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The effects of third-order shear deformation theory (TSDT) displacements and 

advanced nonlinear varied shear correction coefficient on the free vibration 

frequency of thick functionally graded material (FGM) plates under environment 

temperature are studied. The nonlinear coefficient term of TSDT displacements is 

included to derive the advanced equation of nonlinear varied shear correction 

coefficient for the thick FGM plates. The determinant of the coefficient matrix in 

dynamic equilibrium differential equations under free vibration can be represented 

into fully homogeneous equation and the natural frequency can be found. The 

parametric effects of nonlinear coefficient term of TSDT, environment temperature 

and FGM power law index on the natural frequency of thick FGM plates are 

investigated. 
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1. Introduction 

It is very interesting to introduce the method to obtain the frequency of free vibration for thick plates with 

length to thickness ratio less than 10. There are many ways used for the free vibration frequency, e.g. the 

hardware experiment, the computer by using commercial software and by using custom package. It would 

be more expensive by the experiment way of isolated sound room to obtain vibration frequency than by the 

computer software. The vibration frequency of the thick plates usually found to be the fundamental frequency 

and avoided to be in the resonance condition with the rotational machinery in the practical equipments. Some 

of the commercial software might used only the simply and basic eigenvalue equation for the determinant 

value of vibration frequency. It would be more importance to have the value of vibration frequency by 

considering the effects of nonlinear third-order of thickness z direction, e.g. z3 in term of coefficient c1 for 

third-order shear deformation theory (TSDT) of displacements. Also considering the advanced nonlinear 

varied value of shear correction coefficient used for the stiffness integration and the environment temperature 

used for the functionally graded material (FGM) plates. 

 There are numerous papers on the investigations of free vibration frequency for the plates. In 2020, 

Gunasekaran et al. [1] presented an analytical investigation on free vibration frequencies by using a TSDT 

of displacements for the graphene reinforced composite (GRC) FGM plate. The one directional angular 

frequency with time is used in the analysis of vibrations. In 2020, Vinyas [2] presented the frequency 

response by using a higher order shear deformation theory (HSDT) of displacements for the circular and 
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annular porous magneto-electro-elastic (P-MEE) FGM plates. In 2019, Alaimo et al. [3] presented an 

analytical investigation on the damped free-vibration by using Galerkin method to approximate the fourth-

order expansion of displacements for the composited viscoelastic plates. In 2019, Vinyas et al. [4] presented 

a coupled frequency response by using the TSDT of displacements for composited magneto-electro-elastic 

plates. In 2019, Karsh et al. [5] presented a low-frequency free vibration analysis by using first-order shear 

deformation theory (FSDT) of displacements for the FGM plates. In 2019, Gao et al. [6] presented a low 

frequency analysis by using the commercial package COMSOL for the cavities containing N-beam 

resonators in the metamaterial plates. In 2018, Geng et al. [7] presented the mid-frequency analysis by using 

B-spline wavelet on interval finite element method (FEM) for the thin plates. In 2018, Morozov and Lopatin 

[8] presented the fundamental frequency analysis by using the Galerkin method for the anisotropic laminated 

composite plates. In 2017, Lee et al. [9] presented the natural frequency analysis by using the homotopy 

perturbation method (HPM) for the thin plates in two directional angular frequency with time, e.g. two mode 

shapes in subscript numbers (m, n) of natural frequency. In 2017, Rezaei et al. [10] presented the free 

vibration analysis by using a simple FSDT of displacements for the porosities FGM plates. These frequency 

studies usually did not have two directions of mode vibrations in time, also not considering the shear 

correction coefficient effect of shear stresses, especially in the thick plates.  

 When the values of free vibration frequency were obtained, then they can be used as the initial value for 

the further appropriate studies in the thermal vibration and transient response. The first smaller values e.g. 

five values of free vibration frequency were used as the fundamental frequencies to study further, also it 

would be interesting to study further about more than one directional angular frequency with respective to 

length direction, width direction of plates and time. The author has some preliminary investigations of 

vibration frequencies for thick FGM shells without considering the effects of nonlinear coefficient term of 

TSDT displacements on the calculation of varied shear correction coefficient. In 2020, Hong [11] presented 

the preliminary calculation of free vibration frequencies by using the TSDT displacements for the thick FGM 

spherical shells with simply homogeneous equation. In 2020, Hong [12] presented the preliminary 

calculation of free vibration frequencies by using the TSDT displacements for the thick FGM circular 

cylindrical shells with simply homogeneous equation. There are also some thermal vibration investigations 

in the Terfenol-D FGM plates without considering the effects of nonlinear coefficient term of TSDT 

displacements on the calculation of varied shear correction coefficient. In 2014, Hong [13] presented the 

thermal vibration of Terfenol-D FGM plates by preliminary considering the effects of FSDT model and the 

varied modified shear correction factor to obtain the computational results. In 2012, Hong [14] presented the 

rapid heating for Terfenol-D FGM plates by preliminary considering the effect of FSDT model to obtain the 

computational results.  

 It is interesting to study further about the free vibration frequencies of thick FGM plates in simultaneously 

considering the effects of the TSDT of displacements, the nonlinear shear correction coefficient, environment 

temperature and the two directions of mode vibrations in time with fully homogeneous equation under four 

edges simply supported boundary conditions. The main motivations and issues for this paper are the 

advanced nonlinear shear correction coefficient kα for the thick FGM plates is used in the calculation of 

stiffness integration, also introduced the advanced nonlinear kα topic for the computation of free vibration 

frequencies including the effect of coefficient c1 term of TSDT, power-law exponent of FGM and 

environment temperature. It is an extension of some previous papers by the author. It is the novelty of the 

computation work in free vibration frequencies of thick FGM plates by using and considering the varied 

effect of advanced nonlinear kα, e.g. the values of advanced kαare usually in nonlinear with coefficient c1, 

power-law exponent of FGM and environment temperature. 
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2. Formulation procedures for the advanced nonlinear kα 

For the free vibration of a composited two-material thick FGM plate under environment temperature T is 

studied with thickness h1 and h2 of FGM constituent material 1 and FGM constituent material 2 respectively, 

length a, width b of the FGM plate are shown in Fig. 1. The properties Pi of individual constituent material 

of FGMs are functions of T and temperature coefficients P0, P-1, P1, P2, and P3 [14]. The material properties 

of power-law function of FGM plates are considered with the dominated Young’s modulus Efgm of FGMs in 

standard variation form of power-law exponent parameter Rn, the others are assumed in the simple average 

form for the Poisson’s ratio νfgm, density, thermal expansion coefficient, thermal conductivity and specific 

heat [15-16]. 

 The time dependent of displacements u, v and w of thick FGM plates are assumed in the nonlinear 

coefficient c1 term of TSDT equations [17] as follows: 

0 3

1( , , ) ( , , ) ( )x x

w
u u x y t z x y t c z

x
 


= + − +


 

0 3

1( , , ) ( , , ) ( )y y

w
v v x y t z x y t c z

y
 


= + − +


 

( , , )w w x y t=  

(1) 

where u0 and v0 are displacements in the direction of x and y axes, respectively, w is transverse displacement 

in the direction of z axis of the middle-plane of thick FGM plates. ψx and ψy are the shear rotations. t is the 

time. The coefficient for c1 = 4/(3h*2) is given as in TSDT approach, in which h* is the total thickness of 

thick FGM plates. x, y and z are the coordinates in the Cartesian axes system. 

 By defining the following expressions integrated with the stiffness Ǭ i
s
j
s
 and Ǭ i*j* in the direction of z axis 

for the thick FGM plates 
*

*

2 3 4 62

2

( , , , , , ) (1, , , , , )s s s s s s s s s s s s s s

h

hi j i j i j i j i j i j i j
A B D E F H Q z z z z z dz

−
=  , ( , 1,2,6)s si j =  

*

** * * * * * * * * * * * * *

2 3 4 52

2

( , , , , , ) (1, , , , , )
h

hi j i j i j i j i j i j i j
A B D E F H k Q z z z z z dz−

=  , * *( , 4,5)i j =  

(2) 

with total number of constituent layers N*= 2 and ρ(k) is the density of superscript kth constituent ply. kαis the 

shear correction coefficient in advanced nonlinear varied value. The stiffness Ǭ i
s
j
s
 and Ǭ i*j* for thick FGM 

plates can be used in simple forms as follows by Shen [18]: 

 

 
Fig. 1. Composited two-material thick FGM plate 
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in which Efgm = (E2-E1)[(z＋h*/2)/h*]Rn＋E1 and νfgm = (ν1＋ν2)/2. E1 and E2 are the Young’s modulus. ν1 and 

ν2 are the Poisson’s ratios of the FGM constituent material 1 and 2, respectively. 

 When the varied shear correction coefficient is considered the effects simultaneously from coefficient c1 

term of TSDT, power-law exponent of FGM and environment temperature, thus, the advanced nonlinear 

varied shear correction coefficient might be called in the preliminary study. The advanced nonlinear kα can 

be obtained as follows for the thick FGM plates by using the equivalence principle of total strain energy. The 

more detail for the derivation of the kα is based on the determination in 2014 by Hong [13], but the current 

expression including with c1 term after advanced derivation and without magnetostrictive term. 

*

1 FGMZSV
k

FGMZIVh
 =  (4) 

where FGMZSV = (FGMZS – c1FGMZSN)2 is in function of h*6, FGMZIV = FGMZI – 2c1FGMZIV1 + 

c1
2FGMZIV2 is in function of h*5 , in which FGMZS, FGMZSN, FGMZI, FGMZIV1 and FGMZIV2 

parameters can be expressed in functions of E1, E2, h* and Rn for the thick FGM plates. The values of 

advanced nonlinear kα are usually functions of c1, Rn and T, but independent to the values of h*. 

 The vibration frequency (ωmn with two directional mode shape subscript numbers m and n) for four sides 

simply supported boundary condition with not symmetrical (Bij ≠ 0, I1 ≠ 0, I3 ≠ 0, J1 ≠ 0) thick FGM plates 

can be derived by assuming that A16 = A26 = 0, D16 = D26 = 0, E16 = E26 = 0, F16 = F26 = 0, H16 = H26 = 0 and 

A45 = D45 = F45 = 0 under the following sinusoidal displacement forms with amplitudes amn, bmn, cmn, dmn and 

emn. 

0 cos( / )sin( / )sin( )mn mnu a m x a n y b t  =  

0 sin( / )cos( / )sin( )mn mnv b m x a n y b t  =  

sin( / )sin( / )sin( )mn mnw c m x a n y b t  =  

cos( / )sin( / )sin( )x mn mnd m x a n y b t   =  

sin( / )cos( / )sin( )y mn mne m x a n y b t   =  

(5) 

 By substituting equations (5) into dynamic equilibrium differential equations (A1) with TSDT of thick 

FGM plates under T in terms of partial derivatives of displacements and shear rotations under free vibration 

(without the thermal loads and mechanical loads), thus the fully homogeneous equation (A2) can be obtained 

and the ωmn can be found. More detailed procedures were presented in Hong [19]. The dynamic equilibrium 

differential equations and the fully homogeneous equation are listed in the Appendix. 
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3. Some numerical results and discussions 

 The composite FGM SUS304/Si3N4 material is used to implement the numerical computation under T 

(free stress assumed). The FGM constituent material 1 at lower position is SUS304, the FGM constituent 

material 2 at upper position is Si3N4 used for the free vibration frequency computations.  

 Firstly, the calculated values of advanced nonlinear kα are shown in Table 1. By considering the effect of 

c1 on kα for a/b = 1 and h1 = h2, the advanced computational values of kα under T = 1 K are presented. For 

the value c1 = 92.592598/mm2 decreases to c1= 0.0092592/mm2, the kαvalues are increasing firstly then 

decreasing with Rn. For the value c1 = 0/mm2, the kα values are also increasing firstly then decreasing with 

Rn. The advanced kα values are found in functions of c1, Rn and T, but independent to the values of h* for the 

thick FGM plates. 

 Fig. 2. shows that varied values of kα vs. T under Rn = 0.5, 1 and 10 for the values c1 ≠ 0 and c1 = 0 cases, 

respectively. The kα values in c1 ≠ 0 case are smaller than that in c1 = 0 case. The kα values are nearly close 

to 1.3 for Rn = 0.5 and 1, also are nearly close to 1.1 for Rn = 10 in c1 = 0 case. The kα values found in the c1 

= 0 case can be considered in overestimated values for the thick FGM plates. 

 Thus, advanced computational values of kα for c1 ≠ 0 case are used in frequency calculations of the free 

vibration (ΔT = 0). For the dimensionless frequency parameter defined as f *= ω11h*(ρ2/E2)0.5 and value is 

shown in Table 2, where ω11 is the fundamental first natural frequency (subscript m = n = 1), ρ2 is the density 

of FGM constituent material 2. With h*= 1.2 mm, the f *values are not greater than 0.001379 under T = 1 K, 

100 K, 300 K, 600 K and 1000 K. f *= 0.001379 is the maximum value that occurs at a/h*= 8, Rn = 2 and T 

= 600 K for the thick FGM plates. 

 

Table 1. Nonlinear varied kα vs. c1 and Rn under T = 1 K 

c1 

(1/mm2) 

h* 

(mm) 

kα 

Rn = 0.1 Rn = 0.2 Rn = 0.5 Rn = 1 Rn = 2 Rn = 5 Rn = 10 

92.592598 0.12 -0.323869 -0.324963 -0.365392 -0.541369 -2.399161 0.802957 0.518229 

0.925925 1.2 -0.323870 -0.324963 -0.365392 -0.541370 -2.399165 0.802958 0.518229 

0.231481 2.4 -0.323869 -0.324963 -0.365392 -0.541370 -2.399165 0.802958 0.518229 

0.037037 6 -0.323869 -0.324962 -0.365392 -0.541370 -2.399163 0.802957 0.518229 

0.009259 12 -0.323870 -0.324962 -0.365392 -0.541370 -2.399163 0.802957 0.518229 

0 0.12 0.915601 0.992033 1.175883 1.340146 1.396886 1.249938 1.099855 

0 1.2 0.915601 0.992030 1.175884 1.340146 1.396886 1.249938 1.099855 

0 2.4 0.915601 0.992030 1.175884 1.340146 1.396886 1.249938 1.099855 

0 6 0.915600 0.992028 1.175884 1.340146 1.396886 1.249938 1.099855 

0 12 0.915600 0.992027 1.175884 1.340146 1.396886 1.249938 1.099855 



Journal of Structural Engineering & Applied Mechanics 148 

 

 
 a) kα vs. T under Rn = 0.5 b) kα vs. T under Rn = 1 

 
c) kαvs. T under Rn= 10 

Fig. 2. kα vs. T under Rn = 0.5, 1 and 10 for the values c1 ≠ 0 and c1 = 0 

 

Table 2. f * for SUS304/Si3N4 

a/h* Rn
 

Present solution  f * (h*= 1.2 mm, c1 = 4/(3h*2), nonlinearly varied kα) 

T = 1 K T = 100 K T = 300 K T = 600 K T = 1000 K
 

5 0.5 0.000117 0.000114 0.000100 0.000111 0.000166 

 1 0.000111 0.000103 0.000063 0.000075 0.000164 

 2 0.000077 0.000133 0.000488 0.000502 0.000154 

 10 0.000304 0.000313 0.000333 0.000363 0.000431 

8 0.5 0.000158 0.000155 0.000137 0.000152 0.000223 

 1 0.000151 0.000140 0.000087 0.000103 0.000220 

 2 0.000105 0.000206 0.001282 0.001379 0.000209 

 10 0.000413 0.000427 0.000458 0.000500 0.000588 

10 0.5 0.000194 0.000190 0.000168 0.000187 0.000275 

 1 0.000185 0.000172 0.000106 0.000127 0.000272 

 2 0.000129 0.000372 0.000318 0.000325 0.000258 

 10 0.000540 0.000561 0.000610 0.000680 0.000887 
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 The dimensionless frequency parameter defined as ω*= (ω11b2∕π2)(Is∕Ds)0.5 and value is shown in Table 3, 

where 

*

*
2

1

2

h

s h
I dz

−

=  , 

*

*

22
1

2

h

s h
D Q z dz

−

=  ,  1 is the density of FGM constituent material 1, Ǭ1 = E1∕(1－ν1
2) of 

FGM constituent material 1. With h*= 1.2 mm, the ω* values are not greater than 0.075554 under T = 1 K, 

100 K, 300 K, 600 K and 1000 K. ω*= 0.075554 is the maximum value that occurs at a/h*=10, Rn= 10 and T 

= 1000 K for the thick FGM plates. 

 The dimensionless frequency parameter defined as Ω = (ω11a2∕h*)[ 1(1-ν1
2)∕E1]0.5 and value is shown in 

Table 4. With h*= 1.2 mm, the Ω values are not greater than 0.215261 under T = 1 K, 100 K, 300 K, 600 K 

and 1000 K. Ω = 0.215261 is the maximum value that occurs at a/h*= 10, Rn = 10 and T = 1000 K for the 

thick FGM plates. 

 It is interesting to compare the present solution of free vibration values of dimensionless frequency for 

c1 ≠ 0 case with some authors' work as shown in the Table 5-7. The values of f * vs.
 
h* for SUS304/Si3N4 

under a/h*= 10 and T = 300 K with advanced kα effect are shown in Table 5. The value f *= 0.084531 at h*= 

14 mm and Rn = 2 is found in close to f *= 0.0839 for Al/ZrO2 under no environmental temperature effect in 

Jha et al. [20]. 

 The values of ω* vs.
 
h* for SUS304/Si3N4 under a/h*= 10 and T = 300 K with advanced kα effect are 

shown in Table 6. The value ω*= 3.879621 at h*= 10 mm, Rn = 2 is found in close to ω*= 4.1165 for h*= 200 

mm forced vibration under uniform temperature rise (T= 0) by Kim [21]. Also compare the value ω*= 

3.879621 is in close with ω*= 3.99244 for uniform distribution (UD) in CNTRC FGM plates resting on 

Winkler–Pasternak elastic foundations by Duc et al. [22]. 

 

Table 3. ω* for SUS304/Si3N4 

 

 

 

 

 

a/h* Rn
 

Present solution ω* ( h*= 1.2 mm, c1 = 4/(3h*2), nonlinearly varied kα) 

T = 1 K T = 100 K T = 300 K T = 600 K T = 1000 K
 

5 0.5 0.002388 0.002260 0.001917 0.002124 0.003552 

 1 0.002266 0.002034 0.001211 0.001436 0.003498 

 2 0.001566 0.002622 0.009293 0.009540 0.003290 

 10 0.006171 0.006175 0.006356 0.006893 0.009188 

8 0.5 0.008239 0.007836 0.006696 0.007417 0.012165 

 1 0.007853 0.007087 0.004258 0.005046 0.012030 

 2 0.005490 0.010437 0.062493 0.067049 0.011413 

 10 0.021440 0.021569 0.022366 0.024343 0.032050 

10 0.5 0.015773 0.015011 0.012826 0.014223 0.023413 

 1 0.015037 0.013571 0.008136 0.009652 0.023164 

 2 0.010498 0.029382 0.024273 0.024685 0.021992 

 10 0.043841 0.044310 0.046484 0.051713 0.075554 



Journal of Structural Engineering & Applied Mechanics 150 

 

Table 4. Ω for SUS304/Si3N4 

 

Table 5. Comparison of frequency f * for SUS304/Si3N4 and Al/ZrO2 

c1 

(1/mm2) 

h*

 
(mm) 

f 

Present solution, a/h*= 10, T = 300 K, 

nonlinearly varied kα for SUS304/Si3N4 
Jha et al. [20] 

Al/ZrO2, Rn = 0.5 
Rn = 0.5 Rn = 1 Rn = 2 

0.925925 1.2 0.000168 0.000106 0.000318 -- 

0.333333 2 0.003663 0.003747 0.003847 -- 

0.013333 10 0.047598 0.049180 0.050952 -- 

0.009259 12 0.062619 0.064708 0.067043 -- 

0.006802 14 0.078943 0.081585 0.084531 0.0839 
 

Table 6.Comparison of frequency ω* for SUS304/Si3N4 

 

 

a/h* Rn
 

Present solution Ω ( h*= 1.2 mm, c1 = 4/(3h*2), nonlinearly varied kα) 

T = 1 K T = 100 K T = 300 K T = 600 K T = 1000 K
 

5 0.5 0.006805 0.006441 0.005463 0.006052 0.010122 

 1 0.006457 0.005796 0.003452 0.004094 0.009966 

 2 0.004464 0.007472 0.026478 0.027183 0.009376 

 10 0.017583 0.017595 0.018111 0.019639 0.026177 

8 0.5 0.023474 0.022326 0.019078 0.021132 0.034659 

 1 0.022376 0.020192 0.012131 0.014379 0.034275 

 2 0.015641 0.029737 0.178050 0.191030 0.032518 

 10 0.061085 0.061455 0.063724 0.069357 0.091315 

10 0.5 0.044941 0.042770 0.036543 0.040525 0.066708 

 1 0.042842 0.038665 0.023182 0.027499 0.065999 

 2 0.029910 0.083713 0.069157 0.070331 0.062659 

 10 0.124910 0.126245 0.132438 0.147336 0.215261 

c1  

(1/mm2) 

h*  

(mm) 

ω* 

Present solution, a/h*= 10, T = 300 K, 

nonlinearly varied kα 

Kim 2005 [21] 

Forced vibration, 

h*=200 mm, T = 0 

Duc et al. [22] 

CNTRC, FSDT
 

Rn= 0.5 Rn= 1 Rn= 2 Rn= 2
 

UD type
 

0.925925 1.2 0.012826 0.008136 0.024273 -- -- 

0.333333 2 0.278953 0.285340 0.292981 -- -- 

0.013333 10 3.624274 3.744695 3.879621 4.1165 3.99244  

0.009259 12 4.767975 4.927086 5.104831 -- -- 

0.006802 14 6.010954 6.212089 6.436427 -- -- 
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Table 7.  Comparison of frequency Ω for SUS304/Si3N4 

 

 The values of Ω vs.
 
h*for SUS304/Si3N4 under a/h* = 10 and T = 300 K with advanced kα effect are shown 

in Table 7. The value Ω = 5.103842 at h*= 6 mm, Rn = 2 is found in close to Ω = 5.359 for forced vibration 

under temperature rise (T = 400 K) by Ungbhakorn and Wattanasakulpong [23]. The values of 

dimensionless natural frequency parameters are also found in functions of a/h*, Rn, c1 and T for the thick 

FGM plates. Since the comparisons listed in Tables 5-7 are currently referred from the web site, it can be 

considered as a preliminary reference data, it might need to be provided in more precise results in the future 

studies. 

 Secondly, the natural frequency ωmn values (unit 1/s) of free vibration are calculated according to mode 

shape numbers m and n for the thick SUS304/Si3N4 FGM plate with advanced kα effect. The values of 

fundamental first (subscript m = n = 1) natural frequency ω11 vs. Rn are shown in Table 8 with c1 = 

0.925925/mm2

 
under T = 1 K, 100 K, 300 K, 600 K and 1000 K. The results of fundamental first natural 

frequencies are found in functions of a/h*, Rn, c1 and T . 

 The values of natural frequency ωmn vs. subscripts m, n = 1,2,...,9 are shown in Table 9 with Rn = 0.5, T 

= 300 K and c1 = 0.925925/mm2. The results of dimensional natural frequencies are found in varied with 

mode values m, n and a/h* for the thick FGM plates. 

 Fig. 3 shows the values of ω1n vs. Rn with c1 = 0.925925/mm2 and
 
advanced kα effect for thick FGM plate 

a/h*= 5 and 10, respectively under T = 300 K. Generally the values of ω1n  are oscillating and going to around 

0.005258 at n = 9 for a/h*= 5 and
 
Rn = 10. The greatest value of ω16 = 0.033687 (unit 1/s) is found, then 

decreasing to value ω19 = 0.005258 (unit 1/s) for a/h*= 5 and Rn = 10. The values of ω1n are also oscillating 

and going to around 0.008937 at n = 9 for a/h*= 10 and
 
Rn = 10. The greatest value of ω17 = 0.016076 (unit 

1/s) is found, then decreasing to value ω19 = 0.008937 (unit 1/s) for a/h*= 10 and Rn = 10. 

 Fig. 4 shows the values of ω1n vs. T with c1 = 0.925925/mm2 and
 
advanced kα effect for thick FGM plate 

a/h*= 5 and 10, respectively under Rn = 0.5. Generally the values of ω1n are oscillating and going to around 

0.004688 at n = 9 for a/h*= 5 and T = 600 K. The greatest value of ω14 = 0.043468 (unit 1/s) is found, then 

decreasing to value ω19 = 0.00809 (unit 1/s) for a/h*= 5 and T = 1000 K. The greatest value of ω19 = 0.006839 

(unit 1/s) is found, the smallest value of ω11 = 0.002744 is found for a/h*= 10 and T = 300 K. 

 Finally, the compared ω1n values vs. two approach types of fully homogeneous equation (A2) and simply 

homogeneous equation (A3) are also shows in Fig. 5 for Rn = 0.5, T = 300 K and a/h*= 10. 

 

 

 

 

 

c1 

(1/mm2) 

h* 

(mm) 

Ω 

Present solution, a/h*= 10, T= 300 K, 

nonlinear varied kα 
Ungbhakorn and Wattanasakulpong  [23], 

T = 400 K, Rn = 1 
Rn = 0.5 Rn = 1 Rn = 2 

0.925925 1.2 0.036543 0.023182 0.069157 -- 

0.333333 2 0.794768 0.812965 0.834735 -- 

0.053333 5 3.613396 3.728638 3.862379 -- 

0.037037 6 4.772100 4.926843 5.103842 5.359 

0.013333 10 10.325957 10.669049 11.053467 -- 



Journal of Structural Engineering & Applied Mechanics 152 

 

Table 8. Fundamental natural frequency ω11 for nonlinear varied kα, c1, h*= 1.2 mm 

a/h* Rn 
ω11 

T = 1 K T = 100 K T = 300 K T = 600 K T = 1000 K 

5 0.5 0.002017 0.001928 0.001641 0.001751 0.002485 

 1 0.001914 0.001735 0.001037 0.001184 0.002447 

 2 0.001323 0.002237 0.007954 0.007866 0.002302 

 10 0.005212 0.005268 0.005441 0.005683 0.006428 

10 0.5 0.003330 0.003201 0.002744 0.002932 0.004095 

 1 0.003175 0.002894 0.001741 0.001989 0.004052 

 2 0.002216 0.006266 0.005194 0.005088 0.003847 

 10 0.009257 0.009449 0.009946 0.010659 0.013216 

 

Table 9. ωmn vs. m
 
and n under nonlinear varied kα, c1, Rn = 0.5 and T = 300 K 

 

 

 

 

a/h* 
ω1n 

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.001641 0.001736 0.001821 0.001888 0.004822 0.029442 0.025729 0.021949 0.001641 

10 0.002744 0.003067 0.003344 0.003466 0.003444 0.003340 0.003198 0.003038 0.006839 

a/h* 
ω2n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.001228 0.001264 0.001310 0.001375 0.004485 0.023202 0.020780 0.006867 0.001228 

10 0.001594 0.001641 0.001689 0.001736 0.001781 0.001821 0.001857 0.001888 0.007277 

a/h* 
ω3n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.001227 0.001258 0.001306 0.001386 0.004120 0.020777 0.007638 0.006320 0.005388 

10 0.001315 0.001336 0.001359 0.001385 0.001412 0.001440 0.001471 0.001506 0.007551 

a/h* 
ω4n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.001429 0.001469 0.001541 0.001685 0.003293 0.007149 0.006383 0.005687 0.005073 

10 0.001215 0.001228 0.001245 0.001264 0.001285 0.001310 0.001339 0.001375 0.007629 

a/h* 
ω5n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.002244 0.002307 0.002450 0.002876 0.003748 0.005017 0.011626 0.007413 0.006639 

10 0.001192 0.001203 0.001217 0.001233 0.001254 0.001278 0.001309 0.001347 0.007546 

a/h* 
ω6n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.002169 0.001921 0.001724 0.004902 0.004421 0.004559 0.004830 0.004944 0.004891 

10 0.001217 0.001227 0.001240 0.001258 0.001279 0.001306 0.001340 0.001386 0.007358 
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Table 9. Continued. 

 

   
 a) ω1n vs. Rn for a/h*= 5  b) ω1n  vs. Rn for a/h*=10 

Fig. 3. ω1n vs. Rn for a/h*= 5 and 10 

 

   
 a) ω1n vs. T for a/h*= 5  b) ω1n vs. T for  a/h*= 10 

Fig. 4. ω1n vs. T for a/h*= 5 and 10 

a/h* 
ω7n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.001213 0.001175 0.001126 0.004870 0.003826 0.003424 0.003294 0.003325 0.003431 

10 0.001287 0.001297 0.001312 0.001331 0.001355 0.001387 0.001429 0.001489 0.007138 

a/h* 
ω8n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.000898 0.000884 0.006903 0.004393 0.003469 0.003008 0.002761 0.002641 0.002612 

10 0.001416 0.001429 0.001446 0.001469 0.001500 0.001541 0.001599 0.001685 0.007001 

a/h* 
ω9n  

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

5 0.000730 0.014808 0.005387 0.003932 0.003189 0.002757 0.002489 0.002323 0.002228 

10 0.001659 0.001674 0.001696 0.001727 0.001770 0.001830 0.001920 0.002068 0.007491 
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Fig. 5. Compared ω1n vs. homogeneous equation for Rn= 0.5, T= 300K and a/h*= 10 

 

The ω1n values can be considered in overestimated for simply homogeneous equation with respect to the 

values for fully homogeneous equation. For more detailed procedures about simply homogeneous equation, 

refer Hong [24]. The simply homogeneous equation is be listed in the Appendix. 

 

4. Conclusions 

The values of natural frequency ωmn and three types of dimensionless frequency parameters are calculated 

with fully homogeneous equation in the free vibration of thick FGM plates by considering the effects of 

TSDT c1 term, advanced nonlinear varied kαand environment temperature T. The advanced kαvalues are 

found in functions of c1, Rn and T, but independent to the values of h* for the thick FGM plates. The kαvalues 

found in the c1 = 0 case can be considered in overestimated values for the thick FGM plates. The values of 

dimensionless natural frequency parameters are found in functions of a/h*, Rn, c1 and T for the thick FGM 

plates. The natural frequencies ω1n are oscillating and going to around 0.005258/s with values of n for a/h*= 

5 and
 
Rn = 10. Also the ω1n are oscillating and going to around 0.008937/s with values of n for a/h*=10 and

 
Rn = 10. 
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Appendix 

The dynamic equilibrium differential equations can be presented in matrix form as follows [19]: 

 

4 4 4 4 4
2 2 2 2 2 2

1 11 1 16 1 12 1 66 1 26 1 22 4 3 2 2 3 4

0 0 0 0 0

0 0 0 0 0

4 2 4 4

0 0 0 0 0

0 0 0 0 0

t

w w w w w
c H c H c H c H c H c H

x x y x y x y y

 
 
       
  − − − − − −  

          
 
 
 

 

1 12

1 11 1 16 1 26

1 66

1 12

1 16 1 26 1 22

1 66

1 12 1 12

1 11 1 16 1 26 1 16 1 26 1 22

1 66 1 66

1 12

2

1 161 11 1 12

2 2

1 661 11 1 16

0 0 0 0 0 0 0 0 3
2

0 0 0 0 0 0 0 0 3
2

3 3 0 0 0 0
2 2

3
0 0 0 0 0 0 0 0

23

2

c E
c E c E c E

c E

c E
c E c E c E

c E

c E c E
c E c E c E c E c E c E

c E c E

c F

c Fc F c H

c Fc H c H

c

−
− − −

−

−
− − −

−

+ +

−
+

−− +

−+ +

+

1 26

2

1 26

2

1 66

1 66

2

1 16 1 26 1 221 66

2 2 2

1 121 16 1 26 1 22

2

1 12

2

32
0 0 0 0 0 0 0 0

3

2

c F

c H

H

c F

c F c F c Fc H

c Fc H c H c H

c H

−

+

−

− − −+

−+ + +

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 3 3 3

3 2 2 3 3 2 2 3 3 2 2 3

t

u u u u v v v v w w w w

x x y x y y x x y x y y x x y x y y

            
 

                  
 

1 66 1 12

22
1 16 1 26 1 16 1 261 11 1 221 121 66

2 2 2 2 2 2
1 661 121 11 1 16 1 26 1 16 1 26 1 22

22

1 661 12

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2

3 32

23 3

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

c F c F

c F c F c F c Fc F c Fc Hc H

c Fc Fc H c H c H c H c H c H

c Hc H

 
 
 
 
 

−− 
+  ++− − − − − −

 
 −−
 
 
 
 

3 3 3 33 3 3 3

3 2 2 3 3 2 2 3

t

y y y yx x x x

x x y x y y x x y x y y

              
 

             
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11 16 66 16 12 66 26

16 12 66 26 66 26 22

1 55 1 45 1 44

1 55 1 45 1 44

22

45 22

44 1 655 1 6 22

12 66

16 66 1611

1 12

1 11 1 16 1 66 1 16

1

2 0 0 0

2 0 0 0

3 (2 6 (2 3 (2

0 0 0 0 0 0 3 ) 3 ) 3 )

2

2

2

A A A A A A A

A A A A A A A

c D c D c D

c F c F c F

A
A c IA c I

tt

B B
B B BB

c E
c E c E c E c E

c E

+

+

− − −

− − −

+ 
+ ++ +
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−
− − − −

−

26

1 26

66

16 12 66 26 66 26 22

1 16 1 12 1 66 1 26 1 66 1 26 1 22

0 0 0

2
0 0 0

2

B
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B B B B B B B
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−

+
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t

u u u v v v w w w

x y x y x yx y x y x y
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 
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2 2 2
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2 2
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− −
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− − −−

+ + +
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16 26 1 262

1 12 1 122 2
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12 66
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1 12 1 122 2 2 2 2

1 16 1 26 1 66 1 26 1 222
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D D
D c F

c F c H
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 (A1) 

where 

*

1
( )

1

N k
k i

i
k

k

I z dz
+

=

=  , (i = 0,1,2,…,6), in which N* is total number of constituent layers,(k) is the 

density of superscript kth constituent ply. Ji = Ii－c1Ii+2, (i =1,4), K2 = I2－2c1I4＋c1
2I6 and the f1,…, f5 are the 

derivative expression terms in thermal loads and mechanical loads. 
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 The fully homogeneous equation can be presented in matrix form as follows [19]: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹𝐻11 𝐹𝐻12 𝐹𝐻13 𝐹𝐻14 𝐹𝐻15

−
𝐼0𝜆𝑚𝑛

𝐼0
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𝑎
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𝑏
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𝐼0
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+
𝑐1𝐼3(

𝑚𝜋

𝑎
)𝜆𝑚𝑛
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𝑛𝜋

𝑏
)𝜆𝑚𝑛

𝐼0
−[𝐼0 + 𝑐1

2𝐼6 (
𝑚𝜋

𝑎
)
2

+
𝑐1𝐽4(

𝑚𝜋

𝑎
)𝜆𝑚𝑛

𝐼0
+
𝑐1𝐽4(

𝑛𝜋

𝑏
)𝜆𝑚𝑛

𝐼0

+𝑐1
2𝐼6 (

𝑛𝜋

𝑏
)
2
]𝜆𝑚𝑛/𝐼0

𝐹𝐻14 𝐹𝐻24 𝐹𝐻34 𝐹𝐻44 𝐹𝐻45

−
𝐽1𝜆𝑚𝑛

𝐼0
+
𝑐1𝐽4(

𝑚𝜋

𝑎
)𝜆𝑚𝑛

𝐼0
−
𝐾2𝜆𝑚𝑛

𝐼0

𝐹𝐻15 𝐹𝐻25 𝐹𝐻35 𝐹𝐻45 𝐹𝐻55

−
𝐽1𝜆𝑚𝑛

𝐼0
+
𝑐1𝐽4(

𝑛𝜋

𝑏
)𝜆𝑚𝑛

𝐼0
−
𝐾2𝜆𝑚𝑛

𝐼0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝑎𝑚𝑛
𝑏𝑚𝑛
𝑐𝑚𝑛
𝑑𝑚𝑛
𝑒𝑚𝑛}

 
 

 
 

 =

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

 (A2) 

where 

𝜆𝑚𝑛 = 𝐼0𝜔𝑚𝑛
2, 

2 2

11 11 66( / ) ( / )FH A m a A n b = + , 

12 12 66( )( / )( / )FH A A m a n b = + , 

3 2

13 1 11 1 12 1 66( / ) ( 2 )( / )( / )FH c E m a c E c E m a n b  = − − + , 

2 2

14 11 1 11 66 1 66( )( / ) ( )( / )FH B c E m a B c E n b = − + − , 

15 12 66 1 12 1 66( )( / )( / )FH B B c E c E m a n b = + − − , 

2 2

22 66 22( / ) ( / )FH A m a A n b = + , 

2 3

23 1 12 1 66 1 22( 2 )( / ) ( / ) ( / )FH c E c E m a n b c E n b  = − + − , 

24 12 66 1 12 1 66( )( / )( / )FH B B c E c E m a n b = + − − , 

2 2

25 66 1 66 22 1 22( )( / ) ( )( / )FH B c E m a B c E n b = − + − , 

2 2 2 4 2 2 2 2

33 55 44 1 11 1 12 1 66

2 4 2 2

1 22 1 55 1 55 1 44 1 44

( / ) ( / ) ( / ) (2 4 )( / ) ( / )

( / ) 3 (2 3 )( / ) 3 (2 3 )( / )

FH A m a A n b c H m a c H c H m a n b

c H n b c D c F m a c D c F n b

    

  

= + + + +

+ − − − −
, 

2 3 2 2 2

34 55 1 11 1 11 1 66 1 66 1 12 1 12

2

1 55 1 55

/ ( )( / ) (2 2 )( / )( / )

(6 9 )( / )

FH A m a c F c H m a c F c H c F c H m a n b

c D c F m a

   



= − − − − + −

− −
, 

2 3 2 2 2

35 44 1 22 1 222 1 66 1 66 1 12 1 12

2

1 44 1 44

/ ( )( / ) (2 2 )( / ) ( / )

(6 9 )( / )

FH A n b c F c H n b c F c H c F c H m a n b

c D c F n b

   



= − − − − + −

− −
, 

2 2 2 2 2

44 11 1 11 1 11 66 1 66 1 66 55 1 55 1 55( 2 )( / ) ( 2 )( / ) 6 9FH D c F c H m a D c F c H n b A c D c F = − + + − + + − + , 

2 2

45 12 66 1 12 1 12 1 66 1 66( 2 2 )( / )( / )FH D D c F c H c F c H m a n b = + − + − + , 
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2 2 2 2 2

55 66 1 66 1 66 22 1 22 1 22 44 1 44 1 44( 2 )( / ) ( 2 )( / ) 6 9FH D c F c H m a D c F c H n b A c D c F = − + + − + + − + ,

*

1 2

11 2

1 2
1

1
2

n

n

R E Eh
A

R 

 +
=  

++   
−  

 

, 

* 4

2 1

11 2

1 2

( ) ( ) 1 3 3 1

4 2( 3) 4( 2) 8( 1)
1

2

n n n n

h E E
E

R R R R 

 −
= − + − 

+ + + ++   
−  

 

, 

* 5

1

11 2 12

1 2

( ) 1 2 1 1 1
( )

5 4 3 2( 2) 16( 1) 80
1

2

n n n n n

Eh
F E E

R R R R R 

   
= − − + − + +  

+ + + + ++      −  
 

,  

* 7

11 2 12

1 2

1

( ) 1 3 13 2 13
( )

7 6 4( 5) 4 16( 3)
1

2

3 1

16( 2) 64( 1) 448

n n n n n

n n

h
H E E

R R R R R

E

R R

 

 
= − − + − + 

+ + + + ++   −  
 

 
− + + 

+ +  

, 

* 6

2 1

44

1 2

( ) ( ) 1 5 2 1 5 1

6 2( 5) 4 3 64( 2) 32( 1)
2 1

2
n n n n n n

k h E E
H

R R R R R R



 

 −
= − + − + − 

+ + + + + + +   + 
 

 

where E1 and E2 are the Young’s modulus, ν1 and ν2 are the Poisson’s ratios of the thick FGM constituent 

material 1 and material 2, respectively. 

 Assuming that I1 = I3 = J1 = 0, Bij = Eij  =0, A16 = A26 = 0, D16 = D26 = 0 and A45 = D45 = F45 = 0 in the (A2), 

the simply homogeneous equation can be presented in matrix form as follows [24]: 

 

11 12

2212

33 34 35

2

4434 45

0

2

35 45 55

0

0 0 0

0 0 0

0

00 0

0

0
0 0

0

0 0

mn

mn

mn

mnmn

mn

mn

mn

mn

mn

FH FH

FHFH

a

bFH FH FH

c

dK
FHFH FH

eI

K
FH FH FH

I











− 
 
 
 −
 

    
    −         

=     
     
     −
       
 
 
 

− 
  

 (A3) 

 

 

 


