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The effects of shear deformation theory and improved shear correction factors on 

the advanced computation of frequencies by using the fully homogeneous equation 

for thick functionally graded material (FGM) circular cylindrical shells are studied. 

It is quite reasonable to consider the extra advanced effect of third-order shear 

deformation theory (TSDT) of displacements on the varied shear correction 

coefficient. The values of advanced nonlinear shear correction coefficient are 

usually functions of the nonlinear coefficient term in TSDT, power-law exponent 

parameter, and environment temperature. The main achievements in the nonlinear 

case of displacements and with the varied value of shear correction coefficients, the 

non-dimensional fundamental frequencies are estimated, investigated, and 

compared with the values in the linear case. This paper aims to study the 

fundamental frequencies of very thick FGM cylindrical shells under the advanced 

effects of shear deformation theory and improved shear correction factors. 
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1. Introduction 

Usually, the shear deformation theory of displacements need not be considered in the thin shell analyses, and 

it is usually considered for the thick shell analyses. To include the varied effect of stress across the thickness 

direction for the thick shells, it would be usually to consider the shear deformation theory of displacements 

in the study. For the moderate thick (e.g. aspect ratio equal to 10) shell analyses, first-order shear deformation 

theory (FSDT) is usually used. For the very thick (e.g. aspect ratio equal to 5) shell analyses, third-order 

shear deformation theory (TSDT) is usually used. The originality of this paper is to provide the difference 

from the studies in the published literature. This paper provides both the shear deformation theory and 

improved shear correction factors in the effect of frequencies, especially for the very thick plates and shells, 

in the following published literature were seldom investigations of the improved and advanced studies. 

Several investigations of the improved shear deformation theory of displacements on the thick beams, plates, 

and shells. Birman and Bert [1] presented several models of shear correction factors in multi-layer sandwich 

structures. Okumus [2] presented an analysis of shear correction factors for a thermoplastic cantilever beam. 

Daouadji et al. [3] presented a new higher-order shear deformation theory (HSDT) of displacements with no 

shear correction factor for the static behavior of functionally graded material (FGM) plates. Xiang et al. [4] 

presented the natural frequencies of FGM plates resting on elastic foundations by using the nth-order shear 
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deformation theory of displacements with no shear correction factor. Lim [5] presented the improved shear 

correction factors for the deflection of simply supported very thick rectangular auxetic plates, without 

considering the effect of FSDT and TSDT of displacements for the natural frequency. Bouhlali et al. [6] 

presented the nonlinear thermo-elastic analysis of thick FGM plates without considering the effect of shear 

correction factors. Ghamkhar et al. [7] presented the vibration frequency analysis of three-layered FGM 

cylinder shells with the numerical method by considering the axial and circumferential wave numbers of 

mode shapes. Nguyen et al [8] presented the refined FSDT of displacements and no shear correction factor 

to investigate the free vibration of FGM plates. In 2020, Ganczarski and Szubartowski [9] presented the 

thermo-mechanical analysis for thick-walled FGM cylinders including thermal barrier coating by using a 

special graded finite element method. Vuong and Duc [10] presented the nonlinear vibration of moderately 

thick FGM shells resting on elastic foundations by using the TSDT of displacements.  

 Some contact problems of functionally graded materials (FGMs) were also presented. Yaylaci et al. [11] 

presented the contact mechanics of FGMs in the rigid foundation and pressed punch, the body force was also 

included in the analysis of the finite element method (FEM). Adiyaman et al. [12] presented the contact 

problems of the FGM beam under the distributed pressure loads, the body force was also included in the 

analysis. Yaylaci et al. [13] presented the frequencies and buckling of the FGM beam by using the FEM and 

multilayer perceptron (MLP). Adiyaman et al. [14] also presented the contact problems of FGM beams for 

studying the behavior of materials. Turan et al. [15] presented the frequencies and buckling of FGM porous 

beams by using the FSDT, FEM, and artificial neural network (ANN) methods. There were seldom 

investigations of the improved shear correction factors on the very thick plates and shells. 

 Mode shape values of non-dimensional frequency parameters are decreasing firstly vs. circumferential 

nodes in the linear case of displacements and with a constant value of shear correction coefficient. There 

were several investigations of the improved shear correction factors on the thick shells. Hong [16] presented 

the preliminary studies in free vibration frequency of thick FGM spherical shells with simply homogeneous 

equations by using TSDT of displacements and the linear calculation of varied shear correction coefficients. 

Hong [17] presented the preliminary studies in free vibration frequency of thick FGM circular cylindrical 

shells without considering the effects of the nonlinear coefficient TSDT term on the calculation of varied 

shear correction coefficients. Hong [18] presented the basic studies of the varied shear correction and FSDT 

effects on the vibration frequency of thick FGM circular cylindrical shells in unsteady supersonic flow. Hong 

[19] presented the basic studies in thermal vibration of magnetostrictive FGM shells by considering the linear 

FSDT of displacements and varied effects of the shear correction coefficient. This paper aims to study the 

frequencies of very thick FGM cylindrical shells under the advanced effects of shear deformation theory and 

improved shear correction factors. In the advanced studies for the vibration frequency of thick FGM circular 

cylindrical shells with the fully homogeneous equation, it is interesting to consider the simultaneous three 

effects of the TSDT of displacements, the nonlinear shear correction coefficient of transverse shear force and 

the two directions of mode shapes. To obtain the results of natural frequencies (𝜔𝑚𝑛) in which subscripts 𝑚 

and 𝑛 are the mode shapes in 𝑥 and 𝑦 directions for the advanced studies of thick FGM circular cylindrical 

shells. The innovation of this topic is to consider two advanced effects of nonlinear shear correction 

coefficient and TSDT on the thick FGM circular cylindrical shells. The application of this topic in the future 

might be applied to the field of missile engines. 

 

2. The formulation for the advanced nonlinear 𝑘𝛼 

Time-dependent nonlinear displacements 𝑢, 𝑣, and 𝑤 at any point (𝑥, 𝜃, 𝑧) of thick FGM cylindrical shells 

are assumed in the nonlinear coefficient 𝑐1 term of TSDT equations as follows, based on the semi-analytical 

studies of laminated plates by Lee et al. [20] 
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𝑢 = 𝑢0(𝑥, 𝜃, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝜃, 𝑡)−𝑐1𝑧
3(𝜙𝑥 +

𝜕𝑤

𝜕𝑥
) 

𝑣 = 𝑣0(𝑥, 𝜃, 𝑡) + 𝑧𝜙𝜃(𝑥, 𝜃, 𝑡)−𝑐1𝑧
3 (𝜙𝜃 +

𝜕𝑤

𝑅𝜕𝜃
) 

𝑤 = 𝑤(𝑥, 𝜃, 𝑡) 

(1) 

where 𝑢0 and 𝑣0 are the tangential displacements in the in-surface coordinates 𝑥 and 𝜃 axes direction, 

respectively. 𝑤 is the transverse displacement in the out-of-surface coordinates 𝑧 axis direction of the middle 

plane of shells. 𝜙𝑥 and 𝜙𝜃 are the shear rotations. 𝑅 is the middle-surface radius at any point (𝑥, 𝜃, 𝑧) of the 

FGM cylindrical shells that are illustrated in Fig. 1 with the thickness ℎ1 of FGM material 1 and thickness 

ℎ2 of FGM material 2, respectively in the thickness direction of the cylindrical coordinate systems. 𝑡 is the 

time. The coefficient for 𝑐1 = 4/(3ℎ
∗2) is given in the TSDT approach, in which ℎ∗ is the thickness of FGM 

cylindrical shells. 

 The normal stresses (𝜎𝑥 and 𝜎𝑦) and the shear stresses (𝜎𝑥𝜃 , 𝜎𝜃 and 𝜎𝑥𝑧) of the thick FGM circular 

cylindrical shells under temperature difference Δ𝑇 for the 𝑘th constituent material are assumed in the 

following equations by Whitney [21]. 

{

𝜎𝑥
𝜎𝜃
𝜎𝑥𝜃

}

(𝑘)

= [

𝑄̄11 𝑄̄12 𝑄̄16
𝑄̄12 𝑄̄22 𝑄̄26
𝑄̄16 𝑄̄26 𝑄̄66

]

(𝑘)

{

𝜀𝑥 − 𝛼𝑥𝛥𝑇
𝜀𝜃 − 𝛼𝜃𝛥𝑇
𝜀𝑥𝜃 − 𝛼𝑥𝜃𝛥𝑇

}

(𝑘)

 

{
𝜎𝜃𝑧
𝜎𝑥𝑧

}
(𝑘)
= [

𝑄̄44 𝑄̄45
𝑄̄45 𝑄̄55

]
(𝑘)

{
𝜀𝜃𝑧
𝜀𝑥𝑧
}
(𝑘)

 

(2) 

where 𝛼𝑥 and 𝛼𝜃 are the coefficients of thermal expansion, 𝛼𝑥𝜃  is the coefficient of thermal shear, 𝑄̄𝑖𝑗 is the 

transformed reduced stiffness of FGM shells, in which 𝑄̄𝑖𝑗 = 𝑄̄𝑖𝑠𝑗𝑠  for subscripts 𝑖𝑠, 𝑗𝑠 = 1,2,6 and  𝑄̄𝑖𝑗=𝑄̄𝑖∗𝑗∗ 

for subscripts 𝑖∗, 𝑗∗ = 4,5 and 𝜀𝑥,  𝜀𝜃, 𝜀𝑥𝜃 are in-plane strains, not negligible 𝜀𝑥𝜃 and 𝜀𝑥𝑧 are shear strains. 

 

 

Fig. 1. Two-material thick FGM circular cylindrical shell under thermal environment 𝑇 
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 Simpler forms of 𝑄̄𝑖𝑠𝑗𝑠  and 𝑄̄𝑖∗𝑗∗ for FGM cylindrical shells with 𝑧/𝑅 terms cannot be neglected are used 

and assumed by Sepiani et al. [22] and Hong [19] as follows: 

𝑄̄11 = 𝑄̄22 =
𝐸𝑓𝑔𝑚

1 − 𝜈𝑓𝑔𝑚
2
 

𝑄̄12 = 𝑄̄21 =
𝜈𝑓𝑔𝑚𝐸𝑓𝑔𝑚

(1 + 𝑧/𝑅)(1 − 𝜈𝑓𝑔𝑚
2)

 

𝑄̄44 =
𝐸𝑓𝑔𝑚

2(1 + 𝜈𝑓𝑔𝑚)
 

𝑄̄55 = 𝑄̄66 =
𝐸𝑓𝑔𝑚

2(1 + 𝑧/𝑅)(1 + 𝜈𝑓𝑔𝑚)
 

𝑄̄16 = 𝑄̄26 = 𝑄̄45 = 0 

(3) 

in which 𝜈𝑓𝑔𝑚 =
𝜈1+𝜈2

2
 is the Poisson’s ratios of the FGM cylindrical shells. 𝐸𝑓𝑔𝑚 = (𝐸2 − 𝐸1)(

𝑧+ℎ∗/2

ℎ
∗ )𝑅𝑛 +

𝐸1 is the Young’s modulus of the FGM cylindrical shells. 𝑅𝑛 is the power-law exponent parameter 𝐸1. and 

𝐸2 are the Young’s modulus. 𝜈1 and 𝜈2 are the Poisson’s ratios of the FGM constituent material 1 and 2, 

respectively. The properties 𝐸1, 𝐸2, 𝜈1, and 𝜈2 of individual constituent material are in functions of 

environment temperature 𝑇 that can be expressed in the power-law function type of FGMs. 

 By defining the integrated expressions of 𝑄̄𝑖𝑠𝑗𝑠  and 𝑄̄𝑖∗𝑗∗ in the direction of 𝑧 axis for the thick FGM 

cylindrical shells as follows, 

(𝐴𝑖𝑠𝑗𝑠 , 𝐵𝑖𝑠𝑗𝑠 , 𝐷𝑖𝑠𝑗𝑠 , 𝐸𝑖𝑠𝑗𝑠 , 𝐹𝑖𝑠𝑗𝑠 , 𝐻𝑖𝑠𝑗𝑠) = ∫ 𝑄̄𝑖𝑠𝑗𝑠
ℎ
∗

2
−ℎ∗

2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)𝑑𝑧  ,  (𝑖𝑠, 𝑗𝑠 = 1,2,6) 

(𝐴𝑖∗𝑗∗ , 𝐵𝑖∗𝑗∗ , 𝐷𝑖∗𝑗∗ , 𝐸𝑖∗𝑗∗ , 𝐹𝑖∗𝑗∗ , 𝐻𝑖∗𝑗∗) = ∫ 𝑘𝛼𝑄̄𝑖∗𝑗∗
ℎ
∗

2
−ℎ∗

2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧5)𝑑𝑧  ,  (𝑖∗, 𝑗∗ = 4,5) 

(4) 

in which 𝑘𝛼 is the advanced shear correction coefficient can be represented in the rational expression form 

and functions of 𝑐1, 𝑅𝑛, and 𝑇 by Hong [23,24]. 

 

3. Numerical results and discussion 

The thick FGM circular cylindrical shells with layers in the stacking sequence (0/0) are used to study the 

free vibration frequency with the effects of environment temperature and advanced varied shear correction 

coefficient, under four sides simply supported boundary condition (at 𝑥 = 0 and 𝑥 = 𝐿, 𝜕𝑢0 𝜕𝑥 = 𝑣0⁄ =

𝑤 = 𝜕𝜙𝑥 𝜕𝑥 = 𝜙𝜃 = 0⁄ , at 𝜃 = 0 and 𝜃 = 2𝜋, 𝑢0 = 𝜕𝑣0 𝜕𝜃 =⁄ 𝑤 = 𝜙𝑥 = 𝜕𝜙𝜃 𝜕𝜃 = 0⁄ ) no thermal loads 

(Δ𝑇 = 0), no in-plane distributed forces, and no external pressure load. The free vibration frequency (𝜔𝑚𝑛 

with mode shape number in subscripts 𝑚 and 𝑛 ) can be derived by simply assuming that 𝐼1 = 𝐼3 = 𝐽1 = 0, 

𝐵𝑖𝑗 = 𝐸𝑖𝑗 = 0, 𝐴16 = 𝐴26 = 0, 𝐷16 = 𝐷26 = 0, and 𝐴45 = 𝐷45 = 𝐹45 = 0, where 𝐼𝑖 = ∑ ∫ 𝜌(𝑘)
𝑘+1

𝑘
𝑁∗

𝑘=1 𝑧𝑖𝑑𝑧, 

(𝑖 = 0,1,2,⋯ ,6), in which 𝑁∗ is the total number of layers, 𝜌(𝑘) is the density of 𝑘th ply, 𝐽𝑖 = 𝐼𝑖 − 𝑐1𝐼𝑖+2, 

(𝑖 = 1,4), also define 𝐾2 = 𝐼2 − 2𝑐1𝐼4 + 𝑐1
2𝐼6 under the following time sinusoidal displacement and shear 

rotations with amplitudes 𝑎𝑚𝑛, 𝑏𝑚𝑛, 𝑐𝑚𝑛, 𝑑𝑚𝑛 and 𝑒𝑚𝑛. 
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𝑢0 = 𝑎𝑚𝑛 𝑐𝑜𝑠(𝑚𝜋𝑥/𝐿) 𝑠𝑖𝑛( 𝑛𝜋𝜃/𝑅) 𝑠𝑖𝑛(𝜔𝑚𝑛𝑡) 

𝑣0 = 𝑏𝑚𝑛 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿) 𝑐𝑜𝑠( 𝑛𝜋𝜃/𝑅) 𝑠𝑖𝑛(𝜔𝑚𝑛𝑡) 

𝑤 = 𝑐𝑚𝑛 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿) 𝑠𝑖𝑛( 𝑛𝜋𝜃/𝑅) 𝑠𝑖𝑛(𝜔𝑚𝑛𝑡) 

𝜑𝑥 = 𝑑𝑚𝑛 𝑐𝑜𝑠(𝑚𝜋𝑥/𝐿) 𝑠𝑖𝑛( 𝑛𝜋𝜃/𝑅) 𝑠𝑖𝑛(𝜔𝑚𝑛𝑡) 

𝜑𝜃 = 𝑒𝑚𝑛 𝑠𝑖𝑛(𝑚𝜋𝑥/𝐿) 𝑐𝑜𝑠( 𝑛𝜋𝜃/𝑅) 𝑠𝑖𝑛(𝜔𝑚𝑛𝑡) 

(5) 

where subscripts 𝑚 is the number of axial half-waves and 𝑛 is the number of circumferential waves. By 

substituting Eqs. (5) into dynamic equilibrium differential equations with TSDT of FGM circular cylindrical 

shells in terms of partial derivatives of displacements and shear rotations under free vibration (without the 

thermal loads and mechanical loads), the fully homogeneous equation can be obtained as follows: 

[
 
 
 
 
𝑠11 
𝑠21 
𝑠31 
𝑠41 
𝑠51 

𝑠12 
𝑠22 
𝑠32 
𝑠42 
𝑠52 

𝑠13 
𝑠23 
𝑠33 
𝑠43 
𝑠53 

𝑠14 
𝑠24 
𝑠34 
𝑠44 
𝑠54 

𝑠15
𝑠25
𝑠35
𝑠45
𝑠55]
 
 
 
 

{
 
 

 
 
𝑎𝑚𝑛
𝑏𝑚𝑛
𝑐𝑚𝑛
𝑑𝑚𝑛
𝑒𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 (6) 

where 

𝑠11 = 𝐹𝐻11 −
𝐼0𝜆𝑚𝑛

𝐼0
,  𝑠12 = 𝐹𝐻12,  𝑠13 = 𝐹𝐻13 +

𝑐1𝐼3(
𝑚𝜋

𝐿
)𝜆𝑚𝑛

𝐼0
,  𝑠14 = 𝐹𝐻14 −

𝐽1𝜆𝑚𝑛

𝐼0
,   𝑠15 = 𝐹𝐻15, 

𝑠21 = 𝐹𝐻12,   𝑠22 = 𝐹𝐻22 −
𝐼0𝜆𝑚𝑛

𝐼0
,   𝑠23 = 𝐹𝐻23 +

𝑐1𝐼3(
𝑛𝜋

𝑅
)𝜆𝑚𝑛

𝐼0
,   𝑠24 = 𝐹𝐻24,   𝑠25 = 𝐹𝐻25 −

𝐽1𝜆𝑚𝑛

𝐼0
, 

𝑠31 = 𝐹𝐻13 +
𝑐1𝐼3(

𝑚𝜋

𝐿
)𝜆𝑚𝑛

𝐼0
,   𝑠32 = 𝐹𝐻23 +

𝑐1𝐼3(
𝑛𝜋

𝑅
)𝜆𝑚𝑛

𝐼0
, 

𝑠33 = 𝐹𝐻33 − [𝐼0 + 𝑐1
2𝐼6 (

𝑚𝜋

𝐿
)
2

+ 𝑐1
2𝐼6 (

𝑛𝜋

𝑅
)
2

]𝜆𝑚𝑛/𝐼0, 

𝑠34 = 𝐹𝐻34 +
𝑐1𝐽4(

𝑚𝜋

𝐿
)𝜆𝑚𝑛

𝐼0
,   𝑠35 = 𝐹𝐻35 +

𝑐1𝐽4(
𝑛𝜋

𝑅
)𝜆𝑚𝑛

𝐼0
, 

𝑠41 = 𝐹𝐻14 −
𝐽1𝜆𝑚𝑛

𝐼0
,   𝑠42 = 𝐹𝐻24,   𝑠43 = 𝐹𝐻34 +

𝑐1𝐽4(
𝑚𝜋

𝐿
)𝜆𝑚𝑛

𝐼0
,   𝑠44 = 𝐹𝐻44 −

𝐾2𝜆𝑚𝑛

𝐼0
,   𝑠45 = 𝐹𝐻45, 

𝑠51 = 𝐹𝐻15,   𝑠52 = 𝐹𝐻25 −
𝐽1𝜆𝑚𝑛

𝐼0
,   𝑠53 = 𝐹𝐻35 +

𝑐1𝐽4(
𝑛𝜋

𝑅
)𝜆𝑚𝑛

𝐼0
,   𝑠54 = 𝐹𝐻45,   𝑠55 = 𝐹𝐻55 −

𝐾2𝜆𝑚𝑛

𝐼0
, 

𝜆𝑚𝑛 = 𝐼0𝜔𝑚𝑛
2, 𝐹𝐻11 = 𝐴11(𝑚𝜋/𝐿)

2 + 𝐴66(𝑛𝜋/𝑅)
2,  𝐹𝐻12 = (𝐴12 + 𝐴66)(𝑚𝜋/𝐿)(𝑛𝜋/𝑅), 

𝐹𝐻13 = −𝑐1𝐸11(𝑚𝜋/𝐿)
3 − (𝑐1𝐸12 + 2𝑐1𝐸66)(𝑚𝜋/𝐿)(𝑛𝜋/𝑅)

2, 

𝐹𝐻14 = (𝐵11 − 𝑐1𝐸11)(𝑚𝜋/𝐿)
2 + (𝐵66 − 𝑐1𝐸66)(𝑛𝜋/𝑅)

2, 

𝐹𝐻15 = (𝐵12 + 𝐵66 − 𝑐1𝐸12 − 𝑐1𝐸66)(𝑚𝜋/𝐿)(𝑛𝜋/𝑅),    𝐹𝐻22 = 𝐴66(𝑚𝜋/𝐿)
2 + 𝐴22(𝑛𝜋/𝑅)

2, 

𝐹𝐻23 = −(𝑐1𝐸12 + 2𝑐1𝐸66)(𝑚𝜋/𝐿)
2(𝑛𝜋/𝑅) − 𝑐1𝐸22(𝑛𝜋/𝑅)

3, 

𝐹𝐻24 = (𝐵12 + 𝐵66 − 𝑐1𝐸12 − 𝑐1𝐸66)(𝑚𝜋/𝐿)(𝑛𝜋/𝑅), 

𝐹𝐻25 = (𝐵66 − 𝑐1𝐸66)(𝑚𝜋/𝐿)
2 + (𝐵22 − 𝑐1𝐸22)(𝑛𝜋/𝑅)

2, etc. 

𝐴11 =
ℎ
∗

1−(
𝜈1+𝜈2
2

)2
(
𝑅𝑛𝐸1+𝐸2

𝑅𝑛+1
), 𝐸11 =

(ℎ∗)4(𝐸2−𝐸1)

1−(
𝜈1+𝜈2
2

)2
[

1

𝑅𝑛+4
−

3

2(𝑅𝑛+3)
+

3

4(𝑅𝑛+2)
−

1

8(𝑅𝑛+1)
], 

𝐹11 =
(ℎ∗)5

1−(
𝜈1+𝜈2
2

)2
{(𝐸2 − 𝐸1) [

1

𝑅𝑛+5
−

2

𝑅𝑛+4
+

1

𝑅𝑛+3
−

1

2(𝑅𝑛+2)
+

1

16(𝑅𝑛+1)
] +

𝐸1

80
}, 

𝐻11 =
(ℎ∗)7

1−(
𝜈1+𝜈2
2

)2
{(𝐸2 − 𝐸1)[

1

𝑅𝑛+7
−

3

𝑅𝑛+6
+

13

4(𝑅𝑛+5)
−

2

𝑅𝑛+4
+

13

16(𝑅𝑛+3)
−

3

16(𝑅𝑛+2)
+

1

64(𝑅𝑛+1)
] +

𝐸1

448
}, 



Journal of Structural Engineering & Applied Mechanics 74 

 

𝐻44 =
𝑘𝛼(ℎ

∗)6(𝐸2−𝐸1)

2(1+
𝜈1+𝜈2
2

)
[

1

𝑅𝑛+6
−

5

2(𝑅𝑛+5)
+

2

𝑅𝑛+4
−

1

𝑅𝑛+3
+

5

64(𝑅𝑛+2)
−

1

32(𝑅𝑛+1)
], etc 

 The determinant of the coefficient matrix in equation (6) vanishes for obtaining the non-trivial solution 

of amplitudes, the polynomial equation in the fifth-order of 𝜆𝑚𝑛 can be obtained as follows, thus the 𝜔𝑚𝑛 

can be found. 

𝐴(1)𝜆𝑚𝑛
5 + 𝐴(2)𝜆𝑚𝑛

4 + 𝐴(3)𝜆𝑚𝑛
3 + 𝐴(4)𝜆𝑚𝑛

2 + 𝐴(5)𝜆𝑚𝑛 + 𝐴(6) = 0 (7) 

where 

𝐴(1) = ∑ 𝑑𝑖
20
𝑖=1 ℎ𝑖,   𝐴(2) = ∑ (𝑑𝑖

20
𝑖=1 𝑔𝑖 + 𝑏𝑖ℎ𝑖),   𝐴(3) = ∑ (𝑑𝑖

20
𝑖=1 𝑓𝑓𝑖 + 𝑏𝑖𝑔𝑖 + 𝑎𝑖ℎ𝑖), 

𝐴(4) = ∑ (𝑑𝑖
20
𝑖=1 𝑒𝑖 + 𝑏𝑖𝑓𝑓𝑖 + 𝑎𝑖𝑔𝑖),   𝐴(5) = ∑ (𝑏𝑖

20
𝑖=1 𝑒𝑖 + 𝑎𝑖𝑓𝑓𝑖),   𝐴(6) = ∑ 𝑎𝑖

20
𝑖=1 𝑒𝑖 

 

where 

𝑎1 = 𝐹𝐻11𝐹𝐻12, 𝑏1 = −(𝐹𝐻11 + 𝐹𝐻22)𝐼0, 𝑑1 = 𝐼0
2, 

𝑒1 = 𝐹𝐻33𝐹𝐻44𝐹𝐻55 + 2𝐹𝐻34𝐹𝐻35𝐹𝐻45 − 𝐹𝐻35
2𝐹𝐻44 − 𝐹𝐻34

2𝐹𝐻55 − 𝐹𝐻33𝐹𝐻45
2, 

𝑓𝑓1 = −𝐹𝐻33𝐹𝐻55𝐾2 − 𝐹𝐻44𝐹𝐻55𝑆𝐼06 − 𝐹𝐻33𝐹𝐻44𝐾2 + 𝐹𝐻33𝐾2
2 + 𝐹𝐻44𝐾2𝑆𝐼06 +

2𝐹𝐻34𝐹𝐻45𝑐1𝐽4𝑛𝜋/𝑅 + 2𝐹𝐻35𝐹𝐻45𝑐1𝐽4𝑚𝜋/𝐿 − 2𝐹𝐻35𝐹𝐻44𝑐1𝐽4𝑛𝜋/𝑅 + 𝐹𝐻35
2𝐾2 −

2𝐹𝐻34𝐹𝐻55𝑐1𝐽4𝑚𝜋/𝐿 + 𝐹𝐻34
2𝐾2 + 𝐹𝐻45

2𝑆𝐼06, 

𝑔1 = 𝐹𝐻55𝐾2𝑆𝐼06 + 2𝐹𝐻45𝑐1
2𝐽4

2(𝑚𝜋/𝐿)(𝑛𝜋/𝑅) − 𝐹𝐻44𝑐1
2𝐽4

2(𝑛𝜋/𝑅)2 + 2𝐹𝐻35𝐾2𝑐1𝐽4𝑛𝜋/𝑅 −

𝐹𝐻55𝑐1
2𝐽4

2(𝑚𝜋/𝐿)2 + 2𝐹𝐻34𝐾2𝑐1𝐽4𝑚𝜋/𝐿, 

ℎ1 = −𝐾2
2𝑆𝐼06 + 𝐾2𝑐1

2𝐽4
2(𝑛𝜋/𝑅)2 + 𝐾2𝑐1

2𝐽4
2(𝑚𝜋/𝐿)2, etc. 

𝑎20 = −𝐹𝐻15𝐹𝐻24, 𝑏20 = 0, 𝑑20 = 0, 

𝑒20 = 𝐹𝐻13𝐹𝐻24𝐹𝐻35 + 𝐹𝐻15𝐹𝐻23𝐹𝐻34 + 𝐹𝐻14𝐹𝐻25𝐹𝐻33 − 𝐹𝐻15𝐹𝐻24𝐹𝐻33 − 𝐹𝐻14𝐹𝐻23𝐹𝐻35 −

𝐹𝐻13𝐹𝐻25𝐹𝐻34, 

𝑓𝑓20 = −𝐹𝐻25𝐹𝐻33𝐽1 + 𝐹𝐻23𝐹𝐻35𝐽1 + 𝐹𝐻13𝐹𝐻24𝑐1𝐽4𝑛𝜋/𝑅 + 𝐹𝐻24𝐹𝐻35𝑐1𝐼3𝑚𝜋/𝐿 − 𝐹𝐻14𝐹𝐻33𝐽1
+ 𝐹𝐻15𝐹𝐻23𝑐1𝐽4𝑚𝜋/𝐿 + 𝐹𝐻15𝐹𝐻34𝑐1𝐼3𝑛𝜋/𝑅 − 𝐹𝐻25𝐹𝐻34𝑐1𝐼3𝑚𝜋/𝐿 + 𝐹𝐻13𝐹𝐻34𝐽1
− 𝐹𝐻14𝐹𝐻35𝑐1𝐼3𝑛𝜋/𝑅 − 𝐹𝐻14𝐹𝐻23𝑐1𝐽4𝑛𝜋/𝑅 − 𝐹𝐻13𝐹𝐻25𝑐1𝐽4𝑚𝜋/𝐿 − 𝐹𝐻14𝐹𝐻25𝑆𝐼06
+ 𝐹𝐻15𝐹𝐻24𝑆𝐼06, 

𝑔20 = 𝐹𝐻35𝐽1𝑐1𝐼3𝑛𝜋/𝑅 + 𝐹𝐻23𝐽1𝑐1𝐽4𝑛𝜋/𝑅 + 𝐹𝐻13𝐽1𝑐1𝐽4𝑚𝜋/𝐿 + 𝐹𝐻34𝐽1𝑐1𝐼3𝑚𝜋/𝐿

+ 𝐹𝐻24𝐼3𝑐1
2𝐽4(𝑚𝜋/𝐿)(𝑛𝜋/𝑅) + 𝐹𝐻15𝐼3𝑐1

2𝐽4(𝑚𝜋/𝐿)(𝑛𝜋/𝑅) − 𝐹𝐻14𝐽4𝑐1
2𝐼3(𝑛𝜋/𝑅)

2

− 𝐹𝐻25𝐽4𝑐1
2𝐼3(𝑚𝜋/𝐿)

2 + 𝐹𝐻33𝐽1
2 + 𝐹𝐻25𝐽1𝑆𝐼06 + 𝐹𝐻14𝐽1𝑆𝐼06 

ℎ20 = 𝐼3𝐽4𝑐1
2𝐽1(𝑛𝜋/𝑅)

2 + 𝐼3𝐽4𝑐1
2𝐽1(𝑚𝜋/𝐿)

2 − 𝐽1
2𝑆𝐼06 

𝑆𝐼06 = 𝐼0 + 𝑐1
2𝐼6[(𝑚𝜋/𝐿)

2 + (𝑛𝜋/𝑅)2] 

 Composited thick FGM SUS304/Si3N4 material is used to implement the numerical computation of 

vibration under environment temperature 𝑇. The FGM constituent material 1 at the inner position of shells 

is SUS304, and the FGM constituent material 2 at the outer position of shells is Si3N4 used for the free 

vibration frequency computations with the fully homogeneous equation. The advanced varied values of 𝑘𝛼 

are usually functions of 𝑐1, 𝑅𝑛, and 𝑇 in the thick FGM circular cylindrical shells (𝐵𝑖𝑗 ≠ 0). For 𝐿/𝑅 = 1, 

ℎ1 = ℎ2, ℎ∗ = 1.2 mm, advanced calculated values of nonlinear 𝑘𝛼are increasing with  𝑅𝑛 (values from 0.1 

to 10). Thus advanced values of 𝑘𝛼 are used for frequency calculations of the free vibration including the 

effects of nonlinear coefficient 𝑐1 term. 
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Table 1a. 𝑓∗ for SUS304/Si3N4 

𝐿 ℎ∗⁄  𝑅𝑛 
𝑐1 

(1/mm2) 

𝑓∗ 

Present solution, ℎ
∗ = 1.2 mm, advanced nonlinear 𝑘𝛼 

𝑇 = 1𝐾 𝑇 = 100𝐾 𝑇 = 300𝐾  𝑇 = 600𝐾  𝑇 = 1000𝐾  

5 0.5 
0.925925 

0 

0.502130 

0.590006 

0.570210 

0.643852 

0.745849 

0.738035 

0.773258 

0.792276 

0.549213 

0.693156 

 1 
0.925925 

0 

0.542049 

0.584454 

0.635356 

0.639541 

1.088972 

0.735365 

1.061970 

0.789534 

0.583895 

0.682771 

 2 
0.925925 

0 

0.720395 

0.601933 

0.147456 

0.657577 

1.749742 

0.754101 

1.857381 

0.809998 

0.643730 

0.705449 

 10 
0.925925 

0 

0.439585 

0.714064 

0.432449 

0.765051 

1.912712 

0.856587 

2.034272 

0.920757 

0.575911 

0.874146 

8 0.5 
0.925925 

0 

0.384405 

0.275399 

0.432271 

0.300743 

0.549680 

0.345240 

0.572973 

0.371763 

0.417923 

0.325808 

 1 
0.925925 

0 

0.412331 

0.270439 

0.475557 

0.296031 

0.734396 

0.341274 

0.732705 

0.367443 

0.444527 

0.316992 

 2 
0.925925 

0 

0.520187 

0.278029 

0.256231 

0.303717 

0.966141 

0.349439 

1.024323 

0.376290 

0.492228 

0.326585 

 10 
0.925925 

0 

6.133640 

0.333380 

0.966218 

0.359943 

1.064178 

0.403599 

1.131785 

0.435239 

1.103627 

0.415926 

10 0.5 
0.925925 

0 

0.444867 

0.193089 

0.489384 

0.209523 

0.591412 

0.242446 

0.618544 

0.259834 

0.501530 

0.229385 

 1 
0.925925 

0 

0.468606 

0.184350 

0.523140 

0.206358 

32.68439 

0.239394 

0.734637 

0.257086 

0.529650 

0.215634 

 2 
0.925925 

0 

2.502079 

0.186246 

0.307402 

0.211788 

0.638958 

0.244852 

0.678791 

0.263350 

0.569559 

0.215261 

 10 
0.925925 

0 

0.481267 

0.236454 

0.507236 

0.250857 

0.551137 

0.283276 

0.587717 

0.304129 

0.588011 

0.291925 

 

 Non-dimensional frequency parameter 𝑓∗ = 4𝜋𝜔11𝑅√𝐼2/𝐴11 values under the effects of 𝑐1 =

0.925925/mm2 and 𝑐1 = 0/mm
2 for 𝐿 ℎ∗⁄ = 5, 8, and 10 are shown in Table 1a, where 𝜔11 is the 

fundamental first natural frequency (subscripts 𝑚 = 𝑛 = 1). For SUS304/Si3N4 thick circular cylindrical 

shells under free vibration with ℎ∗ = 1.2 mm, the ℎ∗ values are in the values not greater than 32.68439 under 

𝑇 = 1𝐾, 100𝐾, 300𝐾, 600𝐾, and 1000𝐾 with advanced nonlinear varied 𝑘𝛼 and 𝑐1 effects. Thus the 𝑓∗ 

values are in functions of five parameters 𝐿 ℎ∗⁄ , 𝑅𝑛, 𝑐1, 𝑇, and 𝑘𝛼. The other non-dimensional frequency 

parameter Ω = (𝜔11𝐿2/ℎ∗)√𝜌1/𝐸1 values under the effects of 𝑐1 = 0.925925/mm
2 and 𝑐1 = 0/mm

2 for 

𝐿 ℎ∗⁄ = 5, 8, and 10 are shown in Table 1b, 𝜌1 is the density of FGM material 1, for SUS304/Si3N4 thick 

circular cylindrical shells under free vibration with ℎ∗ = 1.2 mm, the 𝛺 values are in the values not greater 

than 109.2509 under 𝑇 = 1𝐾, 100𝐾, 300𝐾, 600𝐾, and 1000𝐾 with advanced nonlinear varied 𝑘𝛼 and 𝑐1 

effects. Thus the Ω values are also in functions of five parameters 𝐿 ℎ∗⁄ , 𝑅𝑛, 𝑐1, 𝑇, and 𝑘𝛼. The natural 

frequencies calculated from the polynomial Eq. (7) with the determinant of fully homogeneous matrix eq.(6), 
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there are containing the dominant parameters 𝑐1 and 𝑘𝛼 for the present advanced TSDT study. Some natural 

frequencies in the published and referred paper with classical theory studies are given for comparisons. It is 

interesting to compare the present vibration values of the frequency with some authors' work as shown in 

Tables 1c-d. The values of 𝑓∗ vs. ℎ∗ for SUS304/Si3N4 under 𝐿 ℎ∗⁄ = 10 and 𝑇 = 300𝐾 with advanced 

nonlinear varied 𝑘𝛼 and 𝑐1 effects are shown in Table 1c. The compared value 𝑓∗ = 8.121246 at 𝑐1 =

0.252047/mm2, ℎ∗ = 2.3 mm, 𝑅𝑛 = 0.5 is greater than that 𝑓∗ = 8.0 at 𝑛 = 13 with silicon nitride–nickel 

under classical shell theory (CST), no external pressure (𝐾𝑒 =  0) presented by Sepiani et al. [22]. The 

compared 𝑓∗ difference of 1.5% at 𝑅𝑛 = 0.5 is due to the dominant parameters 𝑅𝑛, 𝑐1, and 𝑘𝛼 effects 

included in the present advanced TSDT study. The values of 𝛺 vs. ℎ∗ for SUS304/Si3N4 under 𝐿 ℎ∗⁄ = 10 

and T=700K with advanced nonlinear varied 𝑘𝛼 and 𝑐1 effects are shown in Table 1d. The compared value 

𝛺 = 1.719431 at 𝑐1 = 1.101928/mm
2, ℎ∗ = 1.1 mm, 𝑅𝑛 = 1 is close to 𝛺 = 1.71137 with the material 

variation type A, three layers thickness ratio 1-8-1, the L directional radius of curvature is ∞, 𝐿 ℎ∗⁄ = 10, 

𝑅𝑛 = 0.5  for the FGM sandwich shell presented by Chen et al. [25]. The compared 𝛺 difference of 6.4% at 

𝑅𝑛 = 0.5 is due to the dominant parameters 𝑐1 and 𝑘𝛼 effects included in the present advanced TSDT study. 

 

Table 1b. Ω for SUS304/Si3N4 

𝐿 ℎ∗⁄  𝑅𝑛 
𝑐1 

(1/mm2) 

Ω 

Present solution, ℎ
∗ = 1.2 mm, advanced nonlinear 𝑘𝛼 

𝑇 = 1𝐾 𝑇 = 100𝐾 𝑇 = 300𝐾  𝑇 = 600𝐾  𝑇 = 1000𝐾  

5 0.5 
0.925925 

0 

0.913275 

1.073105 

1.013033 

1.143866 

1.288651 

1.275150 

1.341320 

1.374310 

1.068076 

1.348008 

 1 
0.925925 

0 

0.944602 

1.018498 

1.086094 

1.093247 

1.820001 

1.229017 

1.781280 

1.324313 

1.077132 

1.259533 

 2 
0.925925 

0 

1.198026 

1.001023 

0.241754 

1.078098 

2.822099 

1.216264 

3.005259 

1.310585 

1.119442 

1.226770 

 10 
0.925925 

0 

0.676893 

1.099547 

0.662559 

1.172142 

2.914729 

1.305329 

3.107570 

1.406556 

0.905644 

1.374629 

8 0.5 
0.925925 

0 

1.118652 

0.801435 

1.228756 

0.854879 

1.519547 

0.954389 

1.590239 

1.031797 

1.300403 

1.013780 

 1 
0.925925 

0 

1.149677 

0.754050 

1.300685 

0.809668 

1.963837 

0.912595 

1.966387 

0.986122 

1.312058 

0.935628 

 2 
0.925925 

0 

1.384125 

0.739785 

0.672145 

0.796712 

2.493210 

0.901757 

2.651783 

0.974145 

1.369569 

0.908687 

 10 
0.925925 

0 

15.111748 

0.821366 

2.368561 

0.882354 

2.594676 

0.984053 

2.766279 

1.063799 

2.776796 

1.046497 

10 0.5 
0.925925 

0 

1.618253 

0.702381 

1.738877 

0.744476 

2.043641 

0.837780 

2.145896 

0.901436 

1.950690 

0.892191 

 1 
0.925925 

0 

1.633234 

0.642515 

1.788537 

0.705509 

109.2509 

0.800200 

2.464468 

0.862442 

1.954131 

0.795578 

 2 
0.925925 

0 

108.10273 

0.619460 

1.007971 

0.694453 

2.061109 

0.789826 

2.196582 

0.852205 

1.980920 

0.748676 

 10 
0.925925 

0 

1.482151 

0.728204 

1.554282 

0.768680 

1.679727 

0.863353 

1.795602 

0.929181 

1.849342 

0.918128 
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Table 1c. Comparison of frequency 𝑓∗ for SUS304/Si3N4 and silicon nitride–nickel 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝑓∗ 

Present method, 𝐿 ℎ∗⁄ = 10, 𝑇 = 300𝐾, advanced 

nonlinear 𝑘𝛼, for SUS304/Si3N4 Sepiani et al. 2010 [22], for 

silicon nitride–nickel, 𝑛 = 13 
𝑅𝑛 = 0.5 𝑅𝑛 = 1 𝑅𝑛 = 2 

6.584362 0.45 0.085005 0.101168 0.077682 - 

0.925925 1.2 0.591412 32.68439 0.638958 - 

0.333333 2 5.089255 5.388204 5.345398 - 

0.275482 2.2 7.027582 7.420739 7.400630 - 

0.252047 2.3 8.121246 8.565044 8.558597 8.0 

0.231481 2.4 9.299983 9.798618 9.807841 - 

0.000003 600 18032.99 18729.97 19240.79 - 

 

Table 1c. Comparison of frequency Ω for SUS304/Si3N4 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝑓∗ 

Present method, 𝐿 ℎ∗⁄ = 10, 𝑇 = 700𝐾, advanced 

nonlinear 𝑘𝛼 Chen et al. 2017 [25], Type A, 

1-8-1, 𝑅𝑛 = 0.5 
𝑅𝑛 = 0.5 𝑅𝑛 = 1 𝑅𝑛 = 2 

6.584362 0.45 0.811649 0.837942 0.674542 - 

1.333333 1.0 1.338406 1.450429 2.509230 - 

1.101928 1.1 1.601360 1.719431 2.364609 1.71137 

0.925925 1.2 2.069517 2.187293 2.099298 - 

0.000014 300 33198.62 33146.66 33434.83 - 

0.000003 600 133.3191 133.4515 132.7114 - 

0.000001 900 211.7611 211.8620 211.3022 - 

 

 Natural frequencies 𝜔mn (1/s) of free vibration according to mode shape numbers 𝑚 and 𝑛 at the 

subscripts for the SUS304/Si3N4 FGM thick circular cylindrical shells are calculated. For the values of 

fundamental 𝜔11 vs. 𝑅𝑛 with ℎ∗ = 1.2𝑚𝑚, advanced nonlinear varied 𝑘𝛼 and  𝑐1 = 0.925925/mm
2 for 

𝐿 ℎ∗⁄ = 5 and 10 under 𝑇 = 1𝐾, 100𝐾, 300𝐾, 600𝐾 and 1000𝐾 are shown in Table 2. The 𝜔11 values at 

𝑐1 = 0.925925/mm
2 and advanced nonlinear 𝑘𝛼 are in functions of three parameters 𝐿 ℎ∗⁄ , 𝑅𝑛, and 𝑇. For 

the values of natural frequency 𝜔mn vs. subscripts 𝑚, 𝑛 = 1,2, . . . ,9 with 𝑅𝑛 = 0.5, 𝑇 = 300𝐾, ℎ∗ =

1.2 mm under advanced nonlinear varied 𝑘𝛼 and 𝑐1 = 0.925925/mm
2 for 𝐿 ℎ∗⁄ = 5 and 10 can also be 

calculated. Typically, the advanced nonlinear varied 𝑘𝛼 values for 𝑇 = 300𝐾 are listed in the Table 3. The 

𝑘𝛼 values at 𝑐1 ≠ 0, 𝑐1 = 0 and 𝑇 = 300𝐾 are in nonlinear function of the parameter 𝑅𝑛. Also the nonlinear 

values of 𝑘𝛼 are independent of ℎ * for the thick FGM circular cylindrical shells. Some usual abbreviations 

and denotations have been added in Nomenclature for convenient reading. 

 Natural frequency 𝜔mn (subscripts 𝑚 = 1, 𝑛 = 1 𝑡𝑜 9) values vs. 𝑅𝑛 and 𝑇 of free vibration for the 

SUS304/Si3N4 FGM thick circular cylindrical shells are calculated. Fig. 2 shows the values of 𝜔1n vs. 𝑅𝑛 

in FGM circular cylindrical shells for thick 𝐿 ℎ∗⁄ = 5, 10 respectively, with the effects of advanced nonlinear 

varied 𝑘𝛼 and 𝑐1 = 0.925925/mm
2  under 𝑇 = 300𝐾. Generally the values of 𝜔1n are little decreasing with 
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subscript values of 𝑛 from 1 to 6 then great increasing with subscript values of 𝑛 from 7 to 8 for 𝐿 ℎ∗⁄ = 5, 

𝑅𝑛 = 0.5, and 10. The greatest value 𝜔18 = 0.006449/s is found for 𝐿 ℎ∗⁄ = 5 and 𝑅𝑛 = 1. The values of 

𝜔1n are decreasing with subscript values of 𝑛 from 1 to 9 for 𝐿 ℎ∗⁄ = 10, 𝑅𝑛 = 1. The values of 𝜔1n are 

great increasing with subscript values of 𝑛 from 1 to 2 and then decreasing with subscript values of 𝑛 from 

3 to 9 for 𝐿 ℎ∗⁄ = 5, 𝑅𝑛 = 0.5 𝑎𝑛𝑑 10. The greatest value 𝜔11 = 0.007780/𝑠 is found for 𝐿 ℎ∗⁄ = 10. The 

values of 𝜔1n with subscript values of 𝑛 from 4 to 9 also do not be affected by 𝑅𝑛 for 𝐿 ℎ∗⁄ = 10. The 𝜔1n 

values at 𝑐1 = 0.925925/mm
2, 𝑇 = 300𝐾 and advanced nonlinear 𝑘𝛼 are in functions of parameters 𝐿 ℎ∗⁄  

and 𝑅𝑛.  

 

Table 2. Fundamental natural frequency 𝜔11 for advanced nonlinear 𝑘𝛼, 𝑐1, ℎ
∗ = 1.2 mm 

𝐿 ℎ∗⁄  𝑅𝑛 

𝜔11 

𝑇 = 1𝐾 𝑇 = 100𝐾 𝑇 = 300𝐾  𝑇 = 600𝐾  𝑇 = 1000𝐾  

5 0.5 0.000255 0.000287 0.000367 0.000366 0.000242 

 1 0.000264 0.000307 0.000518 0.000486 0.000244 

 2 0.000335 0.000068 0.000803 0.000820 0.000253 

 10 0.000189 0.000187 0.000830 0.000848 0.000205 

10 0.5 0.000113 0.000123 0.000145 0.000146 0.000110 

 1 0.000114 0.000126 0.007780 0.000168 0.000110 

 2 0.007573 0.000071 0.000146 0.000149 0.000112 

 10 0.000103 0.000110 0.000119 0.000122 0.000104 

 

Table 3. Advanced nonlinear 𝑘𝛼, 𝑐1 and 𝑅𝑛 under 𝑇 = 300𝐾 

𝑐1 

(1/mm2) 

ℎ∗ 

(mm) 

𝑘𝛼 

𝑅𝑛 = 0.1 𝑅𝑛 = 0.2 𝑅𝑛 = 0.5 𝑅𝑛 = 1 𝑅𝑛 = 2 𝑅𝑛 = 5 𝑅𝑛 = 10 

92.592598 0.12 -0.821563 -0.861922 -1.181502 -4.392330 1.474843 0.583927 0.463616 

0.925925 1.2 -0.821565 -0.861923 -1.181503 -4.392341 1.474844 0.583927 0.463617 

0.231481 2.4 -0.821565 -0.861923 -1.181503 -4.392341 1.474844 0.583927 0.463617 

0.037037 6 -0.821564 -0.861924 -1.181502 -4.392332 1.474843 0.583927 0.463617 

0.009259 12 -0.821564 -0.861924 -1.181503 -4.392332 1.474843 0.583927 0.463617 

0 0.12 0.898426 0.956500 1.087890 1.195721 1.226106 1.121959 1.019033 

0 1.2 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034 

0 2.4 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034 

0 6 0.898425 0.956496 1.087891 1.195721 1.226106 1.121958 1.019033 

0 12 0.898426 0.956495 1.087891 1.195721 1.226106 1.121958 1.019033 
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 Fig. 3 shows the values of 𝜔1n vs. 𝑇 in FGM circular cylindrical shells for thick 𝐿 ℎ∗⁄ = 5 and 10 

respectively, under the effects of advanced nonlinear varied 𝑘𝛼, 𝑐1 = 0.925925/mm2 and 𝑅𝑛 = 0.5. 

Generally the values of 𝜔1n are little decreasing with subscript values of 𝑛 from 1 to 6 then great increasing 

with next subscript values of 𝑛 for 𝐿 ℎ∗⁄ = 5, 𝑇 = 300𝐾, 600𝐾 and 1000𝐾. The greatest value of 𝜔17 =

0.007372/𝑠 is found for 𝐿 ℎ∗⁄ = 5, 𝑇 = 1000𝐾. The values of 𝜔1n can't stand for higher temperature 𝑇 =

1000𝐾 for 𝐿 ℎ∗⁄ = 5. The values of 𝜔1n are great increasing with subscript values of 𝑛 from 1 to 2 and then 

decreasing with subscript values of 𝑛 from 3 to 9 for 𝐿 ℎ∗⁄ = 10, 𝑇 = 300𝐾, 600𝐾 and 1000𝐾. The values 

of 𝜔1n are almost the same for 𝑇 = 300𝐾 and 600𝐾, but in greater values than that in the 𝑇 = 1000𝐾. The 

greatest value of 𝜔12 = 0.005455/s is found for 𝐿 ℎ∗⁄ = 10, 𝑇 = 600𝐾. The values of 𝜔1n can stand for 

higher temperature 𝑇 = 1000𝐾 for 𝐿 ℎ∗⁄ = 10. The 𝜔1n values at 𝑐1 = 0.925925/mm
2, 𝑅𝑛 = 0.5 and 

advanced nonlinear 𝑘𝛼 are in functions of parameters 𝐿 ℎ∗⁄  and 𝑇. 

 

   

𝜔1𝑛 vs. 𝑅𝑛 for 𝐿 ℎ∗⁄ = 5 

(a) 

𝜔1𝑛 vs. 𝑅𝑛 for 𝐿 ℎ∗⁄ = 10 

(b) 

Fig. 2. 𝜔1𝑛 vs. 𝑅𝑛 for 𝐿 ℎ∗⁄ = 5 and 10 

 

   

𝜔1𝑛 vs. 𝑇 for 𝐿 ℎ∗⁄ = 5 

(a) 

𝜔1𝑛 vs. 𝑇 for 𝐿 ℎ∗⁄ = 10 

(b) 

Fig. 3. 𝜔1𝑛 vs. 𝑇 for 𝐿 ℎ∗⁄ = 5 and 10 
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𝑓∗∗ vs. 𝑛 for 𝑚 = 1 − 3, 𝐿 ℎ∗⁄ = 5 with advanced 

nonlinear 𝑘𝛼, 𝑐1 = 0.333333/𝑚𝑚2
 

(a) 

𝑓∗∗ vs. 𝑛 for 𝑚 = 1 − 3, 𝐿 ℎ∗⁄ = 5 with linear varied 

𝑘𝛼, 𝑐1 = 0/𝑚𝑚2
 

(b) 

       

𝑓∗∗ vs. 𝑛 for 𝑚 = 1 − 3, 𝐿 ℎ∗⁄ = 5 with constant 

nonlinear 𝑘𝛼 = 5/6, 𝑐1 = 0.333333/𝑚𝑚
2

 

(c) 

𝑓∗∗ vs. 𝑛 for 𝑚 = 1 − 3, 𝐿 ℎ∗⁄ = 5 with constant 

𝑘𝛼 = 5/6, 𝑐1 = 0/𝑚𝑚
2

 

(d) 

Fig. 4. 𝑓∗∗ vs. 𝑛 for 𝑚 = 1 − 3, 𝐿 ℎ∗⁄ = 5 with varied and constant 𝑘𝛼 

 

 Compared values of 𝑓∗∗ = 4𝜋𝜔𝑚𝑛𝑅√𝐼2/𝐴11 vs. subscript values 𝑛 = 1 − 6 for 𝑚 = 1, 2, 3 with 𝑅𝑛 =

0.5, ℎ∗ = 2 mm, 𝑇 = 300𝐾 are shown in Fig. 4 for the SUS304/Si3N4 FGM thick circular cylindrical shells, 

𝐿 ℎ∗⁄ = 5, respectively by considering advanced nonlinear 𝑘𝛼, 𝑐1 = 0.333333/mm2, linear varied 𝑘𝛼, 𝑐1 =

0/𝑚𝑚2 and constant 𝑘𝛼 = 5/6. The presented numerical frequencies 𝑓∗∗ are decreasing firstly vs. 

circumferential nodes 𝑛 = 1 − 6 in the axial nodes 𝑚 = 1, 2, 3 of FGM cylindrical shells in both Fig. 4a and 

Fig. 4c. In Fig. 4a, 𝑓∗∗ = 3.151624 is obtained at 𝑚 = 𝑛 = 1 with advanced nonlinear 𝑘𝛼, 𝑐1 =

0.333333/mm2. The compared 𝑓∗∗ values under advanced nonlinear 𝑘𝛼, 𝑐1 = 0.333333/mm
2 are in 

decreasing functions of mode shapes 𝑚 and 𝑛. In Fig. 4c, 𝑓∗∗ = 1.851984 is obtained at 𝑚 = 𝑛 = 1 with 

constant 𝑘𝛼 = 5/6, 𝑐1 = 0.333333/mm
2. The compared 𝑓∗∗ values under constant 𝑘𝛼 = 5/6, 𝑐1 =

0.333333/mm2 are in decreasing functions of mode shapes 𝑚 and 𝑛. The presented numerical frequencies 

𝑓∗∗ are increasing to around 45 firstly and then decreasing vs. 𝑛 = 1 − 6 in the 𝑚 = 1, 2, 3 of FGM 

cylindrical shells in both Fig. 4b and Fig. 4d. In Fig. 4b, 𝑓∗∗ = 1.655910 is obtained at 𝑚 = 𝑛 = 1 with 

varied 𝑘𝛼, 𝑐1 = 0/mm
2. The compared 𝑓∗∗ values under linear varied 𝑘𝛼 and 𝑐1 = 0/𝑚𝑚2 are in increasing 

then decreasing functions of mode shapes 𝑚 and 𝑛. In Fig. 4d, 𝑓∗∗ = 1.843023  is obtained at 𝑚 = 𝑛 = 1 
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with constant 𝑘𝛼 = 5/6, 𝑐1 = 0/𝑚𝑚
2. The compared 𝑓∗∗ values under constant 𝑘𝛼 = 5/6, 𝑐1 = 0/mm2 

are in increasing then decreasing functions of mode shapes 𝑚 and 𝑛. There are great effects of nonlinear 

coefficient term 𝑐1 and 𝑘𝛼 on the value of frequencies by using the approaching of fully homogeneous 

equations. In the linear case 𝑐1 = 0/mm2, the values of 𝑓∗∗ are overestimated. It is quite reasonable to 

consider the effect of nonlinear varied values 𝑘𝛼 and 𝑐1 on the advanced calculation of natural frequencies 

by using the approaching of fully homogeneous equations. 

 

4. Conclusion 

Natural frequency and non-dimensional frequency parameters are calculated and obtained by using the fully 

homogeneous equation with the polynomial equation in the fifth-order of 𝜆mn in the free vibration of thick 

FGM circular cylindrical shells. There are four effects of nonlinear coefficient term 𝑐1, advanced nonlinear 

shear correction coefficient, power-law exponent parameter, and environment temperature considered and 

investigated on the natural frequencies. The values of 𝜔1n can't stand for higher temperature 𝑇 = 1000𝐾 for 

𝐿 ℎ∗⁄ = 5, but the values can stand for higher temperature 𝑇 = 1000𝐾 for 𝐿 ℎ∗⁄ = 10. 

Nomenclature 

CST Classical shell theory 

FGM Functionally graded material 

FGMs Functionally graded materials 

FSDT First-order shear deformation theory 

TSDT Third-order shear deformation theory 

HSDT Higher-order shear deformation theory 

SUS304 Stainless steel 

Si3N4 Silicon nitride 

𝑘𝛼 Shear correction coefficient of thick FGM cylindrical shells 

𝑐1 = 4/(3ℎ
∗2) Nonlinear coefficient term of TSDT 

𝛥𝑇=0 No thermal loads 

𝑇 Environment temperature  

𝐿 Length of FGM cylindrical shells 

ℎ∗ Thickness of FGM cylindrical shells 

𝑅 The middle-surface radius of FGM cylindrical shells 

𝑅𝑛 FGM power-law exponent parameter 

𝜔𝑚𝑛 The natural frequency with subscripts m and n mode shape 

𝑓∗ = 4𝜋𝜔11𝑅√𝐼2/𝐴11 Non-dimensional frequency parameter 1 

Ω = (𝜔11𝐿
2/ℎ∗)√𝜌1/𝐸1 Non-dimensional frequency parameter 2 

𝑓∗∗ = 4𝜋𝜔𝑚𝑛𝑅√𝐼2/𝐴11 Non-dimensional frequency parameter 1 vs. M and n 
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