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Received 19 October 2022 This study aims to produce glass fiber composite plates by vacuum infusion method
Accepted 21 November 2022  and to determine the interlaminar shear strength (ILSS) under the short beam test.
For this purpose, composite plates were produced under the effect of vacuum and
temperature by adding glass fiber layers on a flat vacuum table. Short beam tests
were carried out on the obtained laminated composite plates and the interlayer shear
Glass fiber composites strength, which is generally characterized by delamination damage, was
investigated. In the numerical part, the tests were modeled using the LS-DYNA
finite element package program, and the Hashin damage criterion-based material
model was used to see the damages that occurred in the composite structure after the
tests.
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1. Introduction

Along with the developments in technology, the innovation and application of composite materials are seen
as a turning point in modern industry. Fiber-reinforced composites can be manufactured in plate form (thin
section) due to their high mechanical properties. Fiber-reinforced composites are materials that exhibit brittle
fracture behavior and can be subjected to different static and dynamic loads when their application areas are
considered. Under these loads, damage to the structure occurs due to matrix cracks and fiber breaks. These
fractures also cause the initiation and progression of damage on surfaces outside the contact zone under load,
and sometimes even invisible delamination damage. Delamination is a critical failure mechanism in
composite laminates, often characterized by interlayer shear strength [1], and this strength value is one of the
most important parameters in determining a composite's ability to resist delamination damage. Therefore,
accurate estimation of this value is important for composites. Sritharan and Askari [2] used helical carbon
nanotubes with various weight percentages as additional reinforcement to glass fiber composite laminates.
They calculated the short-beam strength of the reinforced composites they obtained according to the ASTM
D2344 standard. Allot and Czabaj [3] performed short beam tests according to ASTM D2344 standards to
measure the interlayer shear strength (ILSS) of polymer matrix composites (PMCs). The effect of sample
size on damage mode and interlaminar shear strength was investigated. Tretiak et al [4] performed short
beam tests using a reduced cross-sectional area approach to estimate the short beam shear strength of
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carbon/epoxy laminates. They used the reduced cross-sectional area to estimate the short beam shear strength
of laminates containing voids. Demiral et al. [5] investigated the interplay damage behavior of glass fiber
composites with microvascular channels. Short beam bending tests and finite element analyzes were
performed according to ASTM D2344 for two stacking configurations, [90/0]3s and [0/90]3s. Kumar et al.
[6] designed different surface modifications with aluminum-carbon composite sandwich panels. Then, they
obtained the effect of this surface modification on shear strength between layers by applying a shear beam
test for samples with different aperture/depth ratios. Kotik and Ipifia [7] compared the effect of Unifilo layers
on glass fiber-reinforced composite laminates under interlayer shear stresses under static and fatigue
conditions using the short beam test. Xin et al. [8] have produced short and short continuous fiber synergistic
reinforced composites by the production of fused filaments. Then, the effects of short fiber content on
filament bonding properties were evaluated by performing short beam tests and in-plane tensile shear tests.
Dinesh and Gowthaman [9] applied a short beam test on the samples obtained by producing plain and ZnO
nanowire-reinforced unidirectional glass/epoxy composites.

When the studies are examined, short beam tests were carried out on glass [1], carbon [10], and hybrid
[11] composites, and it was observed that the effects of fiber reinforcement elements on shear strength
between layers were studied experimentally. However, unlike the literature in this study, unlike the literature;
Glass fiber composites were produced and interlayer shear strength and modulus were determined
experimentally and numerically according to ASTM D2344 standards. In the numerical study, progressive
damage analysis of glass fiber composites was performed in three dimensions. The fiber shrinkage, crushing,
and crack damages obtained as a result of the analysis are presented in comparison with the experimental
results.

2. Experimental details

2.1. Materials and manufacturing

To determine the shear strength between layers, flat composite plates with 5mm thickness and 150x300mm
dimensions were designed and produced. The samples obtained were 18 layers and were arranged in one
direction. Glass fiber woven fabrics with twill 2x2 weave type were added to the vacuum infusion table and
production was carried out by impregnating with epoxy under vacuum. The production of glass fiber
reinforced composites by vacuum infusion method is shown in Fig. 1 and the sample obtained after
production is shown in Fig. 2. Also in Fig. 2, the composite plate produced, the test sample prepared
according to ASTM D2344 standards, and the boundary conditions are given.

A mixture of LR160 resin and LH160 hardener at a ratio of 100/20 by weight, together with braided glass
fiber with 300 gr/m2 areal density, was used in production. After the homogeneous mixture obtained was
impregnated with glass fiber fabrics under vacuum, it was cured at 100°C for 2 hours. Afterward, the
temperature unit was turned off and the samples under vacuum were kept at room temperature for 24 hours.
The samples obtained at the end of this period were cleaned and stacked. Three test specimens were prepared
by cutting the flat composite plates produced according to ASTM D2344 standards with a thickness of
h=5mm, a length of L = 50 mm, and a width of W = 10mm. Afterward, the samples were made ready for
testing by placing them between two 4 mm diameter fixed support rollers and a 10 mm diameter movable
loading roller as shown in Fig. 3. Here, the beam span length Ls = 6h = 30 mm is determined according to
ASTM D2344 standards.
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2.2. Short beam test

Short beam tests were carried out on the Shimadzu AGS-X tester with 10 kN capacity. The cross-head used
in the experiment has a cylindrical geometry, and a diameter of 10 mm. The head velocity was set to 1
mm/min during the test period. As a result of the experiments, reaction force-displacement, reaction force
time, and shear stress-shear strain graphs were obtained. To determine the out-plane shear moduli G,, with
10 mm width, 50 mm length, and 5 mm thickness were manufactured by using the standard Test Method for
Short-Beam Strength as described in ASTM D2344. The strain-gage was glued along the natural axis of the
longitudinal lateral surface of the specimen at the angle of 45° with a transverse direction as shown in Fig. 2
(In-plane x- z for G,,). Maximum shear stresses in the natural axis were calculated as given in Eq. (1). G,,
can be calculated by using Egs. (2) and (3).

3 Pax
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where P, is the damage load, W is the sample width and h is the sample thickness. This relation is based

on the theoretical maximum shear stress achieved in classical Timoshenko engineering beam theory [12]. €
is the strain rate read from the strain gauge as in the following.
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3. Numerical method

3.1. Geometrical model

Short beam test analyses were carried out in the LS-DYNA finite element program. An 8-node solid element
type was used in the modeling of composite plates. To obtain realistic boundary conditions, instead of fixing
the boundary nodes, loading and support rollers are modeled. The loading and support rollers were defined
as rigid. The support rollers are fixed in x, y, and z-directions according to the global axis tool (Fig. 4). The
loading roller is allowed to move only in the z-direction. Loading roller velocity was given as a constant 1
mm/min in the +z direction. The number of elements belonging to the simulated finite element model was
determined as 43.246 and the number of nodes as 49.522.

3.2. Material model

There are various two-dimensional material models in the LS-DYNA finite element program that describe
the damage conditions of composite materials. However, for a three-dimensional examination of the damage
conditions of composite plates after a short beam test, the MAT162 material model was preferred. Fiber
tensile, fiber crush, matrix, and delamination damages occurring in composite structures are observed
progressively with this model, which allows for the definition of the Hashin damage criterion. A total of 34
parameters are needed to define the material model in the MAT162 program. Mechanical properties and
damage parameters obtained for the MAT162 material model are given in Table 1 and Table 2, where 1, 2,
and 3 represent the axes of composite materials parallel to the fiber, perpendicular to the fiber, and along the
thickness, respectively.
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Fig. 4. Numerical model of the short beam test setup
Table 1. Mechanical properties of glass fiber/epoxy composite [13]

Parameter E1 E. Es v Vo var G2 G2 Ga
(Unit) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
Value 19 19 6 0.162 0.162 0.162 3.786 1.709 1.709

Parameter Xt Xic

Xat Xac Xat S12
(Unit) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Sz3 Sa1 p
(GPa) (GPa) (kg/m3)

Value 0.459 0.2238 0.459 0.2238 0.0459 0.0828

0.09023 0.09023 1681.39

Table 2. Damage properties of glass fiber/epoxy composite [13]

SFC SFS
Parameter AM; AM; AMs AM; SFFC  Create1
(Unit) (GPa) (GPa)
Value 0.358 0.118 0.05 0.05 8 0.2 0.3 0.0449
Parameter

(Unit) Create 2 Create 3 Create 4

SDELM  OMGMX  E_LIMT

EEXPN 0 )

Value 0.0339 0 0.0477 1.2 0.999

11 11 10
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3.3. Damage mechanism of composite

MAT162 material model is based on Hashin's [14] principle of progressive damage and the damage
mechanics of Matzenmiller et al. [15]. This material model is used to model the progressive damage caused
on unidirectional and woven fabric layers subjected to a high shape change ratio and high-pressure loading
conditions. In the progressive damage model, the onset of damage is governed by equations. Equations of
different types of damage are given below as Equations 4-11. Here, when damage thresholds (r, g, 19, 740,
711, N2, 13) reach a value of 1, the initial damage condition is obtained.

3.3.1. Fiber tensile/shear failure modes
The fill and warp fiber tensile/shear damage is given by the quadratic interaction between the associated
axial and thickness-shear strains [16].

Eq£q)? Gactac\> 2 _ o (in diranti
(saT ) + (m) r,“ = 0 (in direction a) @)
Epen\? | (Gbetbc\® _ 2 _ 0 (in directi

(st ) + ( SBES ) r3° = 0 (in direction b) (5)

where, for the fabric model, a, b, and ¢ denote the in-plane fill, in-plane warp, and out-of-plane directions,
respectively. E and G are tensile and shear moduli. S, and S, are tensile strengths in the fill and warp
directions, S,rs and Sgps are fiber shear failure strengths in ac and bc directions, ¢, and g, are tensile strains
in a and b directions, €,. and ¢, are shear strains in a — c and b — ¢ planes, and r,, ry are damage
thresholds[16].

3.3.2. Fiber compressive failure mode
It is assumed that the in-plane compressive damage in the fill and warp directions is given by the maximum
strain criterion as

I\ 2
(E;'ga) —15° =0, & =—g— (&) ? = 0 (in direction a) (6)
aC a
1\ 2
(Eb'sb) —1102 =0, & =—&,— (&) =< = 0 (in direction b) 7)
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where S, and S, are in-plane compressive strengths[16].

3.3.3. Fiber crush failure mode
The crush damage due to the high through-thickness compressive pressure is modeled using the following
criterion:

E..g.\>
< c c) 1 2=0 (8)
Src

where S is fiber crush strength[16].

3.3.4. In-plane matrix failure mode
A plain weave layer can be damaged under in-plane shear stress without the occurrence of fiber breakage.
The in-plain matrix damage mode is given as,

Gap-€ap \°
(Ffe) —pp2 =0 ©)
Sab
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where S, is the layer shear strength due to matrix shear failure[16].

3.3.5. Parallel matrix failure mode (delamination)
The interlaminar shear strengths are considered to increase under through-thickness compressive stress and
decrease due to through-thickness tensile stress according to the Mohr—Columb theory as

Ssrc = —&c E tang (10)
where ¢ is equivalent to the angle for internal friction and ¢, equals to the through-thickness strain, positive
when

E (gc> 2 Gbc £ 2 Gca £ 2
$)? = (C >+ S +( —<2 ) —132=0 (11)
Ser Spco + Ssre Scao T Ssre e

where S, is through-thickness tensile strength, S, .o, Scqo are interlaminar shear strengthsina — cand b — ¢
planes, respectively. S is the factor to take into account when evaluating the effect of stress concentration on
the growth of delamination[16].

3.3.6. Damage progressive criterion

Progressive damage is considered with six damage variables @;, with i =1,...,6 which degrade the
composite stiffness resulting from damage in the different modes [17]. The damage model proposed by
Matzenmiller [4] correlates the compliance matrix [S] with the damage variables, as in Equation. (12).

S — “Vba “Yea 0 0 0
(1-®4)Eq Ep Ec
“Yab — ZVeb 0 0 0
Eq (1—w2)Eb Ec
“Vac “Vhe — 0 0 0
Eq Ep (1—(4)3)EC
[S]= L (12)
0 0 0 — 0 0
(1-04)Ggp
0 0 0 0 — 0
(1-@5)Gpc
1
0 0 0 0 0 506

A damage coupling matrix associates each failure criterion with the reduction of the specific stiffness
properties. The exponential damage evolution law as a function of strain was proposed in MAT162 as shown
below:

1
(@) =1—exp (m (1 - TjAM)) j=17,..13 (13)

where AM represents one of four softening parameters controlling compressive fiber failure mode in a
direction (1), the tensile and compressive fiber failure mode in b direction (2), for softening associated with
fiber crush mode (3), and the in-plane and out-of-plane matrix failure modes (4). The value considered in
this work for the softening parameters as AM; [ = 1, ...,4 are reported in Table 2. The damage threshold, 7y,
in a specific direction, k, can also be defined as

€k

Tj=€—.,k=1,...,6 (14)
k—yield

where ¢ is the strain along the k direction and &,_,¢4 is the corresponding yield strain.
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4, Results and discussion

Experimental and numerical short-beam tests were carried out to determine the shear resistance between
layers in laminated glass fiber composites. The graphs obtained as a result of experiments and numerical
analyzes are presented by comparing them.

In Fig. 5, the contact force-displacement graph of the glass fiber composite sample is given
experimentally and numerically. It was seen that the results of the analysis were compatible. It has been
observed that the slopes are quite close to each other, especially in the elastic region. With the contact, the
contact force value read on the loading roller started to increase, and after reaching the maximum point, it
was observed that it gradually decreased due to fiber damage in the composite sample. The maximum force
value read here is defined as the damage load [2]. The first linear ascending portion of the curve represents
the stiffness of the undamaged plate. The second part of the curve shows the phase of unloading with damage
[18].

In Fig. 6, the change of contact force depending on time is given. In the first region where a linear increase
was observed, it was seen that the curves had similar slopes and the maximum contact forces were close to
each other. According to the experimental test results, this value was 3603 N on average, while it was 3290
N in the numerical analysis.
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Fig. 5. Contact force-displacement graph
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Fig. 6. Contact force-time graph
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Fig. 7. Shear stress-shear strain graph
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Fig. 8. Experimental and numerical comparison of fiber crack and crush damage

In Fig. 7, the graph of interlaminar shear stress-shear strain is compared experimentally and numerically.
The graph also shows the slopes of the ascending curves in the elastic region. These slopes represent the out-
plane shear modulus (Gy;) of the samples as stated in equation 3. According to the experimental test results,
while this value was 1709.5 MPa, it was obtained as 1590.8 MPa in numerical analysis. According to the
data obtained, the approximation ratio between the experimental and numerical results was determined as
93%. Gagani et al. [19] performed three-point and four-point bending tests on glass fiber composites. When
they compared the maximum shear stresses numerically and experimentally, they achieved a 65 percent
agreement. Similarly, the maximum shear strengths between layers were observed experimentally and
numerically as 54.05 MPa and 49.5 MPa, respectively.

In Fig. 8, fiber breakage, fiber shrinkage, and fiber crush damage areas in the glass fiber composite sample
after the short beam test were compared numerically and experimentally. The surface that the support rollers
touch is given as the support surface. When the finite element model is examined, the MAT162 material
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model well predicted the fiber breakage, fiber shrinkage, and fiber crush damage regions for the glass fiber
composite. It is seen that the experimental and numerical damage areas are generally close to each other.

5. Conclusions

In this study, glass fiber composites were produced by the vacuum infusion method, and by performing a
short beam test on the obtained samples, the shear strength and modulus between layers were determined
experimentally and numerically. When the results were compared, it was observed that the numerical data
were in good agreement with the experimental results. The findings from the tests and numerical simulations
are summarized below:

1. When the interlayer shear strength of glass fiber composites was compared experimentally and
numerically, it was observed that the experimental results were 93% compatible with the numerical
analysis.

2. As a result of the tests and analyzes, the approximation rate of 91% was determined when the
interlayer shear modulus was compared.

3. For glass fiber composite, fiber breakage, fiber shrinkage, and fiber crush damage regions were
obtained experimentally and numerically.

4. The limitations of this study are; The fiber angles used in the analysis are fixed and O degrees. In
addition, many material parameters are needed to define the material model for the program, which
is challenging for different material types.
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