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Accepted 6 December 2022 beam using a higher-order shear deformation theory (HSDT). The change in the
material properties is described by a power law. The porosity distribution functions,
one for even cases and two for uneven cases, are considered in the problem. The

Keywords governing equations are derived utilizing Lagrange’s principle. The solution to the
FGM problem is carried out using FEM with a three-node and 12-DOF element.
HSDT Dimensionless natural frequencies obtained in the present study are compared to

those reported in four studies from the literature for validation purposes. The effect
of material properties, porosity, and boundary conditions on the dimensionless
neutral frequencies and mode shapes are investigated with the help of a parametric
study.

Finite element method

1. Introduction

Composite material is an emerging idea to combine different materials as layered media to achieve better
material properties. However, this layered structure causes stress and temperature discontinuities in the
material. A new material named functionally graded (FG) was proposed to overcome this problem in the
1980s. In FG materials, the properties in the material gradually change from one material to another
depending on a function. Due to their superior properties, they have been used in many engineering
applications, especially in aerospace, biomedical, and automotive.

Ceramics and metal are two materials that are generally used in the production of FG materials. However,
voids and cavities, which are frequently generated in the ceramic phase rather than the metallic one, are
formed in the FG materials in the fabrication process. In recent years, determining the effect of this porosity
on the mechanical behavior of the FG beam has been the focus of researchers. Some of the studies using the
analytical solution in this area are summarized below.

Chen et al. [7] presented the buckling and bending analysis of an FG porous beam based on the
Timoshenko beam theory. The free vibration problem of an imperfect FG beam based on the Timoshenko
beam theory was studied by Wattanasakulpong and Chaikittiratana [8]. Ebrahimi et al. [9] investigated the
thermo-mechanical vibration analysis of a porous Euler FG beam using a Navier-type solution. The analytical
solution for bending, free vibration, and buckling problems of a porous FG beam considering both shear
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deformations and thickness stretching was studied by Atmane et al. [10]. Al Rjoub and Hamad [11]
considered the free vibration of porous Euler-Bernoulli and Timoshenko FG beams using the transfer matrix
method. Free vibration and buckling of a porous FG beam reinforced by graphene platelets were investigated
by Kitipornchai et. al [12] using the Timoshenko beam theory and Ritz method. Hadji et al. [3] studied the
analytical solution for bending and free vibration problems of a porous FG microbeam. The bending analysis
of a porous Timoshenko FG beam was presented by Thi et al. [13]. Tang et al. [14] developed a unified
nonlocal strain gradient beam model with the thickness effect to investigate the static bending behavior of
micro/nano-scale porous FG beams. The free vibration analysis of a porous FG beam was investigated by
Taskin and Demirhan [15] using the Navier approach. Harsha et al. [3] considered the effect of the porosity
and axial loading on the buckling and free vibration of a porous FG beam using the Ritz method. The
buckling characteristics of porous sandwich FG beams were investigated by Drikvand et al. [16] with the
help of the differential transform method. Nguyen et al. [17] presented a new shear deformation theory for
the bending, buckling, and vibration behaviors of porous FG beams.

Finite element is one of the most used numeric methods in the analysis of the porous FG beams. Fouda
et al. [18] studied the bending, buckling, and vibration of a porous Euler-Bernoulli FG beam utilizing the
finite element method (FEM) using a two-node element. The forced vibration analysis of porous FG deep
beam under dynamical loading was investigated by Akbas [19] using a 12-node plane element. Wu et al. [20]
introduced a FEM analysis framework for free and forced vibration of porous both Euler-Bernoulli and
Timoshenko FG beams using a 2-node 6-degree of freedom (DOF) element. The same authors [21] used a
non-deterministic approach to solve the same problem. The mechanical behaviors of porous FG nanobeams
for bending were investigated by Hamed et al. [22] using a 2-node 6-DOF element. Karamanli and Vo [23]
studied the size-dependent responses of porous FG micro-beams using a quasi-3D theory and the modified
strain gradient theory. The bending analysis of a porous FG beam using a two-node 4-DOF finite element is
investigated by Zghal et al. [24]. Alnujaie et al. [25] considered the forced vibration analysis of a porous FG
thick beam using a 12-node plane element.

According to the studies mentioned above and the author’s knowledge, the higher-order shear
deformation theory was not considered in the formulation of the FEM solution of porous FG beams.
Therefore, the errors in the solutions rise above the acceptable level in the case of short beams. This paper
investigates FEM analysis of the free vibration of porous FG beams using a higher-order shear deformation
theory. Three different porosity distributions, one even and two uneven, are considered in the study. A tree-
node 12-DOF finite element is used in the solution. The present study is verified by using four studies from
the literature. A parametric study is carried out to investigate dimensionless neutral frequencies and mode
shapes for various material properties, porosities, and boundary conditions.

2. Theory and formulation for free vibration of an FG beam

2.1. Material properties of an FG porous beam

In this study, a functionally graded (FG) porous beam of length L, thickness h, and width b is considered.
The top of the beam is loaded by a uniformly distributed load of magnitude g, in the z-direction aty = 0.
The material properties of the beam such as Young’s modulus E(z), the mass density p(z), and Poisson’s
ratio v (z) vary through the thickness (z-axis) depending on a power law function. In addition, it is assumed
that the porosity in the beam averagely affects the material properties as given,

1\?
P() =Py + (P =P (3 +35) — 2L +P) (1)
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where P, and P, are the values of any material property at the bottom and at the top of the beam, respectively;
p is named the power law index and controls the variation in the material property; e refers to the porosity
coefficient which presents the ratio of the void volume to the total volume (0 < e < 1), f,(2) is a function
that shows the distribution of the porosities through the thickness. Three f,(z) are used in this study.

2|z

The distribution of the porosity through the cross-sections corresponding to three distribution functions,
namely Even (1), Uneven-I (2), and Uneven-l1I (3), is given in Fig.2. For Even, the porosities are uniformly
distributed along the beam cross-section, whereas the porosities are spread mostly around the middle and the
corners of the cross-section for Uneven-1 and Uneven-II, respectively. The variation of Young’s modulus E
in Even and Uneven-11 for various p and e are given in Fig 3. The observation of the figure shows that when
porosity goes to zero (z — 0 for uneven-I1), E approaches the value in perfect cross-section (e = 0).

(2-4)

’u‘L *L

P 5
B2 ;
_________ > S
b, B2
B z J
I |
Fig. 1. The geometry and loading of the FG porous beam
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Fig. 3. The variation of E with p and e for (a) even and (b) uneven-II
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2.2. Mathematical formulation
The displacement field of a beam according to the exponentially higher order shear deformation theory can
be expressed as follows [2]:

u(x,2) = up(¥) —2p + F(DB, W) =wy(x),  f(z) =22 (5-7)

where u and w are the displacements in the x- and z-axis, respectively; u, and w, represent the displacements
at the neutral axis (z = 0); ¢ and B imply the terms related to rotations; and f(z) is a function that reflects
the higher-order deformation at the cross-section and is given in Karama et al. [1]. Axial normal and
transverse shear stains corresponding to the displacement field can be expressed as given below:

dug(x)  d¢ B dw, (x) df (z)
gxsz_Za-Ff(Z)_' Yxz = dx —-¢+ dz

d
dx ¢

Since the transverse normal strain is neglected, the constitutive equations can be expressed as

B (8-9)

Oxx = E(Z)gxx, Txz = G(Z)]/.X'Z (10_11)

where E and G are the Young’s and shear modulus of the material, respectively.

A three-node higher-order beam element of length L, with 12 DOFs shown in Fig. 4 can be used in the
finite element solution. The displacement field can be expressed in terms of generalized nodal displacements
as follows:

3 3 3 3
w0 = ) P, wo(®) = ) Wi@wi, Go() = Y i, Fol) = Y Wiy, (12-15)
i=1 i=1 i=1 i=1
where y; (i=1,2,3) presents shape functions and can be found by applying quadratic interpolation.
—1x12x _4x1x —x12x
Y1 =( 'L—e)( - L_e)' Y, = Ze( 'L—e), P = _L_e( - L_e) (16-18)

The strain (U) and kinetic (T) energy of a beam can be expressed as follows:

L L
U= f f(axxgxx + TazVxz)dAdx, T = f fﬂ(z)(uz +Ww?)dAdx (19-20)
0 JA 0 YA

where dot denotes the derivative with respect to time Letting L = T — U, the governing equations of the
motion can be obtained with the help of Lagrange’s defined as follows:
d <6L) oL 0
dt\og,) " aq; (21)
where q; (i=1,2,3) in Eq. (21) presents generalized nodal displacements corresponding to u;, w;, ¢; and f3;
which are unknowns of the equations. Substituting necessary equations into Eq. (21), the equation of motion
for one element can be obtained as

mii + ku=20 (22)
where m and k present element mass and stiffness matrix, respectively. For a beam of length L composed

of N elements, the following equation of motion can be written:

MU + KU = 0 (23)



281 Adiyaman

where M and K are the global mass and stiffness matrix, respectively, U shows the vector of global unknown
nodal displacements. If the solution of Eq. (23) is sought as U = Uye'®?, an eigenvalue and eigenvector
problem can be obtained as follows:

(K — w*M)Uy =0 (24)
where w denotes the natural frequencies of the beam.

3. Numerical results and discussion

In the numerical results, it is assumed that the bottom of the beam is metal-rich whereas the top of the beam
is ceramic-rich. Material properties used in the solutions are given in Table 1. The results are obtained for
three boundary conditions of the beam namely simple supported (SS), clamped (CC), and cantilever (CF).
Note that the natural frequencies in the results are given normalized as follows:

. wl? |py
=7 |E, (25)

where subscript m donates properties related to metal. Table 2 shows the results of a convergence analysis
carried out for all porosity functions and boundary conditions to determine the number of elements in the
solutions. As can be seen from the table, natural frequencies converge if the number of elements is increased,
and 50 elements provide enough relative error of less than 0.01% in any case.

The verification of the frequencies obtained in the present study with the frequencies reported in Hadji et
al. [3] for various L/h and porosity types is given in Table 2. Hadji et al. [3] used a Navier-type analytical
solution based on a higher-order shear model. The effect of solution methods is taken into account, especially
deep beams. Since a humerical solution method (FEM) is used in the present study, obtained results in the
present study are slightly smaller compared to analytical results. It can be observed from the table the
maximum relative difference between present and reported frequencies is less than 0.015 and the differences
decrease for increasing L/h. In Table 4, another verification of the frequencies obtained in the study in the
case of the perfect cross-section with the frequencies given in Kahya and Turan [4], Nguyen et al. [5], and
Vo et al. [6] for various p and boundary conditions are given. In their studies, Kahya and Turan [4] used
FEM based on the first-order shear deformation theory, Nguyen et al. [5] used an analytical solution method
based on higher-order shear deformation theory and Vo et al. [6] used FEM based on a higher-order shear
deformation theory for non-porous beams. Examination of the table shows that frequencies obtained in the
present study are only slightly different from the frequencies reported in the literature, especially with the
ones that used higher-order shear deformation theory because of the similarity in theories.

Table 1. Material properties used in the solutions

Material E (GPa) v p (k—‘i)
m
Metal 70 0.3 2702

Ceramic 380 0.3 3960
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Table 2. Convergence analysis for different porosity functions and boundary conditions (L/A=5,p =1,e = 0.1)
Number of Even Uneven-| Uneven-II
elements SS cC CF SS cC CF SS cC CF
2 40373 97208 1.4579 4.2531 10.0837 15377 4.0974 9.8982 1.4775
5 3.8892 7.8546 14324 41017  8.2167 15116  3.9452 7.9865 1.4514
10 3.8839 7.7970 14314 4.0963  8.1579 1.5106  3.9397 7.9283 1.4504
15 3.8836 7.7930 14314 4.0960  8.1537 1.5105 3.939%4 7.9243 1.4504
20 3.8835  7.7922 40959  8.1528 1.5105 3.9393 7.9235
30 3.8835 7.7919 4.0959  8.1525 3.9393 7.9232
50 7.7918 8.1524 7.9232
75 7.7918 8.1524

Table 3. The verification of the frequencies obtained in the present study with the frequencies reported in Hadji et al. [3]

(p=2)
Even Uneven-I|
L/h Study

e=0 e=0.1 e=0.2 e=0 e=0.1 e=0.2

5 Hadji et al. [3] 3.6264 3.4418 3.1489 3.6264 3.6069 3.5785
Present 3.5970 3.4050 3.1023 3.5970 3.5736 3.5405

20 Hadji et al. [3] 3.8361 3.6335 3.3123 3.8361 3.8226 3.8004
Present 3.8341 3.6308 3.3090 3.8341 3.8201 3.7975

Table 4. The verification of the frequencies obtained in the present study with the frequencies reported in Kahya and
Turan [4], Nguyen et al. [5], and Vo et al. [6] (L/h = 5)

BC Study p=0 p=205 p=1 p=2 p=>5 p=10
SS Kahya and Turan [4] 5.2219 4.4692 4.0496 3.6936 3.4881 3.3643
Nguyen et al. [5] 5.1528 4.4102 3.9904 3.6264 3.4009 3.2815
Vo et al. [6] 5.1528 4.4019 3.9716 3.5979 3.3743 3.2653
Present 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
cC Kahya and Turan [4] 10.0864 8.7547 7.9841 7.2715 6.7148 6.3741
Nguyen et al. [5] 10.0726 8.7463 7.9518 7.1776 6.4929 6.1658
Vo et al. [6] 10.0678 8.7457 7.9522 7.1801 6.4961 6.1662
Present 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
CF Kahya and Turan [4] 1.9077 1.6286 1.4739 1.3446 1.2751 1.2636
Nguyen et al. [5] 1.8957 1.6182 1.4636  1.3328 1.2594 1.2187
Vo et al. [6] 1.8952 1.6180 1.4633 1.3326 1.2592 1.2184
Present 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
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Table 5. The neutral frequencies of a beam for various porosity types, boundary conditions, e and p (L/% = 5)
Type BC e p=0 p=05 p=1 p=2 p=5 p=10
Even SS 0 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
0.1 5.2223 4.3934 3.8835 3.4050 3.1083 3.0028
0.2 5.3047 4.3798 3.7577 3.1023 2.6403 2.5273
0.3 5.4040 4.3573 3.5658 2.5572 1.4574 1.1164
CcC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
0.1 10.1621 8.7170 7.7918 6.8439 6.0019 5.6231
0.2 10.3225 8.7178 7.6032 6.3561 5.2216 47437
0.3 10.5158 8.7094 7.3061 5.4349 3.2140 2.3636
CF 0 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
0.1 1.9203 1.6147 1.4313 1.2630 1.1649 1.1266
0.2 1.9506 1.6098 1.3858 1.1533 0.9963 0.9592
0.3 1.9872 1.6016 1.3162 0.9539 0.5559 0.4339
Uneven-1 SS 0 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
0.1 5.2184 4.4429 3.9850 3.5737 3.3193 3.2112
0.2 5.2888 4.4872 3.9978 3.5405 3.2417 3.1252
0.3 5.3644 45345 4.0087 3.4939 3.1251 2.9710
cC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
0.1 10.1273 8.7717 7.9324 7.0887 6.2970 5.9242
0.2 10.2342 8.8350 7.9412 7.0081 6.0665 5.6045
0.3 10.3482 8.9015 7.9447 6.9009 5.7300 5.0676
CF 0 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
0.1 1.9202 1.6342 1.4699 1.3264 1.2445 1.2055
0.2 1.9475 1.6521 1.4767 1.3173 1.2230 1.1844
0.3 1.9769 1.6713 1.4830 1.3038 1.1895 1.1455
Uneven-II SS 0 5.1532 4.4016 3.9710 3.5970 3.3725 3.2644
0.1 5.1633 4.3512 3.8633 3.4184 3.1517 3.0452
0.2 5.1747 4.2911 3.7297 3.1828 2.8423 2.7376
0.3 5.1872 4.2184 3.5602 2.8568 2.3646 2.2533
CcC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355
0.1 10.0749 8.6571 7.7698 6.8867 6.1421 5.8047
0.2 10.1269 8.5875 7.5747 6.5227 5.6788 5.3373
0.3 10.1832 8.4973 7.3142 5.9865 4.9161 4.5760
CF 0 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178
0.1 1.8973 1.5978 1.4222 1.2654 1.1760 1.1356
0.2 1.9001 1.5743 1.3720 1.1777 1.0607 1.0209
0.3 1.9032 1.5461 1.3086 1.0569 0.8832 0.8411
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Table 6. The neutral frequencies of a beam in case of Even cross-section for various porosity types, e and p (L/h = 20)

Type BC e p=0 p=05 p=1 p=2 p=5 p=10
Even SS 0 5.4603 4.6505 4.2037 3.8341 3.6464 3.5377
0.1 5.5341 4.6405 4.1101 3.6308 3.3746 3.2789

0.2 5.6215 4.6245 3.9756 3.3090 2.8814 2.7986

0.3 5.7267 4.5986 3.7707 2.7271 1.5907 1.2532

cC 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833

0.1 12.3861 10.4057 9.2248 8.1482 7.5391 7.3006

0.2 12.5817 10.3729 8.9295 7.4384 6.4505 6.2276

0.3 12.8174 10.3189 8.4787 6.1494 3.5959 2.8204

CF 0 1.9496 1.6603 1.5010 1.3696 1.3033 1.2645

0.1 1.9759 1.6567 1.4677 1.2971 1.2066 1.1725

0.2 2.0071 1.6510 1.4197 1.1823 1.0307 1.0016

0.3 2.0447 1.6417 1.3465 0.9745 0.5693 0.4493

Uneven-I SS 0 5.4603 4.6505 4.2037 3.8341 3.6464 3.5377
0.1 5.5369 4.7010 4.2261 3.8201 3.6147 3.5169

0.2 5.6193 4.7553 4.2483 3.7975 3.5651 3.4800

0.3 5.7082 4.8140 4.2697 3.7626 3.4873 3.4143

cc 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833

0.1 12.3887 10.5359 9.4778 8.5622 8.0598 7.8166

0.2 12.5689 10.6545 9.5250 8.5087 7.9334 7.7015

0.3 12.7632 10.7823 9.5703 8.4272 7.7350 7.4879

CF 0 1.9496 1.6603 1.5010 1.3696 1.3033 1.2645

0.1 1.9770 1.6784 1.5092 1.3648 1.2925 1.2577

0.2 2.0065 1.6980 1.5172 1.3570 1.2754 1.2455

0.3 2.0384 1.7191 1.5251 1.3448 1.2486 1.2240

Uneven-II SS 0 5.4603 4.6505 4.2037 3.8341 3.6464 3.5377
0.1 5.4644 4.5891 4.0812 3.6347 3.3986 3.2914

0.2 5.4690 4.5169 3.9311 3.3751 3.0551 2.9493

0.3 5.4741 4.4310 3.7431 3.0202 2.5317 2.4176

cc 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833

0.1 12.2340 10.2934 9.1623 8.1594 7.6019 7.3459

0.2 12.2482 10.1374 8.8336 7.5886 6.8505 6.5979

0.3 12.2638 9.9509 8.4198 6.8039 5.6976 5.4297

CF 0 1.9496 1.6603 1.5010 1.3696 1.3033 1.2645

0.1 1.9509 1.6383 1.4572 1.2983 1.2147 1.1764

0.2 1.9524 1.6124 1.4035 1.2055 1.0919 1.0541

0.3 1.9541 1.5816 1.3363 1.0787 0.9048 0.8640
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The neutral frequencies of a beam for various porosity types, boundary conditions, porosity coefficient,
and power law index in the case of L/h =5 and L/h = 20 are given in Tables 5 and 6, respectively. The
above-given tables show that the frequencies increase if e increases for p = 0 whereas the increase in e
results in a decrease in frequencies for p > 0. Both density and shear modules change according to Eq. (1).
However, the relative change in density is larger compared to the relative change in shear modulus about
p = 0 if the porosity increases. Since global stiffness matrix K includes shear modulus and global mass
matrix M includes density, from the investigation of Eq. (24), natural frequencies increases if porosity
increases. However, the relative change in shear modulus exceeds the relative change in density for p > 0.5
and the frequencies increase with increasing porosity. If L /A increases, the neutral frequencies also increase.
The change in the frequencies for increasing porosity is maximum for the Even type whereas it is minimum
for Uneven-I.

Fig. 5a and 5b show the frequencies for L /A ratio and power law index, respectively, for various porosity
coefficients. As can be seen from the figures, the frequencies approach asymptotically to a finite value if
L/h - o« and p — . Increasing L/A results in an increase in the frequencies, but if p increases, the
frequencies decrease. As the porosity increases, the relative change at the frequencies becomes smaller with
increasing L/h whereas it gets larger with increasing p.

The first and second normalized mode shapes corresponding to the first two natural frequencies for
displacements u and w for various porosities and boundary conditions are given in Figs. 6a-d. As can be
observed, mod shapes show similar variations for different porosities in the same boundary conditions. In
other words, porosity does not much affect the mod shapes of free vibration.

B —e=0
—e=0.1

—e=0.3

1 \ \ \ \ 0 \ \ \ \

0 10 20 30 40 50 0 10 20 30 40 50
L/h

p
(@) (b)
Fig. 5. The frequencies for (a) L/h and (b) p for various e (p = 1 for (a), L/h = 5 for (b))
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-0.1 \ \ \ \ -0.2 \ \ \ \
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x/L x/L
¢) Second mod shape, u d) Second mod shape, w

Fig. 6. The effect of e on the first and second mod shapes of u and w for SS, CC,andCF (p = 1,L/h=5)

4, Conclusions

In this study, the finite element analysis for the free vibration analysis of a porous FG beam is investigated
using high-order shear deformation theory. A three-node 12-DOF element is used for the solution.
Dimensionless neutral frequencies and mode shapes for various power law indexes, porosity index, and
boundary conditions are obtained and given by tables and figures. Obtained numerical results suggest the
following conclusions:

e Used finite element reflects the properties of higher-order shear deformation theory and calculates
neutral frequencies close to analytical results.
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e The frequencies increase if porosity at the cross-section increases for very small values of the power

law index (around p = 0), whereas the increase of e results in a decrease in frequencies for large
values of p > 0.5.

e For the same porosity index, the effect of porosity on frequencies in the case of the Even type is

more significant compared to the Uneven ones.

e Although the frequencies are affected due to the porosity, the mod shapes show similar

characteristics.
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