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The effects of third-order shear deformation theory (TSDT) displacements and
advanced nonlinear varied shear correction coefficient on the free vibration
frequency of thick functionally graded material (FGM) plates under environment
temperature are studied. The nonlinear coefficient term of TSDT displacements is
included to derive the advanced equation of nonlinear varied shear correction
coefficient for the thick FGM plates. The determinant of the coefficient matrix in
dynamic equilibrium differential equations under free vibration can be represented
into fully homogeneous equation and the natural frequency can be found. The
parametric effects of nonlinear coefficient term of TSDT, environment temperature

and FGM power law index on the natural frequency of thick FGM plates are

Vibration . .
investigated.

Nonlinear

1. Introduction

It is very interesting to introduce the method to obtain the frequency of free vibration for thick plates with
length to thickness ratio less than 10. There are many ways used for the free vibration frequency, e.g. the
hardware experiment, the computer by using commercial software and by using custom package. It would
be more expensive by the experiment way of isolated sound room to obtain vibration frequency than by the
computer software. The vibration frequency of the thick plates usually found to be the fundamental frequency
and avoided to be in the resonance condition with the rotational machinery in the practical equipments. Some
of the commercial software might used only the simply and basic eigenvalue equation for the determinant
value of vibration frequency. It would be more importance to have the value of vibration frequency by
considering the effects of nonlinear third-order of thickness z direction, e.g. z3 in term of coefficient c; for
third-order shear deformation theory (TSDT) of displacements. Also considering the advanced nonlinear
varied value of shear correction coefficient used for the stiffness integration and the environment temperature
used for the functionally graded material (FGM) plates.

There are numerous papers on the investigations of free vibration frequency for the plates. In 2020,
Gunasekaran et al. [1] presented an analytical investigation on free vibration frequencies by using a TSDT
of displacements for the graphene reinforced composite (GRC) FGM plate. The one directional angular
frequency with time is used in the analysis of vibrations. In 2020, Vinyas [2] presented the frequency
response by using a higher order shear deformation theory (HSDT) of displacements for the circular and
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annular porous magneto-electro-elastic (P-MEE) FGM plates. In 2019, Alaimo et al. [3] presented an
analytical investigation on the damped free-vibration by using Galerkin method to approximate the fourth-
order expansion of displacements for the composited viscoelastic plates. In 2019, Vinyas et al. [4] presented
a coupled frequency response by using the TSDT of displacements for composited magneto-electro-elastic
plates. In 2019, Karsh et al. [5] presented a low-frequency free vibration analysis by using first-order shear
deformation theory (FSDT) of displacements for the FGM plates. In 2019, Gao et al. [6] presented a low
frequency analysis by using the commercial package COMSOL for the cavities containing N-beam
resonators in the metamaterial plates. In 2018, Geng et al. [7] presented the mid-frequency analysis by using
B-spline wavelet on interval finite element method (FEM) for the thin plates. In 2018, Morozov and Lopatin
[8] presented the fundamental frequency analysis by using the Galerkin method for the anisotropic laminated
composite plates. In 2017, Lee et al. [9] presented the natural frequency analysis by using the homotopy
perturbation method (HPM) for the thin plates in two directional angular frequency with time, e.g. two mode
shapes in subscript numbers (m, n) of natural frequency. In 2017, Rezaei et al. [10] presented the free
vibration analysis by using a simple FSDT of displacements for the porosities FGM plates. These frequency
studies usually did not have two directions of mode vibrations in time, also not considering the shear
correction coefficient effect of shear stresses, especially in the thick plates.

When the values of free vibration frequency were obtained, then they can be used as the initial value for
the further appropriate studies in the thermal vibration and transient response. The first smaller values e.g.
five values of free vibration frequency were used as the fundamental frequencies to study further, also it
would be interesting to study further about more than one directional angular frequency with respective to
length direction, width direction of plates and time. The author has some preliminary investigations of
vibration frequencies for thick FGM shells without considering the effects of nonlinear coefficient term of
TSDT displacements on the calculation of varied shear correction coefficient. In 2020, Hong [11] presented
the preliminary calculation of free vibration frequencies by using the TSDT displacements for the thick FGM
spherical shells with simply homogeneous equation. In 2020, Hong [12] presented the preliminary
calculation of free vibration frequencies by using the TSDT displacements for the thick FGM circular
cylindrical shells with simply homogeneous equation. There are also some thermal vibration investigations
in the Terfenol-D FGM plates without considering the effects of nonlinear coefficient term of TSDT
displacements on the calculation of varied shear correction coefficient. In 2014, Hong [13] presented the
thermal vibration of Terfenol-D FGM plates by preliminary considering the effects of FSDT model and the
varied modified shear correction factor to obtain the computational results. In 2012, Hong [14] presented the
rapid heating for Terfenol-D FGM plates by preliminary considering the effect of FSDT model to obtain the
computational results.

It is interesting to study further about the free vibration frequencies of thick FGM plates in simultaneously
considering the effects of the TSDT of displacements, the nonlinear shear correction coefficient, environment
temperature and the two directions of mode vibrations in time with fully homogeneous equation under four
edges simply supported boundary conditions. The main motivations and issues for this paper are the
advanced nonlinear shear correction coefficient ka for the thick FGM plates is used in the calculation of
stiffness integration, also introduced the advanced nonlinear k, topic for the computation of free vibration
frequencies including the effect of coefficient c¢; term of TSDT, power-law exponent of FGM and
environment temperature. It is an extension of some previous papers by the author. It is the novelty of the
computation work in free vibration frequencies of thick FGM plates by using and considering the varied
effect of advanced nonlinear k,, e.g. the values of advanced koare usually in nonlinear with coefficient ci,
power-law exponent of FGM and environment temperature.
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2. Formulation procedures for the advanced nonlinear 4;

For the free vibration of a composited two-material thick FGM plate under environment temperature T is
studied with thickness h; and h, of FGM constituent material 1 and FGM constituent material 2 respectively,
length a, width b of the FGM plate are shown in Fig. 1. The properties P; of individual constituent material
of FGMs are functions of T and temperature coefficients Po, P.1, P1, P2, and P3 [14]. The material properties
of power-law function of FGM plates are considered with the dominated Young’s modulus Egyn 0f FGMSs in
standard variation form of power-law exponent parameter Ry, the others are assumed in the simple average
form for the Poisson’s ratio vigm, density, thermal expansion coefficient, thermal conductivity and specific
heat [15-16].

The time dependent of displacements u, v and w of thick FGM plates are assumed in the nonlinear
coefficient ¢; term of TSDT equations [17] as follows:

ow
u= UO(X1 y,t) + 2y, (X, y,t) _C123(l//x +&)

V=V (Y )+ 2, () — 62, +%) M

w=w(Xx,Y,t)

where u® and v° are displacements in the direction of x and y axes, respectively, w is transverse displacement
in the direction of z axis of the middle-plane of thick FGM plates. wy and yy are the shear rotations. t is the
time. The coefficient for c¢; = 4/(3h™) is given as in TSDT approach, in which h™ is the total thickness of
thick FGM plates. x, y and z are the coordinates in the Cartesian axes system.

By defining the following expressions integrated with the stiffness O and Qi+~ in the direction of z axis
for the thick FGM plates

LI
(A BoiDa Bun B HL ) = [2.Q, (02,27, 2°, 2%, 2%)dz, (1, ° =1,2,6)
2

J
[ L 2
(A”,B**,DM,E,IA,ET,HW)=.[2* kaQiT(l,z,22,23,24,25)dz, (i",j =4,5)

(] ij ij i

h
2
with total number of constituent layers N*= 2 and p® is the density of superscript k™ constituent ply. k,is the
shear correction coefficient in advanced nonlinear varied value. The stiffness Q% and Q i+~ for thick FGM
plates can be used in simple forms as follows by Shen [18]:

FGM constituent
material 2

a FGM constituent
material 1

y

Fig. 1. Composited two-material thick FGM plate
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= = Efgm
Q11 - sz - 1—2
_Vfgm
~ — Vfngfgm
2 1_Vfgm2 (3)
= = = _ Efgm
Qus = Qs = Qg = 2aiv)
fgm

Qi =Q% =Q,s =0
in which Exgm = (E2—E1)[(z+h"/2)/h"]R*"+E; and vigm = (v1+12)/2. E1 and E; are the Young’s modulus. v; and
vo are the Poisson’s ratios of the FGM constituent material 1 and 2, respectively.

When the varied shear correction coefficient is considered the effects simultaneously from coefficient ¢,
term of TSDT, power-law exponent of FGM and environment temperature, thus, the advanced nonlinear
varied shear correction coefficient might be called in the preliminary study. The advanced nonlinear k, can
be obtained as follows for the thick FGM plates by using the equivalence principle of total strain energy. The
more detail for the derivation of the k, is based on the determination in 2014 by Hong [13], but the current
expression including with c; term after advanced derivation and without magnetostrictive term.

_ 1 FGMZzsV
“ " h" FGMZIV

where FGMZSV = (FGMZS — ¢ciFGMZSN)? is in function of h*, FGMZIV = FGMZI — 2¢;FGMZIV1 +
c1’FGMZIV2 is in function of h™ | in which FGMZS, FGMZSN, FGMZI, FGMZIV1 and FGMZIV2
parameters can be expressed in functions of E;, Ez, h™ and R, for the thick FGM plates. The values of
advanced nonlinear k, are usually functions of ¢, R, and T, but independent to the values of h".

The vibration frequency (wmn With two directional mode shape subscript numbers m and n) for four sides
simply supported boundary condition with not symmetrical (Bj# 0, 11 #0, Is # 0, J1 # 0) thick FGM plates
can be derived by assuming that Aig = Az = 0, D1 = D26 = 0, E16 = E26 = 0, F16 = F26 = 0, H1s = Hz6 = 0 and
Ass = Dus = Fu5 = 0 under the following sinusoidal displacement forms with amplitudes amn, Brmn, Crn, dmn and

(4)

€mn.

u® =a_ cos(mzx/a)sin(nzy/b)sin(w,, t)
v’ =b_ sin(mzx/a)cos(nzy /b)sin(e,, t)
w =c,, sin(mzx/a)sin(nzy /b)sin(w,,t) (5)
v, =d,,, cos(mzx/a)sin(nzy/b)sin(w,,t)
v, =€, sin(mzx/a)cos(nzy/b)sin(a,,t)

By substituting equations (5) into dynamic equilibrium differential equations (A1) with TSDT of thick
FGM plates under T in terms of partial derivatives of displacements and shear rotations under free vibration
(without the thermal loads and mechanical loads), thus the fully homogeneous equation (A2) can be obtained
and the omn can be found. More detailed procedures were presented in Hong [19]. The dynamic equilibrium
differential equations and the fully homogeneous equation are listed in the Appendix.
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3. Some numerical results and discussions

The composite FGM SUS304/SisN4 material is used to implement the numerical computation under T
(free stress assumed). The FGM constituent material 1 at lower position is SUS304, the FGM constituent
material 2 at upper position is SizsN4 used for the free vibration frequency computations.

Firstly, the calculated values of advanced nonlinear k, are shown in Table 1. By considering the effect of
c1 on k, for a/b = 1 and hy = hy, the advanced computational values of k, under T = 1 K are presented. For
the value c¢; = 92.592598/mm? decreases to ¢;= 0.0092592/mm?, the kyvalues are increasing firstly then
decreasing with Ry. For the value c; = 0/mm?, the k, values are also increasing firstly then decreasing with
Rn. The advanced k, values are found in functions of ¢, Ry and T, but independent to the values of h* for the
thick FGM plates.

Fig. 2. shows that varied values of k, vs. T under R, = 0.5, 1 and 10 for the values c1 # 0 and ¢; = 0 cases,
respectively. The k, values in c1 # 0 case are smaller than that in ¢, = 0 case. The k, values are nearly close
to 1.3 for R, = 0.5 and 1, also are nearly close to 1.1 for R, = 10 in ¢1 = 0 case. The k, values found in the c;
= 0 case can be considered in overestimated values for the thick FGM plates.

Thus, advanced computational values of k, for c1 # 0 case are used in frequency calculations of the free
vibration (AT = 0). For the dimensionless frequency parameter defined as f "= w11h"(p2/E2)*° and value is
shown in Table 2, where w1 is the fundamental first natural frequency (subscript m = n = 1), p» is the density
of FGM constituent material 2. With h"=1.2 mm, the f "values are not greater than 0.001379 under T =1 K,
100 K, 300 K, 600 K and 1000 K. f "= 0.001379 is the maximum value that occurs at a/h"=8, R, =2and T
=600 K for the thick FGM plates.

Table 1. Nonlinear varied kq vs. ctand Rnunder T =1 K

C1 h* Ka
(L/mm2) (mm) Ri=01 Rn=02 Ry=05 Rn=1 Rn=2 Rn=5 Rn = 10
92.592598 0.12 -0.323869 -0.324963 -0.365392 -0.541369 -2.399161 0.802957  0.518229
0.925925 1.2 -0.323870 -0.324963 -0.365392 -0.541370 -2.399165 0.802958  0.518229
0.231481 2.4 -0.323869 -0.324963 -0.365392 -0.541370 -2.399165 0.802958  0.518229
0.037037 6 -0.323869 -0.324962 -0.365392 -0.541370 -2.399163 0.802957  0.518229
0.009259 12 -0.323870 -0.324962 -0.365392 -0.541370 -2.399163 0.802957  0.518229
0 0.12 0.915601  0.992033 1.175883  1.340146  1.396886  1.249938  1.099855

0 1.2 0.915601  0.992030 1.175884  1.340146  1.396886  1.249938  1.099855
0 24 0.915601 0.992030 1.175884  1.340146  1.396886  1.249938  1.099855
0 6 0.915600 0.992028 1.175884  1.340146  1.396886  1.249938  1.099855
0 12 0.915600 0.992027 1.175884  1.340146  1.396886  1.249938  1.099855
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Fig. 2. ke vs. T under Ry = 0.5, 1 and 10 for the values ci# 0 and c1 =0
Table 2. f* for SUS304/SizN4
. Present solution f*(h*=1.2 mm, c1 = 4/(3h*?), nonlinearly varied ko)
ah Ro T=1K T=100 K T=300 K T=600 K T=1000 K
5 0.5 0.000117 0.000114 0.000100 0.000111 0.000166
0.000111 0.000103 0.000063 0.000075 0.000164
2 0.000077 0.000133 0.000488 0.000502 0.000154
10 0.000304 0.000313 0.000333 0.000363 0.000431
8 0.5 0.000158 0.000155 0.000137 0.000152 0.000223
1 0.000151 0.000140 0.000087 0.000103 0.000220
2 0.000105 0.000206 0.001282 0.001379 0.000209
10 0.000413 0.000427 0.000458 0.000500 0.000588
10 0.5 0.000194 0.000190 0.000168 0.000187 0.000275
0.000185 0.000172 0.000106 0.000127 0.000272
0.000129 0.000372 0.000318 0.000325 0.000258

10 0.000540 0.000561 0.000610 0.000680 0.000887
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The dimensionless frequency parameter defined as o= (0110%7?)(/#Ds)*° and value is shown in Table 3,

h* ho_
where |, = ﬁ pdz, D, = J‘E Q,Z2°dz, pu is the density of FGM constituent material 1, 01 = Ey/(1 - v{?) of
2 2
FGM constituent material 1. With h*= 1.2 mm, the »" values are not greater than 0.075554 under T = 1 K,
100 K, 300 K, 600 K and 1000 K. o= 0.075554 is the maximum value that occurs at a/h"=10, R,.=10and T
= 1000 K for the thick FGM plates.

The dimensionless frequency parameter defined as Q = (w11a%h")[ p1(1-v12)E1]°® and value is shown in

Table 4. With h™=1.2 mm, the Q values are not greater than 0.215261 under T = 1 K, 100 K, 300 K, 600 K
and 1000 K. Q = 0.215261 is the maximum value that occurs at a/h"= 10, R, = 10 and T = 1000 K for the
thick FGM plates.

It is interesting to compare the present solution of free vibration values of dimensionless frequency for
c1 # 0 case with some authors' work as shown in the Table 5-7. The values of f * vs. h* for SUS304/Si3N4
under a/h*= 10 and T = 300 K with advanced k, effect are shown in Table 5. The value f "= 0.084531 at h*=
14 mm and R, = 2 is found in close to f “= 0.0839 for Al/ZrO under no environmental temperature effect in
Jha et al. [20].

The values of ®” vs. h™ for SUS304/SisN4 under a/h™= 10 and T = 300 K with advanced k, effect are
shown in Table 6. The value »"= 3.879621 at h"=10 mm, R, = 2 is found in close to o = 4.1165 for h*= 200
mm forced vibration under uniform temperature rise (AT= 0) by Kim [21]. Also compare the value o=
3.879621 is in close with o™= 3.99244 for uniform distribution (UD) in CNTRC FGM plates resting on
Winkler—Pasternak elastic foundations by Duc et al. [22].

Table 3. o" for SUS304/SisNa

Present solution o™ (h™=1.2 mm, c1 = 4/(3h*?), nonlinearly varied ko)

a/h* Rn
T=1K T=100 K T=300K T=600K T=1000 K
5 0.5 0.002388 0.002260 0.001917 0.002124 0.003552
1 0.002266 0.002034 0.001211 0.001436 0.003498
2 0.001566 0.002622 0.009293 0.009540 0.003290
10 0.006171 0.006175 0.006356 0.006893 0.009188
8 05 0.008239 0.007836 0.006696 0.007417 0.012165
1 0.007853 0.007087 0.004258 0.005046 0.012030
2 0.005490 0.010437 0.062493 0.067049 0.011413
10 0.021440 0.021569 0.022366 0.024343 0.032050
10 0.5 0.015773 0.015011 0.012826 0.014223 0.023413
1 0.015037 0.013571 0.008136 0.009652 0.023164
2 0.010498 0.029382 0.024273 0.024685 0.021992

10 0.043841 0.044310 0.046484 0.051713 0.075554
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Table 4. Q for SUS304/Si3Na4

Present solution Q ( h*=1.2 mm, ¢1 = 4/(3h™?), nonlinearly varied k)

a/h* Rn
T=1K T=100 K T=300 K T=600K T=1000 K
5 0.5 0.006805 0.006441 0.005463 0.006052 0.010122
1 0.006457 0.005796 0.003452 0.004094 0.009966
2 0.004464 0.007472 0.026478 0.027183 0.009376
10 0.017583 0.017595 0.018111 0.019639 0.026177
8 0.5 0.023474 0.022326 0.019078 0.021132 0.034659
1 0.022376 0.020192 0.012131 0.014379 0.034275
2 0.015641 0.029737 0.178050 0.191030 0.032518
10 0.061085 0.061455 0.063724 0.069357 0.091315
10 0.5 0.044941 0.042770 0.036543 0.040525 0.066708
1 0.042842 0.038665 0.023182 0.027499 0.065999
2 0.029910 0.083713 0.069157 0.070331 0.062659
10 0.124910 0.126245 0.132438 0.147336 0.215261

Table 5. Comparison of frequency f * for SUS304/SisNa4 and Al/ZrO:

f

c1 h* Present solution, a/h*= 10, T = 300 K,
(U/mm?) (mm) nonlinearly varied k. for SUS304/SisNa Jha etal. [20]
s - A Al/ZrOz, Rn = 0.5

0.925925 12 0.000168 0.000106 0.000318 -
0.333333 2 0.003663 0.003747 0.003847 -
0.013333 10 0.047598 0.049180 0.050952 -
0.009259 12 0.062619 0.064708 0.067043 -
0.006802 14 0.078943 0.081585 0.084531 0.0839

Table 6.Comparison of frequency " for SUS304/SizN4

(O]
c1 h* Present solution, a/h*= 10, T = 300 K, Kim 2095 [2_1] Duc et al. [22]
(1/mm?) (mm) nonlinearly varied kq I*:_orced wbranE, CNTRC, FSDT
h™=200 mm, AT =0
Rn=0.5 Rn=1 Rn=2 Rn=2 UD type
0.925925 12 0.012826 0.008136 0.024273 -- --
0.333333 2 0.278953 0.285340 0.292981 -- --
0.013333 10 3.624274 3.744695 3.879621 4.1165 3.99244
0.009259 12 4767975 4.927086 5.104831 -- --

0.006802 14 6.010954 6.212089 6.436427 -- --
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Table 7. Comparison of frequency Q for SUS304/SizN4

Q
c1 h* Present solution, a/h*= 10, T= 300 K,
(Umm?)  (mm) nonlinear varied k, Ungbhakorn and Wattanasakulpong [23],
AT=400K,Rn=1
Rn=0.5 Rn=1 Rn=2

0.925925 1.2 0.036543 0.023182 0.069157 -

0.333333 2 0.794768 0.812965 0.834735 --

0.053333 5 3.613396 3.728638 3.862379 --

0.037037 6 4.772100 4.926843 5.103842 5.359

0.013333 10 10.325957 10.669049 11.053467 --

The values of Q vs. h*for SUS304/SisN4 under a/h™ = 10 and T = 300 K with advanced k, effect are shown
in Table 7. The value © =5.103842 at h"= 6 mm, R, = 2 is found in close to Q = 5.359 for forced vibration
under temperature rise (AT = 400 K) by Ungbhakorn and Wattanasakulpong [23]. The values of
dimensionless natural frequency parameters are also found in functions of a/h®, R, ¢1 and T for the thick
FGM plates. Since the comparisons listed in Tables 5-7 are currently referred from the web site, it can be
considered as a preliminary reference data, it might need to be provided in more precise results in the future
studies.

Secondly, the natural frequency wmn values (unit 1/s) of free vibration are calculated according to mode
shape numbers m and n for the thick SUS304/SisNs FGM plate with advanced k, effect. The values of
fundamental first (subscript m = n = 1) natural frequency ®i1 VS. R, are shown in Table 8 with ¢; =
0.925925/mm? under T = 1 K, 100 K, 300 K, 600 K and 1000 K. The results of fundamental first natural
frequencies are found in functions of a/h”, Rn, czand T .

The values of natural frequency wmn VS. subscripts m, n = 1,2,...,9 are shown in Table 9 with R, =0.5, T
=300 K and ¢; = 0.925925/mm?. The results of dimensional natural frequencies are found in varied with
mode values m, n and a/h* for the thick FGM plates.

Fig. 3 shows the values of w1, vs. Rn With ¢1 = 0.925925/mm? and advanced k, effect for thick FGM plate
a/h™=5and 10, respectively under T = 300 K. Generally the values of o1, are oscillating and going to around
0.005258 at n = 9 for a/h"™= 5 and R, = 10. The greatest value of wis = 0.033687 (unit 1/s) is found, then
decreasing to value w19 = 0.005258 (unit 1/s) for a/h™= 5 and R, = 10. The values of w1, are also oscillating
and going to around 0.008937 at n = 9 for a/h"™= 10 and R, = 10. The greatest value of w17 = 0.016076 (unit
1/s) is found, then decreasing to value w19 = 0.008937 (unit 1/s) for a/h"= 10 and R, = 10.

Fig. 4 shows the values of w1 vs. T with ¢; = 0.925925/mm? and advanced k, effect for thick FGM plate
a/h™=5 and 10, respectively under R, = 0.5. Generally the values of win are oscillating and going to around
0.004688 at n = 9 for a/n"=5 and T = 600 K. The greatest value of w14 = 0.043468 (unit 1/s) is found, then
decreasing to value m19 = 0.00809 (unit 1/s) for a/n*=5 and T = 1000 K. The greatest value of w1 = 0.006839
(unit 1/s) is found, the smallest value of w1; = 0.002744 is found for a/h™= 10 and T = 300 K.

Finally, the compared w1n values vs. two approach types of fully homogeneous equation (A2) and simply
homogeneous equation (A3) are also shows in Fig. 5 for R, = 0.5, T = 300 K and a/h*= 10.
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Table 8. Fundamental natural frequency w11 for nonlinear varied ko, ¢1, h*= 1.2 mm

®11

a/h” Rn
T=1K T=100 K T =300 K T=600 K T=1000 K
5 0.5 0.002017 0.001928 0.001641 0.001751 0.002485
1 0.001914 0.001735 0.001037 0.001184 0.002447
2 0.001323 0.002237 0.007954 0.007866 0.002302
10 0.005212 0.005268 0.005441 0.005683 0.006428
10 0.5 0.003330 0.003201 0.002744 0.002932 0.004095
1 0.003175 0.002894 0.001741 0.001989 0.004052
2 0.002216 0.006266 0.005194 0.005088 0.003847
10 0.009257 0.009449 0.009946 0.010659 0.013216

Table 9. @mn vs. m and n under nonlinear varied kq, ¢1, Rn =0.5and T = 300 K

®1n
n=1 n=2 n=3 n=4 n=>5 n==6 n=7 n=8 n=9
5 0.001641 0.001736 0.001821 0.001888 0.004822 0.029442 0.025729 0.021949 0.001641
10 0.002744 0.003067 0.003344 0.003466 0.003444 0.003340 0.003198 0.003038 0.006839

a/h*

2n
n=1 n=2 n=3 n=4 n=5 n==6 n=7 n==8 n=9
5 0.001228 0.001264 0.001310 0.001375 0.004485 0.023202 0.020780 0.006867 0.001228
10 0.001594 0.001641 0.001689 0.001736 0.001781 0.001821 0.001857 0.001888 0.007277
®3n
n=1 n=2 n=3 n=4 n=>5 n==6 n=7 n=8 n=9
5 0.001227 0.001258 0.001306 0.001386 0.004120 0.020777 0.007638 0.006320 0.005388
10 0.001315 0.001336 0.001359 0.001385 0.001412 0.001440 0.001471 0.001506 0.007551
4n
n=1 n=2 n=3 n=4 n=>5 n==6 n=7 n=8 n=9
5 0.001429 0.001469 0.001541 0.001685 0.003293 0.007149 0.006383 0.005687 0.005073
10 0.001215 0.001228 0.001245 0.001264 0.001285 0.001310 0.001339 0.001375 0.007629
®5n
n=1 n=2 n=3 n=4 n=5 n==6 n=7 n=8 n=9
5 0.002244 0.002307 0.002450 0.002876 0.003748 0.005017 0.011626 0.007413 0.006639
10 0.001192 0.001203 0.001217 0.001233 0.001254 0.001278 0.001309 0.001347 0.007546

a/h”

a/h”

6n
n=1 n=2 n=3 n=4 n=>5 n==6 n=7 n=8 n=9
5 0.002169 0.001921 0.001724 0.004902 0.004421 0.004559 0.004830 0.004944 0.004891
10 0.001217 0.001227 0.001240 0.001258 0.001279 0.001306 0.001340 0.001386 0.007358

a/h”
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Table 9. Continued.
. ®7n
a/h
n=1 n=2 n=3 n=4 n=5 n==6 n=7 n==8 n=9
5 0.001213 0.001175 0.001126 0.004870 0.003826 0.003424 0.003294 0.003325 0.003431
10 0.001287 0.001297 0.001312 0.001331 0.001355 0.001387 0.001429 0.001489 0.007138
. 8n
a/h
n=1 n=2 n=3 n=4 n=5 n==6 n=7 n==8 n=9
5 0.000898 0.000884 0.006903 0.004393 0.003469 0.003008 0.002761 0.002641 0.002612
10 0.001416 0.001429 0.001446 0.001469 0.001500 0.001541 0.001599 0.001685 0.007001
. ®9n
a/h
n=1 n=2 n=3 n=4 n=>5 n==6 n="7 n=8 n=9
5 0.000730 0.014808 0.005387 0.003932 0.003189 0.002757 0.002489 0.002323 0.002228
10 0.001659 0.001674 0.001696 0.001727 0.001770 0.001830 0.001920 0.002068 0.007491
o™
0.040 ?'. ——R_ =05 0.018 R —05
35 0.016
0.035 —— R, =10 P
0.030 G il ov017
0.025 T
0.010
0.020 0.008
0.015 0.006
0.010 0.004
0.005 0.002
0000 N R ' 1 n 0000 1 1 1 1 1 1 1 y n
012 3 4 6 7 8 9 10 0 1.2 3 45 7 8 910
a) win vs. Rn for a/h™=5 b) @i vs. Rn for a/h™=10
Fig. 3. o1 vs. Rn for a/h™=5 and 10
@y, ™
=) T 0.008
0.045 0.007
0.040 —— T =1000K g
0.035 -8 T =600K 0.006
0.030
0.025 0.005
o 0.004
0.015 ’
0.010 0.003
0.005
0.000 L L L ;s n 0.002 L - 1 1 L 1 1 s n
0 2 2 3 % 6 7 8 8 10 0 1 2 34 5 6 7 8 9 10

a) o1n vs. T for a/h™=5

b) win vs. T for a/h™=10
Fig. 4. w1 vs. T for a/h™= 5 and 10



Journal of Structural Engineering & Applied Mechanics 154

™
0035 ¢
fully homogeneous eq.

0.030
0.025 simply homogeneous eq.
0.020
0.015
0.010

0.005

6 7 8 9 10

0.000

w b

01 2 3 4

Fig. 5. Compared w1 vs. homogeneous equation for Ra= 0.5, T= 300K and a/h™= 10

The w1, values can be considered in overestimated for simply homogeneous equation with respect to the
values for fully homogeneous equation. For more detailed procedures about simply homogeneous equation,
refer Hong [24]. The simply homogeneous equation is be listed in the Appendix.

4., Conclusions

The values of natural frequency omn and three types of dimensionless frequency parameters are calculated
with fully homogeneous equation in the free vibration of thick FGM plates by considering the effects of
TSDT c; term, advanced nonlinear varied k,and environment temperature T. The advanced kqvalues are
found in functions of ¢1, Ry and T, but independent to the values of h* for the thick FGM plates. The k,values
found in the ¢, = 0 case can be considered in overestimated values for the thick FGM plates. The values of
dimensionless natural frequency parameters are found in functions of a/h*, Ry, ¢; and T for the thick FGM
plates. The natural frequencies w1, are oscillating and going to around 0.005258/s with values of n for a/h™=
5 and Ry = 10. Also the w1n are oscillating and going to around 0.008937/s with values of n for a/h*=10 and
Rn = 10.
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Appendix

The dynamic equilibrium differential equations can be presented in matrix form as follows [19]:

0 0 0 0 0
0 0 0 0 0 t
o'w o'w  o'w o'w  o'w
2 2 2 2 2 2
—-C"Hy, —4c’H,, —-2¢°Hy, —4¢c 'Hyg —4c'H,, —¢'H,, X{W ooy ooy’ oxey’ W
0 0 0 0 0
0 0 0 0 0
[ -G Elz ]
0 0 0 0 0 0 0 0 —C,E, -3c,E, —C,E,,
_201 Ese
—C, E12
0 0 0 0 0 0 0 0 —C,E,; _2E. -3c,E,, —C,E,,
Cl E12 Cl E12
clEll 3C1 16 +201E66 Cl 26 cl E16 +2C1E66 3C1 26 ClEZZ 0 O O O
—C, F12
+
-c,F -3c,F +¢H -c,F
O 0 0 0 O 0 0 O 12 11 12 16 1 12 12 26
+cH,, +3c’H, -2¢F, +c'H,
+2¢H,,
_2C1 Fee
—-cF,  +2¢’H, -3c¢F -c,F
O O O O O O O O 12 16 1 66 12 26 12 22
+¢,'H, -CF, +3c,’H,, +¢'H,,
L +2012 H12 .

y AU u® Ut A AV AV AV AV a3_w ow w 63_Wt
od Xy oxoyt oy X ooy oxayt oy ¢ oxloy oxoyd oy

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2¢,Fyg ¢F,
¢Fy 3c,Fg _2012 He  CiFs P _C12 H, 3cFs ¢Fy
_C12 H11 _3012 H16 +¢F, _Clz H 26 _C12 H 16 +2C1 F66 _3C12 H 26 _012 H 22
_012 Hy, -2 Cl2 H 66
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 |

t
y 63(//)( a3l//x 63(//)( a3l//x 63(//), 63!//y a3l/ly 63V/y
ox*  oxPoy oxoy: oy oxd  oxPoy  oxoy: oy’
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A, 2A, A A A TA Ay 0 0 0
As A, + A, A As 2A, A, 0 0 0
—301(2D55 —6C1(2D45 —3(:1(2D44
0 0 0 0 0 0 -3c, F ) =3¢, Fs ) =3c,F,, )
8%  +2A o°
. +A55+012I6¥ * +A44+cflﬁg
B,+B
Bll 2 BlG BGG 16 _;2 E ® BZG
—C, E11 —201 E16 —C, Eee -G, E1e g -G Eze 0 0
_CIEGG
Bi(i BlZ + B66 BZ6 66 ZBZE BZZ 0 0
L= E16 -G E12 -C Ess _ClEZG —C, Eee _201E26 _ClEZZ i
y U0 U0 AU A A A dw dPw dPw)
ox> oxoy oyt ox* oxoy oyt x> oxoy oy’
[ B, + B |
Bn _ClEll 2816 - 201 E1e Bee - ClEGG BlG - ClElﬁ —C1E1 _CE Bze - ClEZG
2 7 “be6
B, +B
BlG - C1E16 2 ° Bze —C Ezs Bee -G Ess 2826 - 201 Eze Bzz -G Ezz
-G ElZ - C1E66
0 0 0 0 0 0
+ D12 + Des
D11 - 2C1 Fu 2D16 - 4C1 F16 Dee - 201 Fee Dlﬁ - 201 F16 2¢F 2 H Dze - 201 Fzs
+¢,2H +2¢,2H +¢,2H +¢,2H GG e oy
1 T 1 T 1 66 1 116 2 1 26
_2C1Fee +C Hee
Dlz + Dss
D16 - 2C1 F16 2¢F 2 H Dze - 201 er Dee - 201 Fee 2D26 - 4C1 er Dzz - 201 Fzz
+c’H e TA ey +¢*H +2¢H +c2H
1 e 1 126 66 26 1 T2
L _2C1 Fss + C12 H 66 J
2 2 2 2 2 2 t
xal//x oy, Oy, al//y a'//y al//y
oxE ooy oy Xk oxdy oyt
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82
0 0 cl,— 0 0 0 0 0
62
0 0 0 cl,— 0 0 0 0
A, —6¢,D, A, —6c,D
62 (32 ’ 2 o A45 - 6(:1D45 A45 - 6C1 D45 N 2 o
-cl,— -cl,— 0 0 +9¢,'F,; s , +9¢,’F,,
at ot 5 +9¢,°F,, +9¢,°F, e
N -c,J, E —CJ, ?
2
0 O 6C1 D55 gcl F55 6C1 D45 _gclz F45 0 0 0 0
2
-A; +cl‘]46_z ~As
2 6C1 D44 —9012 FAA
0 0 6c,D, —9¢c'F, , 0 0 0 0
—A45 7A44 + ClJ4 ey
t
oo of ow ow dy, dy, Oy v,
ox oy ox oy ox oy  ox oy
- az az 7]
Pe 2 0
0 0= 0 0 - 1
ot at Ve
82
+ 0 0 02 0 0 w
. 2 . i Yy
_le 0 0 —-A, +6c¢,D, —9c; F55—K2¥ —A5+6¢,D,5 —9¢,"Fyg vy
Py o’
2 2
0 -3 0 —Ay +6¢,D, —9¢F, ~Au +66,D, =90 Fy, —K, =7
f,
f,
N (A1)
f4
f

5

N k+1 )5 . . . * = H H
where |, =ZL p®7'dz, (i = 0,1,2,...,6), in which N" is total number of constituent layers,p(® is the
k=1

density of superscript k™ constituent ply. Ji = li—cili+2, (i =1,4), Kz = l,—2c1l4+¢12lg and the fy,..., f5 are the
derivative expression terms in thermal loads and mechanical loads.
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The fully homogeneous equation can be presented in matrix form as follows [19]:
FHyq FHy, FHys FHy, FHys
_IoAmn C113(¥)Am" _ J1iZmn
Iy Iy Iy
IoAmn
FHy, FHyp — 272 FHys FH,, FHysg
il (%)Am” _ J1idmn
Iy Iy
FHy3 FHps FH33 FH3, FH;q lemn\ (0
(22 )Amn 13(%5) Amn 2 Ja(ZE) A Ja(5) Amn | ] 0
S L T o 1 T 0 o W "2
Iy I a Iy Iy
) Ldmn | LO |
nm
+¢12ls (55) Tmn/lo emn) o)
b
FHy, FH,, FHj, FH,, FH,
_ J1idmn + Cl]‘*(%)lmn _ Kydnn
Iy Io Io
FHys FHys FHss FHys FHss
_ Jihmn + c1Ja('5 ) Amn _ Kodmn
L Iy Iy Io
where

Ann = Iowmnzv
FH,, = A,(mz/a)’ + A, (n7z/b)?,
FHy, = (A, + Ax)(mz /a)(nz /b)),

FH,, =—cE,(mz/a)’ —(c,E, +2¢,E,)(mz/a)(nz/b)?,

FH,, = (B, —¢,E,)(m7z/a)’ +(By —¢,Eg )(nz/b)?,

FH,; = (B, + By, —C,E,, —C,E;)(mz /a)(nz /b),

FH,, = A (mz/a)* + A, (nz/b)?,

FH,, = —(c,E,, +2¢,E )(mz /&)’ (nz /b) —C,E,,(n7z/b)?,

FH,, = (B, +Bs —C,E, —C,E)(mz/a)(nz/b),

FH,, = (By, —C,E., )Mz / @)? +(B,, —¢,E,,)(nz /b)?,

FH,, = A (mz/a)* + A, (nz/0)* +c’H,, (mz /a)* +(2¢7H,, +4c’Hy ) (mz / a)* (nz / b)?
+¢/H,, (n7z /b)* -3¢, (2D, -3¢, F,.)(mz / a)* —3c,(2D,, —3c,F,,)(n7z / b)?

FH,, = Assm”/a_(cll:n _C12H11)(m”/a)3 _(2C1 Fes _2c].2H66 +¢ Fy, _012H12)(m77/ a)(n”/b)z

—(6¢, D, —9¢’F,.)(mz / a)

FHy, = Aunzlb—(cF, _C12H222)(n7[/b3)_(2c1 Fes _2C12H66 +c Fy _Cleu)(m”/a)z(n”/b)

—(6¢, D, —9¢F,,)(n7 /b)

FH,, = (D11 —-2cF, +C12H11)(m77/ a)z +(Dee —2¢,F +012Hee)(nﬂ'/b)2 + Ay —6¢, Dy +9C12F55 )

FH,, = (D, + Dy, —2¢,F, +¢’H,, —2¢,F,; +c’H,,)(mz / a)(nz /b)
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FH,, = (D, —2¢,F, +CHy, ) (Mz / @)% +(D,, — 2¢,F,, + ¢ H,,)(nz /b)* + A, —6¢,D,, +9c’F,, ,

h RE +E,
Au= 2" R+1 /)
1_(v1+v2) .

2
e _M'GE-E) 1 3 3 1
CT (nrv ) [Rerd 2R 4D AR, +2) BR, D]
L2
*\5
11:L2(2_E1)|: L - 2 + ! - ! + ! }+57
1_[%%) R,+5 R,+4 R,+3 2(R,+2) 16(R,+1)| 80
2
*\7
o0 e gyt 3 18 2 13
1_[v1+vzj R,+7 R,+6 4(R +5 R +4 16(R, +3)

8 1 L&
16(R, +2) 64(R +1) | 448

o kOYE-E) 1 5 2 1 5 1
“ 2(1+v1+vzj R,+6 2(R,+5) R +4 R +3 64(R,+2) 32(R,+1)
2

where E; and E; are the Young’s modulus, v1 and v, are the Poisson’s ratios of the thick FGM constituent
material 1 and material 2, respectively.

Assuming that 1= 13=J,=0, Bij= Eij =0, A16= A2 =0, D1s=D2=0 and Ass = Das = F45= 0 in the (A2),
the simply homogeneous equation can be presented in matrix form as follows [24]:

[FH,, - FH, 0 0 0
FH,, FH,, — 4., 0 0 0
a,, 0
0 0 FH, — 4., FH.,, FH, (o 0
Con =10 (A3)
K, d., 0
0 0 FH,, FH,, —r/lmn FH, 6 0
KZ
0 0 FH; FH 5 FH,, —I—/imn
L 0 _




