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This study considers free vibration analysis of a porous functionally graded (FG) 

beam using a higher-order shear deformation theory (HSDT). The change in the 

material properties is described by a power law. The porosity distribution functions, 

one for even cases and two for uneven cases, are considered in the problem. The 

governing equations are derived utilizing Lagrange’s principle. The solution to the 

problem is carried out using FEM with a three-node and 12-DOF element. 

Dimensionless natural frequencies obtained in the present study are compared to 

those reported in four studies from the literature for validation purposes. The effect 

of material properties, porosity, and boundary conditions on the dimensionless 

neutral frequencies and mode shapes are investigated with the help of a parametric 

study. 
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1. Introduction 

Composite material is an emerging idea to combine different materials as layered media to achieve better 

material properties. However, this layered structure causes stress and temperature discontinuities in the 

material. A new material named functionally graded (FG) was proposed to overcome this problem in the 

1980s. In FG materials, the properties in the material gradually change from one material to another 

depending on a function. Due to their superior properties, they have been used in many engineering 

applications, especially in aerospace, biomedical, and automotive. 

 Ceramics and metal are two materials that are generally used in the production of FG materials. However, 

voids and cavities, which are frequently generated in the ceramic phase rather than the metallic one, are 

formed in the FG materials in the fabrication process. In recent years, determining the effect of this porosity 

on the mechanical behavior of the FG beam has been the focus of researchers. Some of the studies using the 

analytical solution in this area are summarized below.  

 Chen et al. [7] presented the buckling and bending analysis of an FG porous beam based on the 

Timoshenko beam theory. The free vibration problem of an imperfect FG beam based on the Timoshenko 

beam theory was studied by  Wattanasakulpong and Chaikittiratana  [8]. Ebrahimi et al. [9] investigated the 

thermo-mechanical vibration analysis of a porous Euler FG beam using a Navier-type solution. The analytical 

solution for bending, free vibration, and buckling problems of a porous FG beam considering both shear 
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deformations and thickness stretching was studied by Atmane et al. [10]. Al Rjoub and Hamad [11] 

considered the free vibration of porous Euler-Bernoulli and Timoshenko FG beams using the transfer matrix 

method. Free vibration and buckling of a porous FG beam reinforced by graphene platelets were investigated 

by Kitipornchai et. al [12] using the Timoshenko beam theory and Ritz method. Hadji et al. [3] studied the 

analytical solution for bending and free vibration problems of a porous FG microbeam. The bending analysis 

of a porous Timoshenko FG beam was presented by Thi et al. [13]. Tang et al. [14] developed a unified 

nonlocal strain gradient beam model with the thickness effect to investigate the static bending behavior of 

micro/nano-scale porous FG beams. The free vibration analysis of a porous FG beam was investigated by 

Taskın and Demirhan [15] using the Navier approach. Harsha et al. [3] considered the effect of the porosity 

and axial loading on the buckling and free vibration of a porous FG beam using the Ritz method.  The 

buckling characteristics of porous sandwich FG beams were investigated by Drikvand et al. [16] with the 

help of the differential transform method. Nguyen et al. [17] presented a new shear deformation theory for 

the bending, buckling, and vibration behaviors of porous FG beams.  

 Finite element is one of the most used numeric methods in the analysis of the porous FG beams. Fouda 

et al. [18] studied the bending, buckling, and vibration of a porous Euler-Bernoulli FG beam utilizing the 

finite element method (FEM) using a two-node element. The forced vibration analysis of porous FG deep 

beam under dynamical loading was investigated by Akbas [19] using a 12-node plane element. Wu et al. [20] 

introduced a FEM analysis framework for free and forced vibration of porous both Euler-Bernoulli and 

Timoshenko FG beams using a 2-node 6-degree of freedom (DOF) element. The same authors [21] used a  

non-deterministic approach to solve the same problem. The mechanical behaviors of porous FG nanobeams 

for bending were investigated by Hamed et al. [22] using a 2-node 6-DOF element. Karamanli and Vo [23] 

studied the size-dependent responses of porous FG micro-beams using a quasi-3D theory and the modified 

strain gradient theory. The bending analysis of a porous FG beam using a two-node 4-DOF finite element is 

investigated by Zghal et al. [24]. Alnujaie et al. [25] considered the forced vibration analysis of a porous FG 

thick beam using a 12-node plane element.  

 According to the studies mentioned above and the author’s knowledge, the higher-order shear 

deformation theory was not considered in the formulation of the FEM solution of porous FG beams. 

Therefore, the errors in the solutions rise above the acceptable level in the case of short beams. This paper 

investigates FEM analysis of the free vibration of porous FG beams using a higher-order shear deformation 

theory. Three different porosity distributions, one even and two uneven, are considered in the study. A tree-

node 12-DOF finite element is used in the solution. The present study is verified by using four studies from 

the literature.  A parametric study is carried out to investigate dimensionless neutral frequencies and mode 

shapes for various material properties, porosities, and boundary conditions. 

 

2. Theory and formulation for free vibration of an FG beam 

2.1. Material properties of an FG porous beam 

In this study, a functionally graded (FG) porous beam of length L, thickness h, and width b is considered. 

The top of the beam is loaded by a uniformly distributed load of magnitude 𝑞0 in the z-direction at y = 0. 

The material properties of the beam such as Young’s modulus E(z), the mass density (z), and Poisson’s 

ratio  (z) vary through the thickness (z-axis) depending on a power law function. In addition, it is assumed 

that the porosity in the beam averagely affects the material properties as given, 

𝑃(𝑧) = 𝑃𝑏 + (𝑃𝑡 − 𝑃𝑏) (
𝑧

ℎ
+
1

2
)
𝑝

−
𝑒

2
𝑓𝑒(𝑧)(𝑃𝑡 + 𝑃𝑏) (1) 
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where 𝑃𝑏  and 𝑃𝑡 are the values of any material property at the bottom and at the top of the beam, respectively; 

p is named the power law index and controls the variation in the material property; e refers to the porosity 

coefficient which presents the ratio of the void volume to the total volume (0 < 𝑒 < 1), 𝑓𝑒(𝑧) is a function 

that shows the distribution of the porosities through the thickness. Three 𝑓𝑒(𝑧) are used in this study. 

𝑓𝑒,1(𝑧) = 1, 𝑓𝑒,2(𝑧) = 1 −
2|𝑧|

ℎ
, 𝑓𝑒,3(𝑧) = 𝑠𝑖𝑛 (

|𝑧|

ℎ
𝜋) (2-4)

 

The distribution of the porosity through the cross-sections corresponding to three distribution functions, 

namely Even (1), Uneven-I (2), and Uneven-II (3), is given in Fig.2. For Even, the porosities are uniformly 

distributed along the beam cross-section, whereas the porosities are spread mostly around the middle and the 

corners of the cross-section for Uneven-I and Uneven-II, respectively. The variation of Young’s modulus E 

in Even and Uneven-II for various p and e are given in Fig 3. The observation of the figure shows that when 

porosity goes to zero (𝑧 → 0 for uneven-II), E approaches the value in perfect cross-section (𝑒 = 0).  
 

 

Fig. 1. The geometry and loading of the FG porous beam 

 

 

                                  (a) Even                             (b) Uneven-I                      (c) Uneven-II 

Fig. 2. The beam cross-sections for three distribution functions 

 

  
(a)                                                                     (b) 

Fig. 3. The variation of E with p and e for (a) even and (b) uneven-II  
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2.2. Mathematical formulation 

The displacement field of a beam according to the exponentially higher order shear deformation theory can 

be expressed as follows [2]: 

𝑢(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧𝜙 + 𝑓(𝑧)𝛽,      
0( ) ( )w x w x= ,     

22( / )( ) z hf z ze−=  (5-7)

 

where u and w are the displacements in the x- and z-axis, respectively; 𝑢0 and 𝑤0 represent the displacements 

at the neutral axis (𝑧 = 0); 𝜙 and 𝛽 imply the terms related to rotations; and f(z) is a function that reflects 

the higher-order deformation at the cross-section and is given in Karama et al. [1]. Axial normal and 

transverse shear stains corresponding to the displacement field can be expressed as given below: 

𝜀𝑥𝑥 =
𝑑𝑢0(𝑥)

𝑑𝑧
− 𝑧

𝑑𝜙

𝑑𝑥
+ 𝑓(𝑧)

𝑑𝛽

𝑑𝑥
,     𝛾𝑥𝑧 =

𝑑𝑤0(𝑥)

𝑑𝑥
− 𝜙 +

𝑑𝑓(𝑧)

𝑑𝑧
𝛽 (8-9)

 

 Since the transverse normal strain is neglected, the constitutive equations can be expressed as 

𝜎𝑥𝑥 = 𝐸(𝑧)𝜀𝑥𝑥,     𝜏𝑥𝑧 = 𝐺(𝑧)𝛾𝑥𝑧 (10-11)

 

where 𝐸 and 𝐺 are the Young’s and shear modulus of the material, respectively. 

 A three-node higher-order beam element of length 𝐿𝑒 with 12 DOFs shown in Fig. 4 can be used in the 

finite element solution. The displacement field can be expressed in terms of generalized nodal displacements 

as follows: 

𝑢0(𝑥) =∑𝜓𝑖(𝑥)𝑢𝑖

3

𝑖=1

,  𝑤0(𝑥) =∑𝜓𝑖(𝑥)𝑤𝑖

3

𝑖=1

,  𝜙0(𝑥) = ∑𝜓𝑖(𝑥)𝜙𝑖

3

𝑖=1

,  𝛽0(𝑥) = ∑𝜓𝑖(𝑥)𝛽𝑖

3

𝑖=1

, (12-15)

 

where 𝜓𝑖  (i=1,2,3) presents shape functions and can be found by applying quadratic interpolation. 

𝜓1 = (1-
𝑥

𝐿𝑒
)(1-2

𝑥

𝐿𝑒
),  𝜓2 = 4

𝑥

𝐿𝑒
(1-

𝑥

𝐿𝑒
),  𝜓3 = −

𝑥

𝐿𝑒
(1-2

𝑥

𝐿𝑒
) (16-18)

 

 The strain (𝑈) and kinetic (𝑇) energy of a beam can be expressed as follows: 

𝑈 = ∫ ∫(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝐴𝑑𝑥
𝐴

𝐿

0

,    𝑇 = ∫ ∫𝜌(𝑧)(𝑢̇2 + 𝑤̇2)𝑑𝐴𝑑𝑥
𝐴

𝐿

0

 (19-20)

 

where dot denotes the derivative with respect to time Letting 𝐿 = 𝑇 − 𝑈, the governing equations of the 

motion can be obtained with the help of Lagrange’s defined as follows: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 (21)

 

where 𝑞𝑖 (i=1,2,3) in Eq. (21) presents generalized nodal displacements corresponding to 𝑢𝑖, 𝑤𝑖 , 𝜙𝑖 and 𝛽𝑖 

which are unknowns of the equations. Substituting necessary equations into Eq. (21), the equation of motion 

for one element can be obtained as 

𝐦𝒖̈ + 𝒌𝒖 = 𝟎 (22)

 

where 𝒎 and 𝒌 present element mass and stiffness matrix, respectively. For a beam of length 𝐿 composed 

of N elements, the following equation of motion can be written: 

𝐌𝑼̈ + 𝑲𝑼 = 𝟎 (23)
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where 𝑴 and 𝑲 are the global mass and stiffness matrix, respectively, 𝑼 shows the vector of global unknown 

nodal displacements. If the solution of Eq. (23) is sought as 𝑈 = 𝑈0𝑒
𝑖𝜔𝑡, an eigenvalue and eigenvector 

problem can be obtained as follows: 

(𝑲 − 𝜔2𝑴)𝑼𝟎 = 0 (24)

 

where 𝜔 denotes the natural frequencies of the beam. 

 

3. Numerical results and discussion 

In the numerical results, it is assumed that the bottom of the beam is metal-rich whereas the top of the beam 

is ceramic-rich. Material properties used in the solutions are given in Table 1. The results are obtained for 

three boundary conditions of the beam namely simple supported (SS), clamped (CC), and cantilever (CF). 

Note that the natural frequencies in the results are given normalized as follows: 

𝜔̄ =
𝜔𝐿2

ℎ
√
𝜌𝑚
𝐸𝑚

 (25)

 

where subscript 𝑚 donates properties related to metal. Table 2 shows the results of a convergence analysis 

carried out for all porosity functions and boundary conditions to determine the number of elements in the 

solutions. As can be seen from the table, natural frequencies converge if the number of elements is increased, 

and 50 elements provide enough relative error of less than 0.01% in any case. 

 The verification of the frequencies obtained in the present study with the frequencies reported in Hadji et 

al. [3] for various L/h and porosity types is given in Table 2. Hadji et al. [3] used a Navier-type analytical 

solution based on a higher-order shear model. The effect of solution methods is taken into account, especially 

deep beams. Since a numerical solution method (FEM) is used in the present study, obtained results in the 

present study are slightly smaller compared to analytical results. It can be observed from the table the 

maximum relative difference between present and reported frequencies is less than 0.015 and the differences 

decrease for increasing L/h. In Table 4, another verification of the frequencies obtained in the study in the 

case of the perfect cross-section with the frequencies given in Kahya and Turan [4], Nguyen et al. [5], and 

Vo et al. [6] for various 𝑝 and boundary conditions are given. In their studies, Kahya and Turan [4] used 

FEM based on the first-order shear deformation theory, Nguyen et al. [5] used an analytical solution method 

based on higher-order shear deformation theory and Vo et al. [6] used FEM based on a higher-order shear 

deformation theory for non-porous beams. Examination of the table shows that frequencies obtained in the 

present study are only slightly different from the frequencies reported in the literature, especially with the 

ones that used higher-order shear deformation theory because of the similarity in theories. 

 

 

Table 1. Material properties used in the solutions 

Material 𝐸 (𝐺𝑃𝑎) 𝜐 𝜌  (
𝑘𝑔

𝑚3) 

Metal   70 0.3 2702 

Ceramic 380 0.3 3960 
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Table 2. Convergence analysis for different porosity functions and boundary conditions (𝐿/ℎ = 5, 𝑝 = 1, 𝑒 = 0.1) 

Number of 

elements 

Even Uneven-I Uneven-II 

SS CC CF SS CC CF SS CC CF 

2 4.0373 9.7208 1.4579 4.2531 10.0837 1.5377 4.0974 9.8982 1.4775 

5 3.8892 7.8546 1.4324 4.1017 8.2167 1.5116 3.9452 7.9865 1.4514 

10 3.8839 7.7970 1.4314 4.0963 8.1579 1.5106 3.9397 7.9283 1.4504 

15 3.8836 7.7930 1.4314 4.0960 8.1537 1.5105 3.9394 7.9243 1.4504 

20 3.8835 7.7922  4.0959 8.1528 1.5105 3.9393 7.9235  

30 3.8835 7.7919  4.0959 8.1525  3.9393 7.9232  

50  7.7918   8.1524   7.9232  

75  7.7918   8.1524     

 

 

Table 3. The verification of the frequencies obtained in the present study with the frequencies reported in Hadji et al. [3] 

(𝑝 = 2) 

𝐿/ℎ Study 
Even Uneven-I 

𝑒 = 0 𝑒 = 0.1 𝑒 = 0.2 𝑒 = 0 𝑒 = 0.1 𝑒 = 0.2 

5 Hadji et al. [3] 3.6264  3.4418 3.1489 3.6264 3.6069 3.5785 

 Present 3.5970 3.4050 3.1023 3.5970 3.5736 3.5405 

20 Hadji et al. [3] 3.8361   3.6335 3.3123 3.8361 3.8226 3.8004 

 Present 3.8341 3.6308 3.3090 3.8341 3.8201 3.7975 

 

 

Table 4. The verification of the frequencies obtained in the present study with the frequencies reported in Kahya and 

Turan [4], Nguyen et al. [5], and Vo et al. [6] (𝐿/ℎ = 5) 

BC Study 𝑝 = 0 𝑝 = 0.5 𝑝 = 1 𝑝 = 2 𝑝 = 5 𝑝 = 10 

SS Kahya and Turan [4]  5.2219 4.4692 4.0496 3.6936 3.4881 3.3643 

 Nguyen et al. [5]  5.1528 4.4102 3.9904 3.6264 3.4009 3.2815 

 Vo et al. [6]  5.1528 4.4019 3.9716 3.5979 3.3743 3.2653 

 Present  5.1532 4.4016 3.9710 3.5970 3.3725 3.2644 

CC Kahya and Turan [4] 10.0864 8.7547 7.9841 7.2715 6.7148 6.3741 

 Nguyen et al. [5] 10.0726 8.7463 7.9518 7.1776 6.4929 6.1658 

 Vo et al. [6] 10.0678 8.7457 7.9522 7.1801 6.4961 6.1662 

 Present 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355 

CF Kahya and Turan [4]  1.9077 1.6286 1.4739 1.3446 1.2751 1.2636 

 Nguyen et al. [5]  1.8957 1.6182 1.4636 1.3328 1.2594 1.2187 

 Vo et al. [6]  1.8952 1.6180 1.4633 1.3326 1.2592 1.2184 

 Present  1.8948 1.6176 1.4629 1.3322 1.2586 1.2178 
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Table 5. The neutral frequencies of a beam for various porosity types, boundary conditions, 𝑒 and 𝑝 (𝐿/ℎ = 5)  

Type BC 𝑒 𝑝 = 0 𝑝 = 0.5 𝑝 = 1 𝑝 = 2 𝑝 = 5 𝑝 = 10 

Even SS 0   5.1532 4.4016 3.9710 3.5970 3.3725 3.2644 

  0.1   5.2223 4.3934 3.8835 3.4050 3.1083 3.0028 

  0.2   5.3047 4.3798 3.7577 3.1023 2.6403 2.5273 

  0.3   5.4040 4.3573 3.5658 2.5572 1.4574 1.1164 

 CC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355 

  0.1 10.1621 8.7170 7.7918 6.8439 6.0019 5.6231 

  0.2 10.3225 8.7178 7.6032 6.3561 5.2216 4.7437 

  0.3 10.5158 8.7094 7.3061 5.4349 3.2140 2.3636 

 CF 0   1.8948 1.6176 1.4629 1.3322 1.2586 1.2178 

  0.1   1.9203 1.6147 1.4313 1.2630 1.1649 1.1266 

  0.2   1.9506 1.6098 1.3858 1.1533 0.9963 0.9592 

  0.3   1.9872 1.6016 1.3162 0.9539 0.5559 0.4339 

Uneven-I SS 0   5.1532 4.4016 3.9710 3.5970 3.3725 3.2644 

  0.1   5.2184 4.4429 3.9850 3.5737 3.3193 3.2112 

  0.2   5.2888 4.4872 3.9978 3.5405 3.2417 3.1252 

  0.3   5.3644 4.5345 4.0087 3.4939 3.1251 2.9710 

 CC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355 

  0.1 10.1273 8.7717 7.9324 7.0887 6.2970 5.9242 

  0.2 10.2342 8.8350 7.9412 7.0081 6.0665 5.6045 

  0.3 10.3482 8.9015 7.9447 6.9009 5.7300 5.0676 

 CF 0   1.8948 1.6176 1.4629 1.3322 1.2586 1.2178 

  0.1   1.9202 1.6342 1.4699 1.3264 1.2445 1.2055 

  0.2   1.9475 1.6521 1.4767 1.3173 1.2230 1.1844 

  0.3   1.9769 1.6713 1.4830 1.3038 1.1895 1.1455 

Uneven-II SS 0   5.1532 4.4016 3.9710 3.5970 3.3725 3.2644 

  0.1   5.1633 4.3512 3.8633 3.4184 3.1517 3.0452 

  0.2   5.1747 4.2911 3.7297 3.1828 2.8423 2.7376 

  0.3   5.1872 4.2184 3.5602 2.8568 2.3646 2.2533 

 CC 0 10.0321 8.7114 7.9200 7.1496 6.4626 6.1355 

  0.1 10.0749 8.6571 7.7698 6.8867 6.1421 5.8047 

  0.2 10.1269 8.5875 7.5747 6.5227 5.6788 5.3373 

  0.3 10.1832 8.4973 7.3142 5.9865 4.9161 4.5760 

 CF 0 1.8948 1.6176 1.4629 1.3322 1.2586 1.2178 

  0.1 1.8973 1.5978 1.4222 1.2654 1.1760 1.1356 

  0.2 1.9001 1.5743 1.3720 1.1777 1.0607 1.0209 

  0.3 1.9032 1.5461 1.3086 1.0569 0.8832 0.8411 
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Table 6. The neutral frequencies of a beam in case of Even cross-section for various porosity types, 𝑒 and 𝑝 (𝐿/ℎ = 20) 

Type BC 𝑒 𝑝 = 0 𝑝 = 0.5 𝑝 = 1 𝑝 = 2 𝑝 = 5 𝑝 = 10 

Even SS 0   5.4603   4.6505 4.2037 3.8341 3.6464 3.5377 

  0.1   5.5341   4.6405 4.1101 3.6308 3.3746 3.2789 

  0.2   5.6215   4.6245 3.9756 3.3090 2.8814 2.7986 

  0.3   5.7267   4.5986 3.7707 2.7271 1.5907 1.2532 

 CC 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833 

  0.1 12.3861 10.4057 9.2248 8.1482 7.5391 7.3006 

  0.2 12.5817 10.3729 8.9295 7.4384 6.4505 6.2276 

  0.3 12.8174 10.3189 8.4787 6.1494 3.5959 2.8204 

 CF 0   1.9496   1.6603 1.5010 1.3696 1.3033 1.2645 

  0.1   1.9759   1.6567 1.4677 1.2971 1.2066 1.1725 

  0.2   2.0071   1.6510 1.4197 1.1823 1.0307 1.0016 

  0.3   2.0447   1.6417 1.3465 0.9745 0.5693 0.4493 

Uneven-I SS 0   5.4603   4.6505 4.2037 3.8341 3.6464 3.5377 

  0.1   5.5369   4.7010 4.2261 3.8201 3.6147 3.5169 

  0.2   5.6193   4.7553 4.2483 3.7975 3.5651 3.4800 

  0.3   5.7082   4.8140 4.2697 3.7626 3.4873 3.4143 

 CC 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833 

  0.1 12.3887 10.5359 9.4778 8.5622 8.0598 7.8166 

  0.2 12.5689 10.6545 9.5250 8.5087 7.9334 7.7015 

  0.3 12.7632 10.7823 9.5703 8.4272 7.7350 7.4879 

 CF 0   1.9496   1.6603 1.5010 1.3696 1.3033 1.2645 

  0.1   1.9770   1.6784 1.5092 1.3648 1.2925 1.2577 

  0.2   2.0065   1.6980 1.5172 1.3570 1.2754 1.2455 

  0.3   2.0384   1.7191 1.5251 1.3448 1.2486 1.2240 

Uneven-II SS 0   5.4603   4.6505 4.2037 3.8341 3.6464 3.5377 

  0.1   5.4644   4.5891 4.0812 3.6347 3.3986 3.2914 

  0.2   5.4690   4.5169 3.9311 3.3751 3.0551 2.9493 

  0.3   5.4741   4.4310 3.7431 3.0202 2.5317 2.4176 

 CC 0 12.2213 10.4258 9.4300 8.5960 8.1419 7.8833 

  0.1 12.2340 10.2934 9.1623 8.1594 7.6019 7.3459 

  0.2 12.2482 10.1374 8.8336 7.5886 6.8505 6.5979 

  0.3 12.2638   9.9509 8.4198 6.8039 5.6976 5.4297 

 CF 0   1.9496   1.6603 1.5010 1.3696 1.3033 1.2645 

  0.1   1.9509   1.6383 1.4572 1.2983 1.2147 1.1764 

  0.2   1.9524   1.6124 1.4035 1.2055 1.0919 1.0541 

  0.3   1.9541   1.5816 1.3363 1.0787 0.9048 0.8640 
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 The neutral frequencies of a beam for various porosity types, boundary conditions, porosity coefficient, 

and power law index in the case of 𝐿/ℎ = 5 and 𝐿/ℎ = 20 are given in Tables 5 and 6, respectively. The 

above-given tables show that the frequencies increase if 𝑒 increases for 𝑝 = 0 whereas the increase in 𝑒 

results in a decrease in frequencies for 𝑝 > 0. Both density and shear modules change according to Eq. (1). 

However, the relative change in density is larger compared to the relative change in shear modulus about  

𝑝 = 0 if the porosity increases. Since global stiffness matrix K includes shear modulus and global mass 

matrix M includes density, from the investigation of Eq. (24), natural frequencies increases if porosity 

increases. However, the relative change in shear modulus exceeds the relative change in density for 𝑝 ≥ 0.5 

and the frequencies increase with increasing porosity. If 𝐿/ℎ increases, the neutral frequencies also increase. 

The change in the frequencies for increasing porosity is maximum for the Even type whereas it is minimum 

for Uneven-I. 

 Fig. 5a and 5b show the frequencies for 𝐿/ℎ ratio and power law index, respectively, for various porosity 

coefficients. As can be seen from the figures, the frequencies approach asymptotically to a finite value if 

𝐿/ℎ → ∞ and 𝑝 → ∞. Increasing 𝐿/ℎ results in an increase in the frequencies, but if 𝑝 increases, the 

frequencies decrease. As the porosity increases, the relative change at the frequencies becomes smaller with 

increasing 𝐿/ℎ whereas it gets larger with increasing 𝑝.  

 The first and second normalized mode shapes corresponding to the first two natural frequencies for 

displacements 𝑢 and 𝑤 for various porosities and boundary conditions are given in Figs. 6a-d. As can be 

observed, mod shapes show similar variations for different porosities in the same boundary conditions. In 

other words, porosity does not much affect the mod shapes of free vibration. 

 

 

 
(a)                                                                            (b) 

Fig. 5. The frequencies for (a) 𝐿/ℎ and (b) 𝑝 for various 𝑒 (𝑝 = 1 for (a), 𝐿/ℎ = 5 for (b)) 
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                                  a) First mod shape, u                                                         b) First mod shape, w  

 

 
                                  c) Second mod shape, u                                                  d) Second mod shape, w  

Fig. 6. The effect of e on the first and second mod shapes of u and w for SS, CC, and CF (𝑝 = 1, 𝐿/ℎ = 5 ) 

 

4. Conclusions 

In this study, the finite element analysis for the free vibration analysis of a porous FG beam is investigated 

using high-order shear deformation theory. A three-node 12-DOF element is used for the solution. 

Dimensionless neutral frequencies and mode shapes for various power law indexes, porosity index, and 

boundary conditions are obtained and given by tables and figures. Obtained numerical results suggest the 

following conclusions: 

• Used finite element reflects the properties of higher-order shear deformation theory and calculates 

neutral frequencies close to analytical results. 
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• The frequencies increase if porosity at the cross-section increases for very small values of the power 

law index (around 𝑝 = 0), whereas the increase of 𝑒 results in a decrease in frequencies for large 

values of 𝑝 ≥ 0.5. 

• For the same porosity index, the effect of porosity on frequencies in the case of the Even type is 

more significant compared to the Uneven ones.  

• Although the frequencies are affected due to the porosity, the mod shapes show similar 

characteristics. 
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