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Received 26 September 2023 The effects of shear deformation theory and improved shear correction factors on
Accepted 16 February 2024 the advanced computation of frequencies by using the fully homogeneous equation
for thick functionally graded material (FGM) circular cylindrical shells are studied.
It is quite reasonable to consider the extra advanced effect of third-order shear

Keywords deformation theory (TSDT) of displacements on the varied shear correction
FGM coefficient. The values of advanced nonlinear shear correction coefficient are
Cylindrical shells usually functions of the nonlinear coefficient term in TSDT, power-law exponent
Nonlinear analysis parameter, and environment temperature. The main achievements in the nonlinear
TSDT case of displacements and with the varied value of shear correction coefficients, the

non-dimensional fundamental frequencies are estimated, investigated, and
compared with the values in the linear case. This paper aims to study the
fundamental frequencies of very thick FGM cylindrical shells under the advanced
effects of shear deformation theory and improved shear correction factors.

Varied shear correction

1. Introduction

Usually, the shear deformation theory of displacements need not be considered in the thin shell analyses, and
it is usually considered for the thick shell analyses. To include the varied effect of stress across the thickness
direction for the thick shells, it would be usually to consider the shear deformation theory of displacements
in the study. For the moderate thick (e.g. aspect ratio equal to 10) shell analyses, first-order shear deformation
theory (FSDT) is usually used. For the very thick (e.g. aspect ratio equal to 5) shell analyses, third-order
shear deformation theory (TSDT) is usually used. The originality of this paper is to provide the difference
from the studies in the published literature. This paper provides both the shear deformation theory and
improved shear correction factors in the effect of frequencies, especially for the very thick plates and shells,
in the following published literature were seldom investigations of the improved and advanced studies.
Several investigations of the improved shear deformation theory of displacements on the thick beams, plates,
and shells. Birman and Bert [1] presented several models of shear correction factors in multi-layer sandwich
structures. Okumus [2] presented an analysis of shear correction factors for a thermoplastic cantilever beam.
Daouadji et al. [3] presented a new higher-order shear deformation theory (HSDT) of displacements with no
shear correction factor for the static behavior of functionally graded material (FGM) plates. Xiang et al. [4]
presented the natural frequencies of FGM plates resting on elastic foundations by using the nth-order shear
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deformation theory of displacements with no shear correction factor. Lim [5] presented the improved shear
correction factors for the deflection of simply supported very thick rectangular auxetic plates, without
considering the effect of FSDT and TSDT of displacements for the natural frequency. Bouhlali et al. [6]
presented the nonlinear thermo-elastic analysis of thick FGM plates without considering the effect of shear
correction factors. Ghamkhar et al. [7] presented the vibration frequency analysis of three-layered FGM
cylinder shells with the numerical method by considering the axial and circumferential wave numbers of
mode shapes. Nguyen et al [8] presented the refined FSDT of displacements and no shear correction factor
to investigate the free vibration of FGM plates. In 2020, Ganczarski and Szubartowski [9] presented the
thermo-mechanical analysis for thick-walled FGM cylinders including thermal barrier coating by using a
special graded finite element method. Vuong and Duc [10] presented the nonlinear vibration of moderately
thick FGM shells resting on elastic foundations by using the TSDT of displacements.

Some contact problems of functionally graded materials (FGMSs) were also presented. Yaylaci et al. [11]
presented the contact mechanics of FGMs in the rigid foundation and pressed punch, the body force was also
included in the analysis of the finite element method (FEM). Adiyaman et al. [12] presented the contact
problems of the FGM beam under the distributed pressure loads, the body force was also included in the
analysis. Yaylaci et al. [13] presented the frequencies and buckling of the FGM beam by using the FEM and
multilayer perceptron (MLP). Adiyaman et al. [14] also presented the contact problems of FGM beams for
studying the behavior of materials. Turan et al. [15] presented the frequencies and buckling of FGM porous
beams by using the FSDT, FEM, and artificial neural network (ANN) methods. There were seldom
investigations of the improved shear correction factors on the very thick plates and shells.

Mode shape values of non-dimensional frequency parameters are decreasing firstly vs. circumferential
nodes in the linear case of displacements and with a constant value of shear correction coefficient. There
were several investigations of the improved shear correction factors on the thick shells. Hong [16] presented
the preliminary studies in free vibration frequency of thick FGM spherical shells with simply homogeneous
equations by using TSDT of displacements and the linear calculation of varied shear correction coefficients.
Hong [17] presented the preliminary studies in free vibration frequency of thick FGM circular cylindrical
shells without considering the effects of the nonlinear coefficient TSDT term on the calculation of varied
shear correction coefficients. Hong [18] presented the basic studies of the varied shear correction and FSDT
effects on the vibration frequency of thick FGM circular cylindrical shells in unsteady supersonic flow. Hong
[19] presented the basic studies in thermal vibration of magnetostrictive FGM shells by considering the linear
FSDT of displacements and varied effects of the shear correction coefficient. This paper aims to study the
frequencies of very thick FGM cylindrical shells under the advanced effects of shear deformation theory and
improved shear correction factors. In the advanced studies for the vibration frequency of thick FGM circular
cylindrical shells with the fully homogeneous equation, it is interesting to consider the simultaneous three
effects of the TSDT of displacements, the nonlinear shear correction coefficient of transverse shear force and
the two directions of mode shapes. To obtain the results of natural frequencies (w,,,) in which subscripts m
and n are the mode shapes in x and y directions for the advanced studies of thick FGM circular cylindrical
shells. The innovation of this topic is to consider two advanced effects of nonlinear shear correction
coefficient and TSDT on the thick FGM circular cylindrical shells. The application of this topic in the future
might be applied to the field of missile engines.

2. The formulation for the advanced nonlinear k,

Time-dependent nonlinear displacements u, v, and w at any point (x, 8, z) of thick FGM cylindrical shells
are assumed in the nonlinear coefficient c; term of TSDT equations as follows, based on the semi-analytical
studies of laminated plates by Lee et al. [20]
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ow
u=1uy(x,0,t) + 29, (x,0,t)—c, 2> (¢ + a)

v =vy(x,0,t) + z¢g(x,0,t)—c, 23 (¢9 + %) X

w=w(x,6,t)

where u, and v, are the tangential displacements in the in-surface coordinates x and 8 axes direction,
respectively. w is the transverse displacement in the out-of-surface coordinates z axis direction of the middle
plane of shells. ¢, and ¢4 are the shear rotations. R is the middle-surface radius at any point (x, 8, z) of the
FGM cylindrical shells that are illustrated in Fig. 1 with the thickness /, of FGM material 1 and thickness
h, of FGM material 2, respectively in the thickness direction of the cylindrical coordinate systems. t is the
time. The coefficient for ¢, = 4/(3h*?) is given in the TSDT approach, in which h* is the thickness of FGM
cylindrical shells.

The normal stresses (o, and o) and the shear stresses (o,y, 0y and o,;) of the thick FGM circular
cylindrical shells under temperature difference AT for the kth constituent material are assumed in the
following equations by Whitney [21].

Oy Q:11 Q:12 Q:16 &y — 0 AT
O =101z Q22 02 g9 — apgdT
%0y Q16 Q26 Qes 10 Exp — AxpAT (k)

2

Qu 0
o) =las 8],

where a,, and ay are the coefficients of thermal expansion, a, is the coefficient of thermal shear, Q',-]- is the
transformed reduced stiffness of FGM shells, in which Q'ij = Q_isjs for subscripts i°, j° = 1,2,6 and Q',-jzéi*j*
for subscripts i*, j* = 4,5 and ¢,., &g, &, are in-plane strains, not negligible ¢, and &, are shear strains.

. . FGM material 2
FGM material 1

Fig. 1. Two-material thick FGM circular cylindrical shell under thermal environment T
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Simpler forms of Q_L-sjs and Qi*j* for FGM cylindrical shells with z/R terms cannot be neglected are used
and assumed by Sepiani et al. [22] and Hong [19] as follows:

_ _ E
_ _ fgm
Q11 = Q22 = F——
Q_12 = Q21 = Vfngfgm
(1 + Z/R)(l - Vfgmz)
Q_44 — Efgm (3)
2(1 + Vfgm)
_ _ E
Qss = Qe = Lom

2(1+z/R)(1 + vfgm)
Q16 = Q26 = Q45 =0
Vl;rvz is the Poisson’s ratios of the FGM cylindrical shells. Efg,,, = (E, — El)(zwL:—*/z)R" +

E, is the Young’s modulus of the FGM cylindrical shells. R,, is the power-law exponent parameter E;. and
E, are the Young’s modulus. v; and v, are the Poisson’s ratios of the FGM constituent material 1 and 2,
respectively. The properties E;, E,, v;, and v, of individual constituent material are in functions of
environment temperature T that can be expressed in the power-law function type of FGMs.

By defining the integrated expressions of Q'isjs and Qi*]-* in the direction of z axis for the thick FGM
cylindrical shells as follows,

in which v¢g,, =

h*
(Al-s]-s,Bis]-s,Dis]-s,El-sjs, Fl-sjs, Hl-sjs) = f—zh* Ql-sjs (1,Z,ZZ,Z3,Z4,Z6)dZ ) (is,js = 1,2,6)

2

n* (4)
(Ai=j* Bij+, Dysj#, Epsjo, Fpejr, Hps o) = fikaQ_i*j* (1,2,2%,2%, 2%, 25)dz , (i*,j* = 4,5)
2
in which k, is the advanced shear correction coefficient can be represented in the rational expression form
and functions of ¢y, R,,, and T by Hong [23,24].

3. Numerical results and discussion

The thick FGM circular cylindrical shells with layers in the stacking sequence (0°/0°) are used to study the
free vibration frequency with the effects of environment temperature and advanced varied shear correction
coefficient, under four sides simply supported boundary condition (at x = 0 and x = L, duy,/0x = vy =
w=0¢,/0x =¢pg=0,at0 =0and 8 = 2m, uy = 0v, /360 =w = ¢, = dpy/36 = 0) no thermal loads
(AT = 0), no in-plane distributed forces, and no external pressure load. The free vibration frequency (w;,,
with mode shape number in subscripts m and n ) can be derived by simply assuming that I, = I; = J; = 0,
Bij =E;j=0,A16 = Ay = 0,D;5 = Dy = 0,and Ay5 = Dy5 = Fy5 = 0, where [; = {g;fk"“p@) zldz,
(i =0,1,2,--+,6), in which N* is the total number of layers, p® is the density of kth ply, J; = I; — c;1;4,
(i = 1,4), also define K, = I, — 2¢,1, + ¢, 2l under the following time sinusoidal displacement and shear
rotations with amplitudes a,p, Pmn» Cmns Amn AN € -
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Uy = Ay coS(mmx /L) sin(nmb /R) sin( wy,,t)
Vg = by sin(mnx /L) cos(nn8/R) sin( wpyyt)
W = Cpy Sin(mmx /L) sin(nn6 /R) sin( wp,t)
@y = Ay cos(mnux /L) sin(nnb/R) sin( wy,,t)
Qg = eyn Sin(mmx /L) cos(nml/R) sin( wy,t)

where subscripts m is the number of axial half-waves and n is the number of circumferential waves

()

. By

substituting Egs. (5) into dynamic equilibrium differential equations with TSDT of FGM circular cylindrical
shells in terms of partial derivatives of displacements and shear rotations under free vibration (without the

thermal loads and mechanical loads), the fully homogeneous equation can be obtained as follows:

S11 S12 513 S14 S157 (Qmn 0
521 S22 523 S24 S25 | | Pmn 0
531 532 533 534 535 |4 Cmn ¢ =40
S41 S42 S43 Saa Sas | | dipp 0
S51 S52 S53 S54 S55 kean kO

where

mm
IOAmn C113(T)ﬂ'm" _ J1Amn
S11 = FHyq — o S12 = FHyy, S13 = FHy3 + 1 S14 = FHy, — o S15 = FHys,

nm
_ _ IoAmn _ 5113(T)Amn ]1}Lmn
S21 = FHyz, Sy = FHyp — o S23 = FHy3 + ——"-——, 34 = FHy4, S35 = FH,5 —

5113( L )Amn

S31 = FHyz + Io » S32 = FHy3 + P

S33 = FH3z — [Io + ¢1%l¢ (m)z +c1%ls (%n)z]/lmn/lo,

S34 = FHyy + M S35 = FHys + @
Sa1 = FHyy — lljgnn, Saz = FHyy, Su3 = FH3y + %, Sgqa = FHyy — sz;mn, Sus5 = FHys,
S5y = FHys, Ssy = FHys — M’"", Ses = FHas + M KoAmn

y Ss4 = FHys, Sg5 = FHgs —
0 0 0

Amn = lo@mn®, FHyy = Ay (mm/L)? + Agg(nt/R)?, FHyp = (A1 + Agg)(mm/L)(nm/R),
FHy3 = —c,Ey;(mn/L)® — (c1E1z + 2¢1Egg) (mm/L) (nm/R)?,
FHi4 = (By1 — ¢1E11)(mm/L)? + (Bgg — ¢1Eg6) (n/R)?,
FHys = (Byz + Bes — ¢1E1; — ¢1Ege) (/L) (n/R), FHyp = Agg(mm/L)? + App(nm/R)?,
FHys = —(c1E1p + 2¢1Egg) (mm/L)? (n1/R) — ¢, Epp(n/R)?,
FHyy = (B1z + Beg — €1E15 — €1Eg6) (mm/L) (n1/R),
FHys = (Bs — c1E¢6)(mm/L)? + (Byz — ¢ Ez2) (n/R)?, etc.
h* RpE{+E; (Y E-E))[ 1 3 3
s (8528) 5 - .

11 = v1+v2

1- (A2 Rp+1 (”1""2)2 Rnt4  2(Rp+3) | 4(Rp+2) 8Rp+1)’
_ (h )5 { _ [ 12 11 1 ﬂ}
Fia 1-(22)2 (B2 — E) Rn+5  Rp+4 + Rnt+3  2(Rp+2) + 16(Rp+1) * o)
Y 13 13 2 133 1 Ep
Hy = 1- ("1+"2)2 (&, - )[Rn+7 Rp+6 + 4(Rp+5)  Rp+4 + 16(Rp+3)  16(Rp+2) + 64-(Rn+1)] t s’

(6)
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_ kq(W)®(E2-E))[ 1 5 n 2 1 5 1
2(1+"12ﬂ) Rp+6  2(Rp+5) Rp+4 Rp+3  64(Rp+2)  32(Rp+1)

44 ] etc

The determinant of the coefficient matrix in equation (6) vanishes for obtaining the non-trivial solution
of amplitudes, the polynomial equation in the fifth-order of 4,,,, can be obtained as follows, thus the w;,,
can be found.

A A + AR A + AB) An> + A A2 + A Ay, + A(6) =0 (7
where
A() =Y dihy, A2) = X72(d; 9i + bikhy), ARB) = X2,(d; ffi + bigi + a;hy),
A(4) =X (die; + bif f; + a;9:), A(5) = X2 (bi e + aif f), A(6) =X a;e;
where

a; = FHyFHyy, by = —(FHyq + FHyy)lo, di = 1027
e, = FH33FH, FHsc + 2FHy, FHy3s FHys — FH3s*FH,y — FHy,*FHes — FHy3 FH, 52,
ffl = _FH33FH55K2 - FH4_4_FH555106 - FH33FH4_4_K2 + FH33K22 + FH44K25106 +
2FH34_FH45C1]4_7’17T/R + 2FH35FH45C1]4TYL7T/L - 2FH35FH44C1]4TLT[/R + FH352K2 -
2FH3,FHssc,Jomm/L + FHy,°K, + FHys?Sl,
91 = FHssK,Slpe + 2F Hysc, %], (mm/L) (nm/R) — FHyyc, %), (nmt/R)? + 2F HysKycyJynmt/R —
FHssc,?J,2(mm/L)? + 2FHy,K, ¢, J,mm /L,
hl = —K225106 + K2C12]42(n7t/R)2 + K2C12]42(m7'[/L)2, etc.
Ay = —FHysFHy,, by =0, dyo =0,
620 = FH13FH24FH35 + FH15FH23FH34 + FH14FH25FH33 - FHlsFH24_FH33 - FH14FH23FH35 -
FH,3FH,sFH;,,
ff20 = —FHysFHs3]y + FHy3FHys]y + FHi3FHyucJunmt /R + FHy FHygc lsmm /L — FH 4 F Hs3)y
+ FH,sFHy3c,Jymn/L + FH sFHy c lsnm/R — FH,sFHsycilsmm /L + FH 3 FHyyJq
- FH14FH35C1]3TLT[/R - FH14FH23C1]4TLT[/R - FH13FH25C]_]4m7T/L - FH14_FH255106
+ FHsFH,,S1ye,
920 = FHzsJiclznmt/R + FHys) ¢ Junm /R + FHysJi¢)/amn /L + FHsyJ ¢ Ismm /L
+ FHyulzci?]y(mm/L)(nm/R) + FHysl3c,%]s(mm /L) (nmt/R) — FHy4J4¢, %15 (nm/R)?
- FH25]4C1213 (mT[/L)Z + FH33]12 + FHys]1Slye + FH14]1S1p6

hao = I3Jaci*Jy(n/R)? + I3]4¢, %]y (mm/L)? _]125106
Slye = Iy + ¢, %Ig[(mm/L)? + (nm/R)?]

Composited thick FGM SUS304/Si3N4 material is used to implement the numerical computation of
vibration under environment temperature T. The FGM constituent material 1 at the inner position of shells
is SUS304, and the FGM constituent material 2 at the outer position of shells is Si3N4 used for the free
vibration frequency computations with the fully homogeneous equation. The advanced varied values of k,
are usually functions of c;, R,,, and T in the thick FGM circular cylindrical shells (B;; # 0). For L/R = 1,
hy = hy,, h* = 1.2 mm, advanced calculated values of nonlinear k,are increasing with R,, (values from 0.1
to 10). Thus advanced values of k, are used for frequency calculations of the free vibration including the
effects of nonlinear coefficient c¢; term.
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Table 1a. f* for SUS304/SisN4

f*
C
L/h* R ! Present solution, #* = 1.2 mm, advanced nonlinear k,
" (1/mm?)
T =1K T=100K T=300K T=600K T=1000K
5 05 0925925  0.502130 0.570210 0.745849 0.773258 0.549213
' 0 0.590006 0.643852 0.738035 0.792276 0.693156
) 0925925  ,542049 0.635356 1.088972 1.061970 0.583895
0 0.584454 0.639541 0.735365 0.789534 0.682771
) 0925925  0,720395 0.147456 1.749742 1.857381 0.643730
0 0.601933 0.657577 0.754101 0.809998 0.705449
10 0925925  .439585 0.432449 1.912712 2.034272 0.575911
0 0.714064 0.765051 0.856587 0.920757 0.874146
8 05 0.925925 (384405 0.432271 0.549680 0.572973 0.417923
' 0 0.275399 0.300743 0.345240 0.371763 0.325808
. 0.925925  0.412331 0.475557 0.734396 0.732705 0.444527
0 0.270439 0.296031 0.341274 0.367443 0.316992
) 0.925925 520187 0.256231 0.966141 1.024323 0.492228
0 0.278029 0.303717 0.349439 0.376290 0.326585
10 0925925  6,133640 0.966218 1.064178 1.131785 1.103627
0 0.333380 0.359943 0.403599 0.435239 0.415926
10 05 0925925  (.444867 0.489384 0.591412 0.618544 0.501530
' 0 0.193089 0.209523 0.242446 0.259834 0.229385
. 0.925925  0.468606 0.523140 32.68439 0.734637 0.529650
0 0.184350 0.206358 0.239394 0.257086 0.215634
) 0925925 2502079 0.307402 0.638958 0.678791 0.569559
0 0.186246 0.211788 0.244852 0.263350 0.215261
10 0925925  0.481267 0.507236 0.551137 0.587717 0.588011
0 0.236454 0.250857 0.283276 0.304129 0.291925

Non-dimensional frequency parameter f* = 4mw,,R\/I,/A;; Vvalues under the effects of ¢; =
0.925925/mm? and ¢; = 0/mm? for L/h* = 5,8, and 10 are shown in Table 1a, where w,, is the
fundamental first natural frequency (subscripts m = n = 1). For SUS304/Si3N4 thick circular cylindrical
shells under free vibration with h* = 1.2 mm, the h* values are in the values not greater than 32.68439 under
T = 1K,100K, 300K, 600K, and 1000K with advanced nonlinear varied k, and c, effects. Thus the f~
values are in functions of five parameters L/h*, R,,, ¢;, T, and k,. The other non-dimensional frequency
parameter Q = (w,,L?/h*)/p,/E; values under the effects of ¢; = 0.925925/mm? and ¢; = 0/mm? for
L/h* = 5,8, and 10 are shown in Table 1b, p, is the density of FGM material 1, for SUS304/Si3N4 thick
circular cylindrical shells under free vibration with ~* = 1.2 mm, the Q2 values are in the values not greater
than 109.2509 under T = 1K, 100K, 300K, 600K, and 1000K with advanced nonlinear varied k, and c;
effects. Thus the Q values are also in functions of five parameters L/h*, R,,, ¢;, T, and k,. The natural
frequencies calculated from the polynomial Eq. (7) with the determinant of fully homogeneous matrix eq.(6),
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there are containing the dominant parameters ¢, and k,, for the present advanced TSDT study. Some natural
frequencies in the published and referred paper with classical theory studies are given for comparisons. It is
interesting to compare the present vibration values of the frequency with some authors' work as shown in
Tables 1c-d. The values of f* vs. h* for SUS304/Si3N4 under L/h* = 10 and T = 300K with advanced
nonlinear varied k, and c; effects are shown in Table 1c. The compared value f* = 8.121246 at ¢, =
0.252047/mm?, h* = 2.3 mm, R,, = 0.5 is greater than that f* = 8.0 at n = 13 with silicon nitride—nickel
under classical shell theory (CST), no external pressure (Ke = 0) presented by Sepiani et al. [22]. The
compared f* difference of 1.5% at R,, = 0.5 is due to the dominant parameters R,,, ¢;, and k, effects
included in the present advanced TSDT study. The values of Q2 vs. h* for SUS304/Si3N4 under L/h* = 10
and T=700K with advanced nonlinear varied k, and c, effects are shown in Table 1d. The compared value
N =1.719431 at ¢; = 1.101928/mm?, h* = 1.1 mm, R, = 1 is close to 2 = 1.71137 with the material
variation type A, three layers thickness ratio 1-8-1, the L directional radius of curvature is «, L/h* = 10,
R,, = 0.5 for the FGM sandwich shell presented by Chen et al. [25]. The compared (2 difference of 6.4% at
R,, = 0.5 is due to the dominant parameters c; and k,, effects included in the present advanced TSDT study.

Table 1b. Q for SUS304/SisN4

Q
L/h* R, “ Present solution, #* = 1.2 mm, advanced nonlinear k,
(/mm?)

T =1K T = 100K T = 300K T=600K T =1000K

0.925925 0.913275 1.013033 1.288651 1.341320 1.068076

S 05 0 1.073105 1.143866 1.275150 1.374310 1.348008
0.925925 0.944602 1.086094 1.820001 1.781280 1.077132

! 0 1.018498 1.093247 1.229017 1.324313 1.259533

0.925925 1.198026 0.241754 2.822099 3.005259 1.119442

2 0 1.001023 1.078098 1.216264 1.310585 1.226770

0.925925 0.676893 0.662559 2.914729 3.107570 0.905644

10 0 1.099547 1.172142 1.305329 1.406556 1.374629

0.925925 1.118652 1.228756 1.519547 1.590239 1.300403

8 05 0 0.801435 0.854879 0.954389 1.031797 1.013780
0.925925 1.149677 1.300685 1.963837 1.966387 1.312058

! 0 0.754050 0.809668 0.912595 0.986122 0.935628

0.925925 1.384125 0.672145 2.493210 2.651783 1.369569

2 0 0.739785 0.796712 0.901757 0.974145 0.908687

0.925925 15.111748 2.368561 2.594676 2.766279 2.776796

10 0 0.821366 0.882354 0.984053 1.063799 1.046497

0.925925 1.618253 1.738877 2.043641 2.145896 1.950690

10 05 0 0.702381 0.744476 0.837780 0.901436 0.892191
0.925925 1.633234 1.788537 109.2509 2.464468 1.954131

! 0 0.642515 0.705509 0.800200 0.862442 0.795578

0.925925 108.10273 1.007971 2.061109 2.196582 1.980920

2 0 0.619460 0.694453 0.789826 0.852205 0.748676

10 0.925925 1.482151 1.554282 1.679727 1.795602 1.849342

0 0.728204 0.768680 0.863353 0.929181 0.918128
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Table 1c. Comparison of frequency f* for SUS304/SisN4 and silicon nitride—nickel

f*
C1 h* Present method, L/h* = 10, T = 300K, advanced o
(U/mm?)  (mm) nonlinear k,,, for SUS304/SisN4 Sepiani et al. 2010 [22], for
silicon nitride—nickel, n = 13
R, =05 R,=1 R,=2
6.584362 0.45 0.085005 0.101168 0.077682 -
0.925925 1.2 0.591412 32.68439 0.638958 -
0.333333 2 5.089255 5.388204 5.345398 -
0.275482 2.2 7.027582 7.420739 7.400630 -
0.252047 2.3 8.121246 8.565044 8.558597 8.0
0.231481 2.4 9.299983 9.798618 9.807841 -
0.000003 600 18032.99 18729.97 19240.79 -
Table 1c. Comparison of frequency Q for SUS304/SizsN4
f*
Cq h* Present method, L/h* = 10, T = 700K, advanced
(1/mm?) (mm) nonlinear k, Chen et al. 2017 [25], Type A,
1-8-1,R, =05
Rn=05 Rn=1 Rn=2
6.584362 0.45 0.811649 0.837942 0.674542 -
1.333333 1.0 1.338406 1.450429 2.509230 -
1.101928 1.1 1.601360 1.719431 2.364609 1.71137
0.925925 1.2 2.069517 2.187293 2.099298 -
0.000014 300 33198.62 33146.66 33434.83 -
0.000003 600 133.3191 133.4515 132.7114 -
0.000001 900 211.7611 211.8620 211.3022 -

Natural frequencies w,,, (1/s) of free vibration according to mode shape numbers m and n at the
subscripts for the SUS304/Si3N4 FGM thick circular cylindrical shells are calculated. For the values of
fundamental w,; vs. R, with h* = 1.2mm, advanced nonlinear varied k, and ¢, = 0.925925/mm? for
L/h* =5 and 10 under T = 1K,100K,300K, 600K and 1000K are shown in Table 2. The w,, values at
c; = 0.925925/mm? and advanced nonlinear k, are in functions of three parameters L/h*, R,,, and T. For
the values of natural frequency wy, Vvs. subscripts m,n =1,2,...,9 with R, = 0.5, T = 300K, h* =
1.2 mm under advanced nonlinear varied k, and c¢; = 0.925925/mm? for L/h* = 5 and 10 can also be
calculated. Typically, the advanced nonlinear varied k, values for T = 300K are listed in the Table 3. The
kq valuesatc; # 0,c; = 0and T = 300K are in nonlinear function of the parameter R,,. Also the nonlinear
values of k, are independent of h * for the thick FGM circular cylindrical shells. Some usual abbreviations
and denotations have been added in Nomenclature for convenient reading.

Natural frequency wp,, (subscripts m = 1,n = 1to 9) values vs. R, and T of free vibration for the
SUS304/Si3N4 FGM thick circular cylindrical shells are calculated. Fig. 2 shows the values of w,, vs. R,
in FGM circular cylindrical shells for thick L/h* = 5, 10 respectively, with the effects of advanced nonlinear
varied k, and ¢; = 0.925925/mm? under T = 300K . Generally the values of w,,, are little decreasing with
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subscript values of n from 1 to 6 then great increasing with subscript values of n from 7 to 8 for L/h* = 5,
R, = 0.5, and 10. The greatest value w;g = 0.006449/s is found for L/h* = 5 and R,, = 1. The values of
w1, are decreasing with subscript values of n from 1 to 9 for L/h* = 10, R,, = 1. The values of w,, are
great increasing with subscript values of n from 1 to 2 and then decreasing with subscript values of n from
3to9for L/h* =5, R, = 0.5 and 10. The greatest value w,; = 0.007780/s is found for L/h* = 10. The
values of w,, with subscript values of n from 4 to 9 also do not be affected by R,, for L/h* = 10. The wy,
values at ¢; = 0.925925/mm?, T = 300K and advanced nonlinear k,, are in functions of parameters L/h*
and R,,.

Table 2. Fundamental natural frequency w4 for advanced nonlinear kg, ¢y, h* = 1.2 mm

W11
L/h* R,
T =1K T = 100K T = 300K T = 600K T =1000K
5 0.5 0.000255 0.000287 0.000367 0.000366 0.000242
1 0.000264 0.000307 0.000518 0.000486 0.000244
2 0.000335 0.000068 0.000803 0.000820 0.000253
10 0.000189 0.000187 0.000830 0.000848 0.000205
10 0.5 0.000113 0.000123 0.000145 0.000146 0.000110
1 0.000114 0.000126 0.007780 0.000168 0.000110
2 0.007573 0.000071 0.000146 0.000149 0.000112
10 0.000103 0.000110 0.000119 0.000122 0.000104
Table 3. Advanced nonlinear k, ¢; and R,, under T = 300K
ke

Cq h*

(Ymm? (mm) R, =01 R,=02 R,=05 R,=1 R, =2 R,=5 R, =10

92592598 0.12 -0.821563  -0.861922  -1.181502  -4.392330  1.474843 0.583927 0.463616
0.925925 12 -0.821565 -0.861923 -1.181503  -4.392341  1.474844 0.583927 0.463617
0.231481 24  -0.821565 -0.861923 -1.181503 -4.392341  1.474844 0.583927 0.463617
0.037037 6 -0.821564  -0.861924  -1.181502  -4.392332  1.474843 0.583927 0.463617
0.009259 12 -0.821564  -0.861924  -1.181503  -4.392332  1.474843 0.583927 0.463617

0 0.12  0.898426 0.956500 1.087890 1.195721 1.226106 1.121959 1.019033
0 1.2 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034
0 24 0.898426 0.956498 1.087891 1.195721 1.226106 1.121959 1.019034
0 6 0.898425 0.956496 1.087891 1.195721 1.226106 1.121958 1.019033
0 12 0.898426 0.956495 1.087891 1.195721 1.226106 1.121958 1.019033
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Fig. 3 shows the values of w,, vs. T in FGM circular cylindrical shells for thick L/h* =5 and 10
respectively, under the effects of advanced nonlinear varied k,, ¢; = 0.925925/mm? and R,, = 0.5.
Generally the values of w,, are little decreasing with subscript values of n from 1 to 6 then great increasing
with next subscript values of n for L/h* =5, T = 300K, 600K and 1000K. The greatest value of w,,; =
0.007372/s is found for L/h* = 5, T = 1000K. The values of w,,, can't stand for higher temperature T =
1000K for L/h* = 5. The values of w,,, are great increasing with subscript values of n from 1 to 2 and then
decreasing with subscript values of n from 3to 9 for L/h* = 10, T = 300K, 600K and 1000K. The values
of w,, are almost the same for T = 300K and 600K, but in greater values than that in the T = 1000K. The
greatest value of w,, = 0.005455/s is found for L/h* = 10, T = 600K. The values of w,, can stand for
higher temperature T = 1000K for L/h* = 10. The w;, values at ¢; = 0.925925/mm?, R,, = 0.5 and
advanced nonlinear k., are in functions of parameters L/h* and T.

(glv: (91':
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0.007 —05%
0.005 ——R =05
e -~ R, =10
0.004 0.005 F R
0.003 0.004 =
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0000 n 0000 1 1 1 1 1 1 1 1 s N
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Fig. 3. wyy, vs. T for L/h* = 5 and 10
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f**vs.nform=1-3,L/h* =5 with advanced f**vs.nform=1-3,L/h* =5 with linear varied
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Fig. 4. f**vs.nform =1 — 3, L/h* = 5 with varied and constant k,

Compared values of f** = 4ww,,, R/ 1, /A, VS. subscript valuesn =1 — 6 form = 1,2,3 with R, =
0.5,h" = 2mm, T = 300K are shown in Fig. 4 for the SUS304/Si3N4 FGM thick circular cylindrical shells,
L/h* = 5, respectively by considering advanced nonlinear k,, ¢; = 0.333333/mm?, linear varied k,, ¢, =
0/mm? and constant k, = 5/6. The presented numerical frequencies f** are decreasing firstly vs.
circumferential nodes n = 1 — 6 in the axial nodes m = 1, 2, 3 of FGM cylindrical shells in both Fig. 4a and
Fig. 4c. In Fig. 4a, f* = 3.151624 is obtained at m =n =1 with advanced nonlinear k,, c¢; =
0.333333/mm?. The compared f** values under advanced nonlinear k,, ¢; = 0.333333/mm? are in
decreasing functions of mode shapes m and n. In Fig. 4c, f* = 1.851984 is obtained at m = n = 1 with
constant k, = 5/6, ¢; = 0.333333/mm?. The compared f** values under constant k, = 5/6, ¢; =
0.333333/mm? are in decreasing functions of mode shapes m and n. The presented numerical frequencies
f* are increasing to around 45 firstly and then decreasing vs. n =1—6 in the m =1,2,3 of FGM
cylindrical shells in both Fig. 4b and Fig. 4d. In Fig. 4b, f* = 1.655910 is obtained at m = n = 1 with
varied k,, ¢; = 0/mm?. The compared f** values under linear varied k, and ¢, = 0/mm? are in increasing
then decreasing functions of mode shapes m and n. In Fig. 4d, f** = 1.843023 isobtainedatm =n =1



81 Hong

with constant k, = 5/6, ¢c; = 0/mm?. The compared f** values under constant k, = 5/6, ¢; = 0/mm?
are in increasing then decreasing functions of mode shapes m and n. There are great effects of nonlinear
coefficient term ¢; and k, on the value of frequencies by using the approaching of fully homogeneous
equations. In the linear case ¢; = 0/mm?, the values of f** are overestimated. It is quite reasonable to
consider the effect of nonlinear varied values k, and ¢, on the advanced calculation of natural frequencies
by using the approaching of fully homogeneous equations.

4, Conclusion

Natural frequency and non-dimensional frequency parameters are calculated and obtained by using the fully
homogeneous equation with the polynomial equation in the fifth-order of Amn in the free vibration of thick
FGM circular cylindrical shells. There are four effects of nonlinear coefficient term ¢, advanced nonlinear
shear correction coefficient, power-law exponent parameter, and environment temperature considered and
investigated on the natural frequencies. The values of w,, can't stand for higher temperature T = 1000K for
L/h* =5, but the values can stand for higher temperature T = 1000K for L/h* = 10.

Nomenclature

CST Classical shell theory

FGM Functionally graded material

FGMs Functionally graded materials

FSDT First-order shear deformation theory

TSDT Third-order shear deformation theory

HSDT Higher-order shear deformation theory

SUS304 Stainless steel

Si3N4 Silicon nitride

ko Shear correction coefficient of thick FGM cylindrical shells

¢ = 4/(3h*?)
AT=0

T

L

B

R

Ry

Wmn

f*=4nw Ry /A
Q= (w11L2/h*)\/ p1/Eq
[ =4nwna Ry /A11

Nonlinear coefficient term of TSDT

No thermal loads

Environment temperature

Length of FGM cylindrical shells

Thickness of FGM cylindrical shells

The middle-surface radius of FGM cylindrical shells

FGM power-law exponent parameter

The natural frequency with subscripts m and n mode shape

Non-dimensional frequency parameter 1
Non-dimensional frequency parameter 2

Non-dimensional frequency parameter 1 vs. M and n
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