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1. Introduction

Seismic design codes define response spectra with crisp numerical classifications of
seismic parameters, which mainly affect the spectrum's shape and determination of
seismic design loads. The efficiency of structural safety and construction costs
depends on the optimum design and accurately determined seismic forces. As
presented in the seismic design codes, several parameters are utilized to calculate
the seismic design forces with response spectra. This study proposes a rule-based
fuzzy inference system (FIS) model with fuzzy set numbers to determine the relevant
parameters. By defining the soil profile thickness and shear wave velocity as inputs,
the model generates the spectrum characteristic periods specified in the Tiirkiye
Building Earthquake Code (TBEC 2007). The response spectra of twenty different
samples with the FIS and crisp models were generated and compared to assess the
model's superiority. Unlike crisp seismic code classifications, the proposed FIS
model accounts for imperfections in soil group selection and topmost soil layer
thickness, offering a more realistic representation of uncertainties and proving to be
an effective tool for addressing linguistic vagueness in seismic response spectra
analysis. The comparison between fuzzy and crisp output seismic parameters
revealed significant differences in response spectra shape and spectrum intensity
values. The FIS model-generated spectra were more conservative in certain building
locations, while in others, they provided similar or lower values, suggesting potential
cost savings in design. The FIS model demonstrates its efficacy in producing more
accurate and robust designs by considering the uncertainties inherent in the problem.
Furthermore, this approach has the potential to be extended to study seismic
parameters of other design codes, although further research is required to
comprehensively explore its capabilities and limitations.

Structural engineering design and evaluation against seismic events necessitate typically seismic design
codes and code-based provisions for the response spectra to impose seismic loads during structural analysis
[1-2]. The input parameters utilized for response spectra production in seismic design include factors such
as soil profiles, seismic zones, seismic coefficients and site classes. The aforementioned spectra-responsive
parameters significantly impact seismic design forces, which play a crucial role in the appropriate structural
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system member designs, materials, dimensions and types. The accuracy of the parameter adaptation for
response spectra generation is essential for ensuring project structural safety and construction costs. While
seismic design codes often provide crisp parameter classifications, the impact of fuzzification, particularly
when guided by expert supervision, provides membership degrees for factors such as structural safety and
construction costs [3-5]. In real-world scenarios, fuzzification of seismic coefficients can alter the shape of
the response spectrum and provides a plausible variation range in the calculated seismic loads. Thus, it is
necessary to compare the results of different cases, including crisp model values and fuzzy inference system
(FIS) outputs, to assess the impact of fuzzification on the response spectrum's shape and the corresponding
seismic design loads. This comparison can help to determine the optimal method for achieving better design
performance, which is crucial for ensuring seismic safety and cost-effectiveness. Since the seismic forces
consist of higher-order vagueness, fuzzy logic accounts for a more rational method to predict and minimize
the uncertainties in calculations.

The subsequent studies provide an overview of the essential principles of FIS model applications,
including fuzzy logic fundamentals and how FISs can be utilized to address verbal uncertainties,
complexities, complications, and vagueness [6-12]. As described in the following paragraph, several recent
studies have incorporated fuzzy logic methods to combine seismic effects and/or response spectra with FIS
models.

Mellal [13] developed a new approach that combined fuzzy set theory and a nonlinear numerical model
to determine seismic response spectra for soil columns. The modified FIS method in the study allowed for
the rapid derivation of response spectra by applying fuzzy arithmetic to certain input parameters. In a separate
study, Wadia-Fascetti and Gilines [14] utilized statistical models to incorporate fuzzy logic and quantify
uncertainties inherent in structural response as a result of ground motions. They also compared their proposed
models with current design codes and suggested further implementation methods. Ansari and Noorzad [15]
proposed a method based on fuzzy mathematics to express the effects of uncertainties in certain dynamic
analysis parameters such as damping, mass, stiffness, and input excitation on the response spectra of seismic
activity in lowlands. Marano et al. [16] incorporated fuzzy theory and a probabilistic approach to define a
ground motion model to generate a fuzzy classical stochastic response spectrum evaluation in linear systems.
In their study, the input structural parameters' variability was considered and compared with other available
non-probabilistic approaches in the literature.

Sen [17] presented a fuzzy-logic-based computation model for the hazard categorization of existing
buildings for the seismic hazard evaluation by rapid visual methods. The FIS presented in his paper
demonstrated a robust application of fuzzy theory for the assessment of pre-earthquake resistance
identification of buildings. Additionally, Sen [18] proposed another supervised fuzzy classification method
for identifying hazard categories of individual buildings using different membership functions (MFs).
Heidari and Khorasani [19] utilized the Adaptive Neural Network Fuzzy Inference System (ANFIS) to
produce synthetic earthquake accelerograms that comply with specific response spectra. The proposed
approach takes advantage of ANFIS's learning capabilities to establish a reverse mapping from response
spectra to seismic records. It includes a set of illustrative recorded accelerograms to demonstrate the
effectiveness of the proposed method. Ozkul et al. [20] introduced a fuzzy degrading model that accurately
predicted inelastic displacement ratios of reinforced concrete structures in dynamic analyses, thereby helping
to designate the most appropriate classical method to find the displacement ratios of degrading systems.
Bektas and Kegyes-Brassai [21] presented a fuzzy logic-based soft rapid visual screening (SRVS) method
as an alternative to conventional rapid visual screening (RVS) methods to assess existing building stocks in
earthquake-prone zones. The proposed method is developed based on the examination of 40 unreinforced
masonry (URM) buildings data acquired as a consequence of the 2019 Albania earthquake. It aims to identify
building safety levels using computer algorithms such as machine learning, fuzzy logic, and artificial neural
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networks. They established rules, MFs, necessary transformation and defuzzification procedures to construct
the fuzzy logic-based SRVS method. Although Nahhas [22] previously developed a similar method for
generating code-compliant seismic response spectra using a fuzzy model, there are no studies in the literature
on acquiring seismic parameters by fuzzy logic for response spectra.

While various fuzzy logic-based methodologies, such as hybrid fuzzy, adaptive neuro-fuzzy inference
system (ANFIS), fuzzy cognitive mapping (FCM), and fuzzy decision tree (FDT), are available for clustering
multiple data, their efficiency varies. For instance, fuzzy cognitive maps (FCMs) and neuro-fuzzy inference
systems (NFIS) are commonly employed for clustering purposes [23]. FCMs also serve as effective decision-
making tools in data management [24-25]. Al-Fahdawi and Barroso [26] introduced adaptive neuro-fuzzy
and simple adaptive control methods for three-dimensional coupled buildings under bi-directional seismic
excitations. Ghani et al. [27] investigated earthquake-induced liquefaction behavior of fine-grained soils
using an artificial intelligence-based hybridized model employing the adaptive neuro-fuzzy inference system.
Mehrabi et al. [28] utilized intelligent fuzzy-based hybrid metaheuristic techniques to predict the seismic
response of fiber-reinforced concrete columns. Tombari and Stefanini [29] proposed a hybrid fuzzy-
stochastic approach for one-dimensional site response analysis, considering probability models for seismic
input and fuzzy intervals for soil uncertainties. Guo et al. [30] assessed the seismic vulnerability of reinforced
concrete structures using fuzzy theory and global vulnerability curves. Fuzzy logic-based methods offer the
advantage of capturing logical relationships between input and output variables, surpassing crisp logic
methodologies. Moreover, these approaches help mitigate numerical and lexical uncertainties through
training and testing stages, leading to more reliable verification and validation results. However, a limitation
of adaptive neuro-fuzzy inference systems is their partially black-box behavior concerning the internal
generation mechanism of the system.

The primary objective of this study is to develop a Fuzzy Inference System (FIS) model using fuzzy sets,
fuzzy membership functions (MFs) and fuzzy rules for certain soil profile input parameters. Many structures
in Tirkiye were designed considering the provisions of the previous seismic design code, the Tirkiye
Building Earthquake Code (TBEC 2007) [31], which was updated in 2018. Since the TBEC 2007 [31] was
not prepared with any uncertainty, such as the probabilistic approach, fuzzy logic is functional to reflect the
effect of imprecisions and vagueness alike. In this paper, the soil parameters of the response spectrum defined
in the TBEC 2007 [31] are fuzzified to express the inherent vagueness using a fuzzy-based FIS modelling
approach. Engineers and experts commonly use traditional crisp classifications and mathematical equations
from seismic design codes to adopt a response spectrum for calculating seismic forces in structural analysis
and assessment procedures. The proposed method has the potential to be adapted and applied to generate
response spectra for other seismic codes with accuracy and precision improvements.

2. Turkiye Building Earthquake Code (2007) provisions

In many countries worldwide, including Tiirkiye, the seismic design of multi-story buildings is heavily
influenced by the prevailing earthquake codes and standards established by the respective national
authorities. These codes are periodically reviewed and updated to incorporate the latest advancements in
seismic engineering research and practices. However, it is important to note that the implementation of
updated codes takes time, and as a result, many existing buildings have been designed and constructed based
on previous versions of the seismic design provisions.

Turning our focus specifically to Tiirkiye, a significant portion of the country's building stock comprises
structures that were designed and constructed in accordance with the Tirkiye Building Earthquake Code
(TBEC) of 2007 [31]. This code represented the state-of-the-art seismic design practices at the time of its
publication and played a crucial role in enhancing the seismic resilience of structures throughout the country.
Nevertheless, as seismic engineering knowledge and understanding continue to evolve, it is essential to
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periodically reassess the performance of buildings designed under earlier codes to ensure their continued
safety and resilience in the face of potential earthquakes. Ongoing efforts are being made by researchers,
engineers, and regulatory bodies to improve seismic design standards and practices, taking into account the
lessons learned from past earthquakes and advancements in the field of structural and earthquake
engineering.

2.1. Response spectra

The spectral acceleration coefficient, A(T), is taken as a basis for the determination of seismic loads in TBEC
2007 [31]. The structural analysis response spectrum is formed by acquiring the elastic spectral acceleration
coefficient, S.(T), which is the ordinate of the response spectrum corresponding to the product of A(T), and
the gravitational acceleration, g. Ao is the effective ground acceleration coefficient, | is the building
importance factor, and S(T) is the spectrum coefficient. Thus, response spectra are the Sa.(T) -T graphs that
should be considered in the seismic analysis of structures, where T stands for the period values. An example
response spectrum according to the TBEC 2007 [31] is shown in Fig. 1. The relationships between all the
variables explained in this paragraph are given by the following formulations in TBEC 2007 [31].

A(T) = Ay I S(T) 1)
Sae (T) = A(T) g (2)

2.1.1. Effective ground acceleration coefficient, Ao
The effective ground acceleration coefficient, Ao, is obtained through the earthquake zone of the building,
which is found according to the earthquake zone map presented in Fig. 2. There are five main earthquake
zones, which are based on the locations of the active fault lines, namely Zones 1, 2, 3, 4 and 5. Colours on
the map differ considering high-risk (red) to low-risk (white) potential. For example, the red zones on this
map show Zone 1, and the yellow zones show Zone 3 locations.

Four different effective ground acceleration coefficients Ao are defined in TBEC 2007 [31], as shown in
Table 1. Since no value is presented for Zone 5, the Zone 4 value can be used for the buildings in Zone 5.

Sae ( 1') ."T.

(m/s?)

9.81—

3.92

0,0 e
0.15  0.60 I'(s)
Fig. 1. An example response spectrum, according to TBEC 2007 [31]
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Fig. 2. Earthquake zones map of Tiirkiye [32]

Table 1. Effective ground acceleration coefficients, Ao [31]

Earthquake Zone Ao
1 0.40
2 0.30
3 0.20

2.1.2. Building importance factor, I

The building importance factor, I, is determined according to the purpose of occupancy or the type of the
building. Table 2 shows the building importance factors defined in the code for different types of buildings.

2.1.3. Spectrum coefficient, S(T)

The spectrum coefficient, S(T), is determined depending on the local soil profile and the building's natural
period, T. The response spectrum shape is dependent mainly on spectrum coefficients. Its shape in terms of
spectral coefficients is given in Fig. 3, which is formed according to the following three mathematical
expressions. Here, Ta and T correspond to the spectrum characteristic periods given in Table 3, depending

on the local soil classes based on the detailed classification.

T
ST =1+15 — (0<T<T,)

A

S(T) =25 (Ty =T <Tg)

0.8

S(T) = 2.5 (%) (T; <T)

®)

(4)

®)
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Table 2. Building Importance Factors, I [31]

The Purpose of Occupancy or Type of the Building Building Importance Factor, |

1. The buildings to be used first priority after an earthguake and the buildings
containing hazardous materials:

a) The buildings required to be utilized immediately after the earthquake
(Hospitals, dispensaries, healthcare centres, fire stations and facilities, post
office departments and other telecommunication facilities, transportation

stations and terminals, power generation and distribution facilities; provincial 15
halls, county and municipality administration buildings, first aid and

emergency planning stations).

b) The buildings containing or storing toxic, explosive and flammable

materials 1

2. Intensively and long-term occupied buildings and the buildings preserving

valuable goods:

a) Schools, other educational buildings and facilities, dormitories and hostels, 14
military barracks, and prisons.

b) Museums.

3. Intensively and short-term occupied buildings: 12

Sports facilities, cinemas, theatre and concert halls.

4. Other buildings:
The buildings without the above definitions. (Residential and office 1.0
buildings, hotels, and building-type industrial structures)

S(T)
25—

S(1)=2.5(Ts/T)"*

1.0—

% r

Fig. 3. Spectrum coefficients of the response spectrum [31]

Table 3. Spectrum characteristic periods, Ta and T [31]

Local Soil Class Ta Ts
Z1 0.10 0.30
Z2 0.15 0.40
Z3 0.15 0.60

Z4 0.20 0.90
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2.2. Local soil classification
Four different local soil classes are defined in TBEC 2007 [31] for considering the seismic properties of the
soil profile under the structures as Z1, Z2, Z3 and Z4. Determination of the local soil classes is mainly based
on two different parameters, namely, the soil group (soil type) and the thickness of the foundation soil layer.
Thus, if the soil profile of the building location is determined in terms of these variables, the local soil class
and corresponding spectrum characteristic periods are then found under the light of the previous section.
TBEC 2007 [31] provides two tables for the determination of these soil conditions. Table 4 is for the soil
groups definition as (A), (B), (C) and (D) according to the standard penetration (N/30) test results, relative
density, unconfined compressive strength and shear velocity. One of the most distinctive and predominant
variables among the soil group specification is the shear wave velocity, which is accepted globally as the
seismic behaviour and hazard risk of soils' determinant value. In this study, it is considered as the input for
the determination of the soil group. Table 5 shows the topmost soil layer thickness values. The thickness
threshold values consist of 10 m, 15 m, and 50 m. If the soil group and the topmost layer thickness are
determined, then the local soil class is found in this table.

Table 4. Soil groups

Unconfined

Soil Standard Relative Compressive Shear Wave
Grou Description of the Soil Group Penetration Density Strr;n th Velocity
P (N/30) (%) (kpg) (m/s)

1. Massive volcanic rocks and unweathered
solid metamorphic rocks, stiff cemented - - > 1000 > 1000
sedimentary rocks

(A
2. Very dense sand, gravel > 50 85-100 - > 700

3. Hard clay and silty clay > 32 - > 400 > 700

1. Soft volcanic rocks such as tuff and
agglomerate, weathered cemented

sedimentary  rocks with  planes of i i 500-1000 700-1000
(B) discontinuity

2. Dense sand, gravel 30-50 65-85 - 400-700

3. Very stiff clay, silty clay 16-32 - 200-400 300-700

1. Highly weathered soft metamorphic rocks
and cemented sedimentary rocks with planes - - <500 400-700
of discontinuity

©
2. Medium-dense sand and gravel 10-30 35-65 - 200-400
3. Stiff clay and silty clay 8-16 - 100-200 200-300
1. Soft, deep alluvial layers with high

- - - <200

groundwater level

®) 2. Loose sand <10 <35 - <200
3. Soft clay and silty clay <8 - <100 <200

3. Fuzzy model

A Fuzzy Inference System (FIS) model alternative, the Mamdani method [9-10], is employed to estimate
spectrum characteristic periods (Ta and Tg) of the response spectra. The model has two input variables,
namely the thickness (h,) and the shear wave velocity (V;) of the topmost soil layer, and outputs the spectrum
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characteristic periods, , Ta or Ts. The input and output variables are described in the form of fuzzy sets. After
the fuzzification of input variables and writing down the fuzzy logic rule base between the inputs and outputs,
the results appear in non-normal fuzzy set forms, which are defuzzified to obtain a crisp value for the
spectrum characteristic periods. The process of generating spectrum characteristic periods using the FIS
model involves a mechanism that combines expert opinions of input variables' fuzzy sets to output fuzzy sets
through a fuzzy rule base. Considering the soil group and soil class, each rule in the fuzzy rule base
establishes a connection between the fuzzy input sets and the spectrum characteristic periods, which are the
outputs of the model.

The FIS model is implemented using MATLAB [33] software fuzzy logic controller tool due to its
precision and practicality. Figure 4 shows the estimation mechanism of the proposed FIS model for both
spectrum characteristic periods, Taor Ts. While the model determines both period values, the output
membership functions (MFs) and rule bases differ. The proposed model has adaptability potential and
applicability to other seismic design codes beyond TBEC 2007 [31]. This could lead to more precise and
accurate estimates of seismic variables used in the response spectrum generation.

3.1. Membership functions (MFs)

MFs with triangular and trapezium shapes are considered for each input and output variable in fuzzification
procedures. The topmost soil layer thicknesses, hi, are fuzzified by considering the related table of local soil
classification given in the code, as described in Section 2.2. The transition between peak thickness values is
determined by triangular-shaped fuzzy sets. The topmost soil layer thickness (h,) MFs are given in Fig. 5 as
"Very Low", "Low", "Medium", and "High".

Similarly, the soil groups are fuzzified by considering the shear wave velocity values as described in
Section 2.2. The transition between peak shear wave velocity values is specified by triangular-shaped fuzzy
sets. The shear wave velocity MFs connected to soil groups are shown in Figure 6 as "D", "C", "B", and "A".

Each spectrum characteristic period (TA or TB) is categorized according to four local soil classes in terms
of fuzzy sets as "Z1", "z2", "Z3", and "Z4" based on the code provisions in Section 2.2. The MFs of these
outputs are shown in Fig. 7. Fig. 5-7 are for the input and output fuzzifications consisting of trapezium MFs
for the initial and final sets, each with two triangular MFs in between.

Table 5. Local soil classes [31]

Local Soil Class Soil Group and Topmost Soil Layer Thickness (h,)
Group (A) soils

1 Group (B) soils with h; <15 m
Group (B) soils with h; >15m

22 Group (C) soils with hy <15m
Group (C) soilswith 15m < h; <50 m

z3 Group (D) soils with h; <10 m
Group (C) soils with h; >50 m

z4 Group (D) soils with h; >10 m

o |:_FUZZIFICATIO:N: _':fCEEL - i lDEFLIZZIF_ICATIOH: ) T|::|T-5~
|

Fig. 4. FIS model's estimation mechanism
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3.2. FIS and rule base
The logical connection between the input and output variables is possible by a rule base that consists of
expert opinions in line with the code provisions. With four MFs assigned to each input variable, the fuzzy
rule base (FRB) consists of 16 combinations for the logical system of each MF in input variables, as in Fig.
5 and 6. Each rule follows a general structure in the following form.

"IF topmost soil layer thickness MF AND soil group MF THEN Ta or Ts MF"

Between the IF and THEN of each statement, input MFs are combined using ANDing logical conjunction,
while each fuzzy rule is combined by ORing logical conjunction. Table 6 presents the FRBs for the proposed
FIS model. As explained above, each rule represents a logically valid relationship between input and output
fuzzy MFs.

The "MIN" inference, which represents the logical combination of input sets to obtain output results in
accordance with fuzzy set operations, is accomplished through the "ANDing" operator. Meanwhile, the
aggregation process is conducted using the "MAX" operator corresponding to the "ORing" logical operation
to combine the fuzzy output sets. Once the output is determined in terms of soil classes ("Z1", "Z2", "Z3",
or "Z4"), a crisp value of the spectrum characteristic period can be derived to generate the response spectrum.
For this purpose, the output is defuzzified using the "CENTROID™ method, which takes into account the
centroid of the consequent output fuzzy set leading to a crisp output value [34]. The three-dimensional
appearances of the FIS rule base surface graphs are displayed in Fig. 8 for both seismic spectrum
characteristic periods, Ta and T,

4. Case study

Twenty building locations in various districts of Istanbul City are selected as case studies to compare the
response spectra generated by the crisp spectrum characteristic periods specified in the code with those
produced by the proposed FIS model. Each case has unique soil properties and spectrum characteristics based
on the input parameters, and some of the buildings have previously undergone seismic code-based
assessments. Fig. 9 and 10 show the locations of these buildings on the hazard map of Istanbul with peak
ground velocity (PGV) contour and photos of the buildings, including their identification numbers (IDs),
respectively.

The input data for each building, obtained from site observations and expert opinions, include the
thickness of the topmost soil layer (h;) and shear wave velocity (V;), from which Taand Ts periods are
calculated according to the TBEC 2007 [31] provisions as already described in Section 2. Building
importance factors, I, and effective ground acceleration coefficients, Ao, are then applied to spectrum
coefficients, S(T), based on these crisp values to form the response spectra.

The FIS model is employed using the same h1 and VS values as inputs for each case to estimate the fuzzy
Taand Ts periods, T,and Ts, which are then used to calculate spectrum coefficients, S(T), of the fuzzy
response spectra. In the formation of fuzzy response spectra, the same | and Ao values are applied to spectrum
coefficients, and S(T) is calculated by fuzzy spectrum characteristic periods considering various
combinations of soil groups and profiles. Table 7, Fig. 11, 12 and 13 provide the results of these example
cases, including the relative difference between the crisp and fuzzy spectrum characteristic period values.

Table 6. Rule base of spectrum characteristic periods, Ta and Ts

R1: IF "Topmost_Soil_Layer_Thickness" is "V.Low" AND "Soil_Group™ is "A" THEN "Ta" and "Tg" is "Z1"
R2: IF "Topmost_Soil_Layer_Thickness" is "V.Low" AND "Soil_Group" is "B" THEN "Ta" and "Tg" is "Z1"
R3: IF "Topmost_Soil_Layer_Thickness" is "V.Low" AND "Soil_Group" is "C" THEN "Ta" and "Tg" is "Z2"

R4: IF "Topmost_Soil_Layer_Thickness" is "V.Low" AND "Soil_Group" is "D" THEN "Ta" and "Tg" is "Z3"
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Table 6. Continued

R5: IF "Topmost_Soil_Layer_Thickness" is "Low" AND "Soil_Group" is "A" THEN "Ta" and "Tg" is "Z1"
R6: IF "Topmost_Soil_Layer_Thickness" is "Low" AND "Soil_Group" is "B" THEN "Ta" and "Tg" is "Z2"
R7: IF "Topmost_Soil_Layer_Thickness" is "Low" AND "Soil_Group" is "C" THEN "Ta" and "Tg" is "Z2"
R8: IF "Topmost_Soil_Layer_Thickness" is "Low" AND "Soil_Group" is "D" THEN "Ta" and "Tg" is "Z4"
R9: IF "Topmost_Soil_Layer_Thickness" is "Medium" AND "Soil_Group" is"A" THEN "Ta™" and "Tg" is "Z1"

R10: IF "Topmost_Soil_Layer_Thickness" is "Medium" AND "Soil_Group" is "B" THEN "Ta™" and "Ts" is "Z2"
R11: IF "Topmost_Soil_Layer_Thickness" is "Medium" AND "Soil_Group" is"C" THEN "Ta" and "Tg" is "Z3"
R12: IF "Topmost_Soil_Layer_Thickness" is "Medium" AND "Soil_Group" is"D" THEN "Ta" and "Tg" is "Z4"
R13: IF "Topmost_Soil_Layer_Thickness" is "High" AND "Soil_Group" is "A" THEN "Ta" and "Tg" is "Z1"
R14: IF "Topmost_Soil_Layer_Thickness" is "High" AND "Soil_Group" is "B" THEN "Ta" and "Tg" is "Z2"
R15: IF "Topmost_Soil_Layer_Thickness" is "High" AND "Soil_Group" is "C" THEN "Ta" and "Tg" is "Z4"
R16: IF "Topmost_Soil_Layer_Thickness" is "High" AND "Soil_Group" is "D" THEN "Ta" and "Tg" is "Z4"
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Fig. 9. Example building locations with 1D numbers
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Fig. 10. Example building photos with ID numbers
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Table 7. Results of the example building locations

Building *h, *Vs Soil Group | 0 TBEC 2007 Fuzzy Model Difference (%)

No (m) (m/s) Ta Ts Ta' Ts' Ta—Ta' Ty —Ts'
1 23 300 C 1.0 0.40 0.15 0.60 0.2007 0.7500 34% 25%
2 10 410 C 1.0 0.40 0.15 0.40 0.1374 0.4897 -8% 22%
3 22 150 D 1.0 0.30 0.20 0.90 0.2268 0.8754 13% -3%
4 50 281 C 14 0.30 0.20 0.90 0.2414 0.9399 21% 4%
5 55 230 C 1.0 0.40 0.20 0.90 0.2421 0.9473 21% 5%
6 13 250 D 14 0.30 0.15 0.60 0.2104 0.7976 40% 33%
7 18 230 D 1.0 0.30 0.15 0.60 0.2166 0.8306 44% 38%
8 21 480 B 1.0 0.30 0.15 0.40 0.1468 0.5614 -2% 40%
9 16 410 C 1.0 0.40 0.15 0.60 0.1629 0.5833 9% -3%
10 18 320 C 1.0 0.40 0.15 0.60 0.1958 0.7351 31% 23%
11 13 175 D 1.0 0.40 0.20 0.90 0.2181 0.8307 9% -8%
12 8 180 D 1.0 0.30 0.15 0.60 0.1588 0.6089 6% 1%
13 5 150 D 1.0 0.40 0.15 0.60 0.1617 0.6180 8% 3%
14 17 340 C 1.0 0.40 0.15 0.60 0.1904 0.7114 27% 19%
15 19 320 C 1.0 0.30 0.15 0.60 0.1954 0.7324 30% 22%
16 21 220 C 1.0 0.40 0.15 0.60 0.2154 0.8212 44% 37%
17 19 750 A 1.0 0.30 0.10 0.30 0.0953 0.3232 -5% 8%
18 5 930 A 1.0 0.30 0.10 0.30 0.0569 0.1778 -43% -41%
19 10 160 D 1.0 0.30 0.15 0.60 0.1607 0.6150 7% 3%
20 17 590 B 1.0 0.40 0.15 0.40 0.1387 0.5020 -8% 26%

* Input values used in the fuzzy model
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Fig. 11. TBEC 2007 [31] vs fuzzy response spectra; case 1~8
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Fig. 12. TBEC 2007 [31] vs fuzzy response spectra; case 9~16
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Fig. 13. TBEC 2007 [31] vs fuzzy response spectra; case 17~20

As stated by Oguz [35], the acceleration spectrum intensity indicates the damage potential in case of a
strong ground motion. The area under the response spectrum with a specified period range shows the intensity
of that region. Travasarou et al. [36] showed a strong correlation between the displacement demand that
emerged from an earthquake and acceleration spectrum intensities, which in all example cases are calculated
to compare the damage potential of the building locations (Table 8). Fig. 14 shows the areas (spectrum
intensities) under several regions on an example acceleration spectrum graph. PGA stands for the peak
ground acceleration, and Ar corresponds to the total area of the spectrum, namely the acceleration spectrum
intensity. A1, Az, and As stand for the area of the increasing acceleration, constant acceleration and constant
velocity regions, respectively.

5. Discussion

Application of the FIS model to the different code response spectra showed that there is a tendency for a
change in spectrum shape as well as in spectrum intensity. The spectra obtained with the FIS model provide
distinctive results in the building locations. In some cases, they are found to be conservative or nearly the
same as the traditional code spectra. In others, they provide lower spectral accelerations.

Based on the results of cases 17 and 18, a significant correlation exists between the increase in the Vs
and the decrease in the spectral acceleration values. For case 18, the FIS model spectrum provides much
lower spectral acceleration values than the code spectrum in the constant acceleration (A») and constant
velocity (As) regions. This result is invalid for the increasing acceleration region (A1) because the FIS model
spectrum tends to provide higher spectral acceleration values. It shows that the FIS model spectrum can
provide more conservative values and higher structural safety for short-period structures in stiff soils, as
expected from any structural design code.
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Table 7. Acceleration spectrum intensity comparisons

Acceleration Spectrum Intensity (g.s.)

Differences (%)

B“:\'l‘éi”g TBEC-2007 Fuzzy Model
AL Az As At Al A A3’ AT’ Ar—AY Ar—AY As—As Ar—AT
1 0.11 0.45 1.38 1.94 0.14 0.55 1.49 2.18 33% 22% 8% 12%
2 0.11 0.25 1.17 1.52 0.10 0.35 1.28 1.73 -6% 40% 9% 13%
3 0.11 0.53 1.17 1.80 0.12 0.49 1.16 1.77 16% -71% -1% -2%
4 0.15 0.73 1.64 2.52 0.18 0.73 1.66 2.57 20% 0% 1% 2%
5 0.14 0.70 1.56 2.40 0.17 0.71 1.58 2.46 20% 1% 1% 2%
6 0.11 0.47 1.45 2.04 0.15 0.62 1.59 2.36 40% 31% 9% 16%
7 0.08 0.34 1.04 1.45 0.12 0.46 1.15 1.72 48% 36% 11% 19%
8 0.08 0.19 0.88 1.14 0.08 0.31 1.01 1.40 1% 64% 16% 22%
9 0.11 0.45 1.38 1.94 0.11 0.42 1.37 1.90 6% -71% -1% -2%
10 0.11 0.45 1.38 1.94 0.14 0.54 1.48 2.16 34% 20% 7% 11%
11 0.14 0.70 1.56 2.40 0.15 0.61 1.53 2.30 10% -13% -2% -4%
12 0.08 0.34 1.04 1.45 0.08 0.34 1.04 1.46 7% 0% 0% 1%
13 0.11 0.45 1.38 1.94 0.11 0.46 1.40 1.97 6% 2% 1% 2%
14 0.11 0.45 1.38 1.94 0.13 0.52 1.47 2.12 27% 16% 6% 9%
15 0.08 0.34 1.04 1.45 0.11 0.40 111 1.62 35% 18% 7% 11%
16 0.11 0.45 1.38 1.94 0.16 0.60 1.53 2.29 48% 33% 11% 18%
17 0.05 0.15 0.76 0.97 0.05 0.17 0.79 1.01 2% 10% 4% 5%
18 0.05 0.15 0.76 0.97 0.03 0.09 0.57 0.70 -39% -40% -25% -28%
19 0.08 0.34 1.04 1.45 0.08 0.34 1.04 1.47 6% 2% 1% 1%
20 0.11 0.25 1.17 1.52 0.10 0.36 1.29 1.75 -6% 44% 11% 15%
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Fig. 14. Acceleration spectrum intensity calculations

On the other hand, for the medium stiffness soils (cases 2, 8 and 20), a widening is evident in the A,
region, which affects Ts and A; intensity differences. In case 8, the Ts value increased from 0.4 sec to 0.56
sec with a 40% ratio, and the A; intensity increased from 0.19 gs to 0.31 gs with a 64% ratio. The shape and
intensity of the As region are also affected towards more conservative values with an average intensity
difference of 12%. However, the change in the shape and intensity of the Al region is not apparent but
provides almost the same spectral shapes in that region. Ultimately, the total intensity ranges from 14% to
24% for cases 2, 8 and 20.

The relatively low stiffness soils with Vs values between 220 m/s and 340 m/s exhibit similar behaviour
to those of cases 2, 8 and 20. The constant acceleration region is extended along with an offset caused by the
increase of both Ta and T values. For example, in case 7, the T value increased from 0.6 sec to 0.83 sec
with 0.23 sec. (38%) difference. The change in Ta values is relatively low (0.07 sec), but the difference (44%)
is considered significant. In these cases, the traditional code spectra provide more conservative results in the
Az region regarding spectral acceleration values. On the other hand, this outcome is not valid for the
acceleration spectrum intensity values. Due to the lengthening of the Ta period, an increase in the Az
intensities is observed in the FIS model spectra that reach a ratio of 48%.

FIS model spectra provide quite similar results with the traditional code spectra as an interesting outcome
for the soft soils both in shape and spectrum intensities.

6. Conclusion

The fuzzy logic inference system (FIS) model is an effective tool for handling linguistic uncertainties based
on fuzzy sets. It has been extensively utilized in many fields to address problems including imprecision,
vagueness, incompleteness and alike in data. Contrary to crisp seismic code classification, the proposed FIS
model response spectra methodology accounts for imperfections in soil group selection and topmost soil
layer thickness. The study employs the seismic parameters of the Tiirkiye Building Earthquake Code (TBEC
2007) [31] provisions on twenty building examples with different soil profiles, shear wave velocities and
topmost soil layer thicknesses data. The comparison of the fuzzy and crisp output seismic parameters shows
a significant difference in the response spectra's shape and acceleration spectrum intensity values except for
the soft soils where similar results were obtained.

In specific building locations characterized by diverse soil profiles, the response spectra obtained from
the FIS model tend to provide higher spectral acceleration values than traditional response spectra. This
observation implies that the design acceleration values prescribed by the code may not offer sufficient
structural safety when considering the uncertainties present in those locations. Conversely, in some other
areas, the response spectra generated by the FIS model yield comparable or lower values than the traditional
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approach. This suggests that the traditional response spectra might result in potentially excessive design
forces for structures that adhere to the code requirements. Consequently, the utilization of the fuzzy version
of the response spectrum has the potential to offer a design solution that is potentially safer or more cost-
effective in various scenarios, taking into account the vagueness of the soil profile.

For buildings on stiff soils, the FIS model response spectra tend to provide lower spectral acceleration
values, resulting in a conservative approach for short-period structures. FIS model response spectra provide
a more conservative approach both in the constant acceleration and the velocity regions with medium
stiffness soils. The differences between the total spectrum intensities were found to vary from 1% up to 28%,
and the differences between the characteristic period values were found to be 1%~44% in various cases.

Fuzzy logic-based inferencing model usage helps to generate response spectra with a more realistic
representation of the uncertainties present in the problem, which leads to more robust and reliable designs.
Furthermore, a similar approach can be used to study the seismic parameters of other design codes. However,
more comprehensive research is necessary to fully understand this approach’s potential and limitations.
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