mechanical material properties of the rock foundation and concrete used in the design, 

considering the geological conditions of the dam region, such as modulus of elasticity and Poisson's ratio, 

into the ABAQUS software. The presented study focused on the Akçakoca RCC dam located in the Düzce 

province. 

 

2. Formulation of Eulerian-Lagrangian coupled approach for dam-reservoir-foundation 
interaction 

The Eulerian-Lagrangian Coupled Approach provides a robust framework to investigate the intricate 

interactions within dams, considering both the broader spatial context and the behavior of individual 

elements. This comprehensive analysis aids in making informed decisions regarding dam safety, structural 

integrity, and risk assessment. In the context of fluid dynamics and continuum mechanics, the Eulerian and 

Lagrangian descriptions are two fundamental approaches used to analyze the motion and behavior of 

materials. 

 In the Eulerian description, the focus is on specific points or regions in space, and equations are 

formulated based on the properties observed at these fixed spatial locations. The Eulerian approach tracks 

how properties (such as velocity, pressure, or temperature) change over time at these fixed points. In contrast, 

the Lagrangian description follows the motion of individual particles or elements of a material. Here, each 

particle is tracked as it moves through space and time. The equations are formulated based on the properties 

associated with each specific particle, considering its position and velocity at any given time. 

 The connection between material and spatial time derivatives can be articulated in the following manner: 

𝐷𝛷

𝐷𝑡
=
𝜕𝛷

𝜕𝑡
+ 𝑣. (𝛻𝛷) (1) 

where Ф represents the arbitrary solution variable, v denotes the material velocity. 𝐷𝛷 𝐷𝑡⁄  represents the 

material time derivative, and 𝜕𝛷 𝜕𝑡⁄  represents the spatial time derivative. The conservation equations for 

mass, momentum, and energy, initially formulated in the Lagrangian framework, are converted into Eulerian 

conservation equations (involving spatial derivatives) as detailed in the provided reference. [27]. 

𝜕𝜌

𝜕𝑡
+ 𝑣. (𝛻. 𝜌) + 𝜌𝛻. 𝑣 = 0 (2) 

𝜕𝑣

𝜕𝑡
+ 𝑣. (𝛻. 𝑣) =

1

𝜌
(𝛻. 𝜎) + 𝑏 (3) 
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𝜕𝑒

𝜕𝑡
+ 𝑣. (𝛻𝑒) = 𝜎: 𝐷 (4) 

where 𝜌 represents density, 𝜎 denotes the Cauchy stress, 𝑏 is the vector of body forces, 𝑒 stands for strain 

energy, and 𝐷 represents velocity strain. The equations in the Eulerian framework (Eqs. 2 to 4) can be 

reformulated in conservative formats as follows [28]: 

𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑣) = 0 (5) 

𝜕𝜌𝑣

𝜕𝑡
+ 𝛻. (𝜌𝑣 ⊗ 𝑣) = 𝛻. 𝜎 + 𝜌𝑏 (6) 

𝜕𝑒

𝜕𝑡
+ 𝛻. (𝑒𝑣) = 𝜎: 𝐷 (7) 

 The Eulerian governing equations (5) to (7) have a general form: 

𝜕𝜙

𝜕𝑡
+ 𝛻. 𝜑 = 𝑆 (8) 

where 𝜙 represents the flux function, and 𝑆 represents the source term. Eq. (8) is divided into two equations 

and solved sequentially using operator splitting, as described in reference. 

𝜕𝜙

𝜕𝑡
= 𝑆 (9) 

𝜕𝜙

𝜕𝑡
+ 𝛻. 𝜑 = 0 (10) 

where Eq. (9) includes the source term, which signifies the Lagrangian step, whereas Eq. (10) incorporates 

the convective term, symbolizing the Eulerian step. A visual depiction of this split operator is presented in 

Fig. 1. 

To solve Eq. (10), the distorted mesh from the Lagrangian step is moved to the fixed Eulerian mesh, and the 

volume of material transferred between neighboring elements is computed. The Lagrangian solution 

parameters like mass, stress, and energy are modified to accommodate the material flow between adjacent 

elements. The principle of virtual work is employed in the Lagrangian step as described in reference [29]. 

∫𝜌𝑎. 𝛿𝑢𝑑𝑣 +
𝑣

∫𝜎: 𝛿𝜀𝑑𝑉
𝑣

= ∫ 𝑡. 𝛿𝑢𝑑𝑆 + ∫𝜌𝑏. 𝛿𝑢𝑑𝑉
𝑣𝑆

 (11) 

 In the Lagrangian step, the updated Lagrangian formulation is suitable because it corresponds to the 

current configuration in the Eulerian approach, aligning with the reference configuration at time t. However, 

predicting the configuration of the body at t+Δt, as described in Eq. (11), is generally challenging. This 

prediction includes unknown factors such as the volume of integration and density, which both depend on 

the deformations of the body. Moreover, determining the Cauchy stress at t+Δt is not straightforward, as it 

cannot be obtained by merely adding the stress increment to the Cauchy stress at t. This complexity arises 

because the components of the Cauchy stress tensor change when the material undergoes rigid body rotations. 

To handle these challenges practically, alternative strain and stress measures come into play, such as the 

Green-Lagrange strain tensor and the second Piola-Kirchoff stress tensor. These measures are employed in 

the principle of virtual displacements (Eq. 11) to accurately represent the behavior of the material under 

deformation [30]. 
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Fig. 1. The use of the split operator in the CEL formulation [34] 

 

 

Fig. 2. Volume fraction parameter estimation in computational analysis [34] 

 

 In the context of simulations involving the Eulerian mesh, understanding the presence or distribution of 

materials is crucial. To achieve this, a parameter called the volume fraction (VF) is introduced [31]. This 

parameter essentially represents the ratio of the volume occupied by materials within the Eulerian mesh to 

the total volume available. To begin this calculation, researchers need to establish the initial volume fraction, 

which essentially means determining how much space the materials occupy within the fixed, predefined 

Eulerian mesh. This initial volume fraction is a vital reference point, allowing researchers to assess the 

distribution and presence of materials accurately. Fig. 2 likely provides a visual representation of this 

reference volume, helping researchers understand the initial configuration within the Eulerian mesh. 

 

3. Mathematical model of Akcakoca RCC Dam 

3.1. Akcakoca Dam 

The Akcakoca dam, situated around 17 km north of Düzce, was built in 2016 by the State Hydraulic Works 

of Türkiye. It is located at the mouth of Akcakoca and was designed as a roller-compacted concrete dam 

(Fig. 3). Primarily utilized for irrigation, the dam's crest spans 150 meters in length and 8 meters in width. 

The dam reaches a maximum height of 66 meters, and the reservoir's water level is maintained at a maximum 

of 62 meters. 
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Fig. 3. Akçakoca Dam 

3.2. Characteristics of materials used in Akcakoca RCC Dam 

The 2D finite element simulation of the Akcakoca dam incorporates a single-layered foundation made of 

gneiss rock. Details of the material properties for both the dam body and the foundation of the Akcakoca 

roller compacted concrete dam can be found in Table 1. 

3.3. Finite element models of Akcakoca Dam 

This study utilizes a two-dimensional finite element model (FEM) for the Akcakoca RCC dam. In this model, 

the dam's height is denoted as 'H'. The foundation rock extends 'H' units in both the downstream river 

direction and gravity direction. Furthermore, the foundation rock and reservoir water model extend '3H' units 

in the upstream direction (Fig. 4.). Wilson and Khalvati (1983) introduced an innovative Lagrangian 

approach designed to remove specific zero energy modes, resulting in a fluid element displaying optimal 

behavior. Within the solid elements, the dam body (C3D8) is structured with a 2×2 integration point, the 

foundation rock (C3D8) also employs a 2×2 pattern, and the fluid element (EC3D8) incorporates 2×2 

integration points. 

 

 
Fig. 4. Finite element model of dam 
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Table 1. Material properties of Akcakoca roller compacted concrete dam 

Element 
Modulus of Elasticity 

(GPa) 
Poisson’s ratio Mass density (kg/m3) 

Concrete (Dam Body) 28 0.2 2500 

Gneiss 18 0.15 2800 

Water 2.2 - 1000 

 

 In this research, we simulated the behavior of the RCC dam with and without galleries to assess the 

impact of galleries on the dam's response to seismic activity. Using ABAQUS software, we created a two-

dimensional finite element model specifically focusing on the critical section of the Akcakoca RCC dam. By 

varying the dam height, we calculated the maximum tensile and compressive stresses. Subsequently, we 

analyzed the maximum principal tensile and compressive stresses experienced by the upstream side of the 

dam body during an earthquake. These stress components were visualized through contour diagrams. Four 

distinct scenarios were investigated to identify the most vulnerable conditions of the dam in this study. 

a) The first case involves an empty reservoir and galleries are excluded from the dam body. This model 

has a total of 6092 nodal points and 2844 elements (Fig. 5).  

b) The second case involves a full reservoir and galleries are excluded from the dam body. This model 

has a total of 13542 nodal points and 6427 elements (Fig. 6). 

c) The third case involves an empty reservoir and considering galleries in the dam. This model has a 

total of 6230 nodal points and 2907 elements (Fig. 7). 

d) The fourth case involves a full reservoir and considering galleries in the dam. This model has a total 

of 6592 elements and 13888 nodal points (Fig. 8). 

 

 

 

 

Fig. 5. Finite element model for empty reservoir 
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Fig. 6. Finite element model for full reservoir 

 

 

Fig. 7. Finite element model including galleries for empty reservoir 

 

 

Fig. 8. Finite element model including galleries for full reservoir 
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3.4. The seismic event that occurred in Düzce in 1999 

The earthquake in Düzce, which struck on November 12, 1999, at 18:57 local time (16:57 UTC) with a 

moment magnitude of 7.2, resulted in significant damage, causing 845 fatalities and 4,948 injuries in Düzce, 

Türkiye. The earthquake's epicenter was located at coordinates 40.768, and 31.148, with a moment 

magnitude of 6.2 (Mb = 6.2, Ms = 7.4). The seismic moment was Mo = 4.5×1019 Nm, and the magnitude 

was Mw = 7.1 [33]. In this study, we utilized the north-south component of the 1999 Düzce accelerogram, 

as shown in Fig. 9. 

3.5. Optimum mesh density choose 

In numerical studies, achieving accurate results relies on creating a finite element mesh that suits the analysis 

requirements. To identify the optimal mesh, various finite element splitting models need to be analyzed and 

their outcomes compared. Particularly in areas where stress spikes occur abruptly, such as around galleries, 

the choice of finite element mesh significantly impacts stress values. Investigations were conducted using 

different discretizations to observe stress variations due to sudden section loss around the gallery. Fig. 10 

illustrates the findings of this investigation, determining the optimal number of finite elements for the gallery 

perimeter based on numerical analysis results. 

 

 
Fig. 9. 1999 Düzce N-S earthquake accelerogram 

 

 

 

Fig. 10. Evaluation for optimum finite element mesh around upstream face thalweg 
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4. Dynamic analysis results 

We investigated five different aspects due to the four cases as indicated preceding section. In the numerical 

solutions, we did not describe any friction elements between the dam body and foundation rock interface and 

considered welded contact as conventional modeling. First of all, we investigated the tensile stress change 

by height of the dam (Figs. 11-12). The second one is that horizontal displacement change is studied by the 

height of the dam (Figs. 13-14). Then, we researched the horizontal displacement changing by time at the 

top point of the crest (Figs. 15-16). The fourth one is the tensile and compressive stress change during the 

earthquake at the bottom point of the upstream side (Figs. 17-20). In this case, the contour diagrams for the 

most critical principal stresses are also shown (Figs. 21-24). Finally, the last one is the tensile and 

compressive stress change at the selected critical points around galleries inside the dam (Figs. 25-29). The 

contour diagrams for the most critical principal stresses around galleries are also shown (Figs. 30-33). 

4.1. Stresses by height 

The variation of tensile stresses with the dam height in both empty and full conditions of both the dam 

without and with a gallery is shown in Figs. 11 and 12, respectively. There was a significant increase in 

maximum tensile stresses in the dam with a gallery. In the case of the dam with a gallery being empty, the 

tensile stress was 3.66 MPa (Fig. 11a), while an increase occurred in the tensile stress when the dam was 

full, reaching 4.11 MPa (Fig. 12a). However, the rise in compressive stress values was relatively minor (Fig. 

11b, Fig. 12b). 

 

  

a) Maximum tensile principal stress b) Minimum compressive principal stress 

Fig. 11. Principal stress chancing by height without gallery condition 

 

  

a) Maximum tensile principal stress b) Minimum compressive principal stress 

Fig. 12. Principal stress chancing by height including gallery condition 
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4.2. Displacements by height 

In this section, Figs. 13 and 14 illustrate the changes in dam height concerning displacement under seismic 

excitations, considering different scenarios: empty and full reservoir, both with and without a gallery. There 

was an increase in displacements along the height in both scenarios. Significantly, displacement experiences 

a notable increase due to the hydrostatic pressure force in the full condition. At the peak, with the gallery 

filled, a displacement of 2.24 cm (Fig. 14b) was noted, whereas, without a gallery under similar full 

conditions, the displacement measured 2.11 cm (Fig. 13a). The inclusion of a gallery in the dam has resulted 

in increased displacements, irrespective of whether the dam reservoir is empty or full. 

4.3. Displacements during earthquake 

The displacement variations over time under earthquake effects for different dam conditions, including 

empty and full reservoir conditions, as well as with and without galleries, are illustrated in Figs. 15-16. 

Displacements in empty dams, with or without galleries, exhibited similarity, with minimal difference 

between the two scenarios. Nonetheless, in filled conditions, whether with or without galleries, the stresses 

observed over time were higher compared to those in empty dams, primarily due to the influence of water. 

When the dam is full, damping (the decrease in displacement over time) was relatively lower compared to 

empty scenarios, suggesting a slower reduction in displacement under the influence of earthquake forces. 

 

  

a) Maximum displacements b) Minimum displacements 

Fig. 13. Horizontal relative displacements chancing by height without gallery condition 

 

  

a) Maximum displacements b) Minimum displacements 

Fig. 14. Horizontal relative displacement chancing by height including gallery condition 
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a) Empty reservoir and dam without galleries b) Full reservoir and dam without galleries 

Fig. 15. Horizontal displacement changes at crest during the earthquake without gallery model 

 

  

a) Empty reservoir and dam including galleries b) Full reservoir and dam including galleries 

Fig. 16. Horizontal displacement changes at crest during earthquake including gallery model 

4.4. Stresses during earthquake 

For the dam without galleries, stress-time graphs for the upstream thalweg under earthquake forces for both 

empty and full reservoir conditions are presented in Figs. 17 and 18, respectively. In the empty condition, 

the maximum principal tensile stress was 1.16 MPa, while in the full condition, it increased significantly to 

3.50 MPa. Similarly, when the reservoir was empty the maximum principal compressive stress values 

measured at -6.77 MPa, and slightly decreased to -7.45 MPa when the reservoir was full. The stress-time 

graphs for the dam with a gallery, in both empty and full reservoir conditions, are respectively illustrated in 

Figs. 19 and 20. The maximum principal tensile stress in the empty state was 1.31 MPa, increasing to 4.11 

MPa in the full state. The maximum principal compressive stress values were -6.86 MPa in the empty state, 

and they decreased slightly to -7.55 MPa in the full state. The analysis shows that the stress values in the full 

conditions are higher than in the empty condition, and the highest stress values occur in the full gallery dam 

model. The presence of water and gallery shows that it has a significant impact on the structural behavior of 

the dam under earthquake forces. 

4.5. Principal stress distributions 

The maximum and minimum principal stress distributions of empty and full dams without galleries are given 

in Figs. 21-22. In the empty state, the maximum and minimum principal stress values were 1.161 MPa and -

6.77 MPa, respectively. In the full state, both stress values increased, reaching 3.661 MPa for the maximum 

principal stress and -7.456 MPa for the minimum principal stress. These elevated stress levels were notably 

concentrated at the corner points where the body and the head part of the structure meet (upstream face 
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thalweg). Fig. 23 and Fig. 24 represent the distributions of maximum principal stress and minimum principal 

stress in the dam under both empty and full conditions with a gallery, respectively. In the empty state, the 

maximum principal stress and minimum principal stress values were 1.114 MPa and -6.863 MPa, 

respectively. In the full state, these stress values increased to 4.112 MPa for the maximum principal stress 

and -7.552 MPa for the minimum principal stress. The areas experiencing the highest stresses were identified 

as the upstream face thalweg. 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 17. Stress change at thalweg for empty reservoir condition during the earthquake without galleries 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 18. Stress changing at thalweg for full reservoir condition during the earthquake without galleries 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 19. Stress change at thalweg for empty reservoir condition during the earthquake including galleries 
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a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 20. Stress changing at thalweg for full reservoir condition during earthquake including galleries 

 

 

a) t=3.50, max. principal stress 1.161 MPa b) t=3.65, min. principal stress = -6.770 MPa 

Fig. 21. Maximum and minimum principal stresses at the upstream side in empty reservoir condition 

 

 

a) t= 3.55 s, max principal stress= 3.661 MPa b) t= 3,65 s, min principal stress= -7.456 MPa 

Fig. 22. Maximum principal stresses at the upstream side in full reservoir condition 

 

a) t= 3.50 s, max principal stress= 1.114 MPa b) t= 3,65 s, min principal stress= -6,863 MPa 

Fig. 23. Maximum principal stresses at the upstream side in the empty reservoir including gallery conditions 
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a) t= 3.55 s, max principal stress= 4.112 MPa b) t= 3,65 s, min principal stress= -7,552 MPa 

Fig. 24. Maximum principal stresses at the upstream side in the full reservoir including gallery conditions 

 

 This analysis demonstrates that the stress levels are significantly higher in the gallery and filled dam 

models, emphasizing the importance of considering these factors in understanding the structural behavior 

and stress distribution in the dam under different states. 

4.6. Stresses around galleries 

Details of the galleries and the mesh model are given in Fig. 25. When the dam is empty, the stress time 

graph of the point around the upper gallery is given in Fig. 26 and the point around the lower gallery is given 

in Fig. 27. If the dam is full, the stress time graph of the point around the upper gallery is given in Fig. 28 

and the point around the lower gallery is given in Fig. 29. In Fig. 30, the top gallery node 889 experienced 

maximum tensile stress of 0.276 MPa at 3.30 seconds when the dam was empty. Simultaneously, the 

minimum compressive stress reached -2.317 MPa at 3.65 seconds. In Fig. 32, under full conditions, the 

maximum tensile stress rose substantially to 0.965 MPa, while the minimum compressive stress reached -

2.613 MPa. This increase in maximum tensile stress in the full condition was primarily attributed to the 

hydrostatic pressure exerted by the water. The stress values observed in both empty and full states align with 

the stress-time graphs presented in Figs. 26 and 28. These figures collectively demonstrate the variation of 

stresses over time and provide a clear comparison between the stress states of the dam under different 

conditions.  

 In Fig. 31, when the dam was empty, the maximum tensile stress and minimum compressive stress values 

at the bottom gallery node 878 were 0.448 MPa and -4.171 MPa, respectively. In Fig. 33, under full 

conditions, the maximum tensile stress and minimum compressive stress values at the bottom gallery node 

878 increased significantly to 2.105 MPa and -4.443 MPa, respectively. This indicates an approximately 5-

fold increase in the maximum tensile stress value when the dam is in a full state. The stress values observed 

in the galleries, as depicted in Figs. 31-33, align with the stress-time graphs presented in Figs. 27-29. These 

figures collectively illustrate the variation of stresses over time and provide a clear comparison between the 

stress states of the dam in the presence and absence of water, emphasizing the significant impact of water on 

stress distribution within the galleries.  

 When the dam is full, the maximum tensile stress values at both the top gallery node 889 and the bottom 

gallery node 878 increased significantly, rising by 4 and 5 times, respectively, compared to the empty 

situation. Additionally, there was a 10% increase in tensile stresses within the galleries when compared to 

the empty condition. This highlights the substantial impact of the water-filled state on the tensile stresses 

experienced in the galleries of the dam. 
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Fig. 25. Selected stress points around galleries 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 26. Stress changing at Element 889 for empty reservoir condition during the earthquake 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 27. Stress changing at Element 878 for empty reservoir condition during the earthquake 

 

  

a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 28. Stress changing at Element 889 for full reservoir condition during the earthquake 
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a) Maximum principal tensile stress b) Maximum principal compressive stress 

Fig. 29. Stress changing at Element 878 for full reservoir condition during the earthquake 

 

  

a) t=3.30 s, max tensile stress= 0.276 MPa b) t= 3.65 s, min compressive stress= -2.317 MPa 

Fig. 30. Maximum and minimum principal stresses at top gallery element 889 in empty condition 

 

  

a) t= 3.50 s, max tensile stress= 0.448 MPa b) t= 3.65 s, min compressive stress= -4.171 MPa 

Fig. 31. Maximum and minimum principal stresses at bottom gallery element 878 in empty condition 

 

  

a) ) t= 3.55 s, max tensile stress= 0.965 MPa b) t= 3.65s, min compressive stress= - 2.613 MPa 

Fig. 32. Maximum principal stresses at top gallery element 889 in full condition 
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a) t= 3.55 s, max tensile stress= 2.105 MPa b) t= 3.65 s, min compressive stress= -4.443 MPa 

Fig. 33. Maximum principal stresses at bottom gallery element 878 in full condition 

 

5. Conclusions 

In this study, we investigated the effect of galleries on a selected dam’s responses. Therefore, maximum 

principal stress components and horizontal displacements are investigated. In addition to this, the effect of 

the hydrodynamic pressure of the reservoir water on dam response was also examined. Elastic material 

behavior and geometrically linear behavior are utilized in analyses. The fixed boundary conditions and 

welded contact between the dam and foundation were taken into consideration in this paper. We can conclude 

from several results from the realized study.  

• The performed numerical analyses indicate that larger principal tensile and compressive stresses 

were obtained under hydrodynamic pressure effects. The presence of reservoir water increased the 

maximum tensile stresses by approximately 215% and the compressive stresses by approximately 

10%. 

• Reservoir water effects increase horizontal displacements at the crest. The presence of reservoir 

water increased the horizontal displacement by approximately 11% in the upstream direction and by 

approximately 52% in the downstream direction. 

• It has been observed that sudden stress changes occur around the galleries inside the dam due to 

sudden discontinuity. 

• Using the combined Eulerian-Lagrangian approach, it was possible to observe the turbulence and 

surface fluctuations of the reservoir water. Around 1.0 meters of water surge was recorded on the 

water surface near the crest. 

 According to this study, the reservoir water and the galleries within the dam body should be included in 

numerical models for researchers as the most critical conditions are obtained. 

 Beyond these results, it can be proposed that further studies may be needed to better understand the 

response of these types of dams. Dynamic materially non-linear analysis should be carried out to determine 

the earthquake performance of the dam. On the other hand, different dam-foundation interaction models can 

be considered and the results should be discussed in later studies. The viscous, nonreflecting, silent, or quiet 

boundary conditions should be taken into account to determine the more realistic response of the dam under 

strung ground motion effects. On the other hand, it is advised that optimum galleries’ shape and geometry 

should be investigated for this type of dam. Three-dimensional finite element analyses of this type of dams 

should be considered. 
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