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The present work aims toward the effect of uncertain structural parameters on the 

stochastic dynamic response of an asphaltic lining dam-foundation system subjected 

to stationary as well as non-stationary random excitation. Uncertain structural 

parameters of interest are shear modulus and mass density, modeled using the 

lognormal distribution. The stochastic seismic response of the dam-foundation 

system to the random loads with uncertain structural parameters is carried out with 

the Monte Carlo simulation method. The spatial variability of ground motion is 

considered with incoherence and wave passage effects as stationary as well as non-

stationary random excitation. A time-dependent frequency response function is used 

throughout the study for non-stationary responses. Obtained results indicate that the 

variability of shear modulus and mass density can be neglected in stochastic 

dynamic analysis of an asphaltic lining dam-foundation system. Also, it is seen from 

the results that stationarity is a reasonable assumption for asphaltic lining dams to 

typical durations of strong shaking. 
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1. Introduction 

The recent development of stochastic finite element methods verifies that the uncertainties with the input 

motions and the dynamical properties of the materials in geotechnical earthquake engineering significantly 

affect the dynamic behaviors of soil structures. Firstly, the uncertainties of the material properties are mainly 

a consequence of the fact that the soil properties are naturally formed in many different depositional 

environments; therefore, their physical properties will vary from point to point. Secondly, the uncertainty of 

ground motion is related mainly to earthquake input which is caused by earthquake input source mechanism, 

transmission path, and others. There have been significant prior studies [1-9] related to stochastic finite 

element analysis of the geotechnical area including the parametric uncertainties as well as the random loads.  

 The dam–foundation interaction systems subjected to earthquake ground motion are geotechnical 

problems. The standard seismic analysis of these systems assumes that the same ground motion acts 

simultaneously at all points along the base of the dam. However, for large structures, such as pipelines, long-

span bridges, dams, etc. it is obvious that ground motions will be subjected to significant variations because 
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of the finite velocity of wave propagation, loss of coherency of seismic waves due to reflections and 

refractions in the medium of the ground and differences in local soil conditions. It is well known that earth 

and rock-fill dams are subjected to different ground motions at their foundations. The effect of spatially 

varying ground motion on the response of the fill dams has been analyzed in the past few years [10-17].  

 This paper aims to investigate the effect of uncertainties of structural parameters on the dynamic response 

of dam-foundation systems to stationary as well as non-stationary random excitation. For this purpose, the 

spatially varying ground motion including the wave-passage and incoherence effects together is taken into 

account in this study. The stationary process is represented by using the spectral density function. It is 

reasonable to represent the non-stationary process with a time-dependent modal frequency function [18, 19]. 

The uncertainties of the shear modulus and unit weight (or mass density) of the dam-foundation system are 

taken into account in the study. But, the structural parameters are completely assumed as uncorrelated. Due 

to the nature of the material, it is proposed to model the low-strain shear moduli as a lognormal random field, 

so the material nonlinearity is omitted in this study. In this frame, the Monte Carlo Simulation method using 

the stochastic finite element method is used to estimate the effect of the uncertainties of the structural 

parameters on the dynamic response analysis of an asphaltic lining dam-foundation system subjected to 

random loads taking into account the spatially varying ground motion. The main drawback of the simulation 

method used herein is its enormous computation requirement, but it is simple, direct, and quite powerful. 

Two-dimensional interface finite elements between the dam soil deposit and asphaltic lining layer as well as 

the foundation soil deposit and cut-off wall and Monte Carlo simulation method are coded in the computer 

program SVEM [20] by the authors. 

 

2. Uncertainty of structural parameters 

Asphaltic lining dam-foundation systems are non-homogeneous structures constructed from soil and asphalt 

materials. Since the structural parameters of such types of these dam structures are estimated from a limited 

set of data and vary from place to place resulting deposits have an uncertainty characteristic. Uncertain 

material properties are best defined as random variables described by a mean, a standard deviation, and a 

probability distribution function. To investigate the influence of randomness in structural parameters on the 

seismic response of the dam-foundation system to random loads, the randomness in the soil shear modulus 

and mass density are considered in the study. While the randomness of shear modulus affects the dynamic 

stiffness matrix, those of mass density influence the dynamic mass matrix of the structure finite element 

formulation. The shear modulus and mass density are modeled using the lognormal distribution. This choice 

is motivated by the fact that these parameters are positive, and lognormal distribution enables analyzing its 

large variability [9]. The random field for shear modulus and mass density are generated using simulations 

by the Monte Carlo method (MCS). Thus, a standard stochastic finite element analysis using spatially varying 

ground motion is carried out per MCS generating the random variables.  

 The Monte Carlo simulation technique (MCS) is the most effective and widely applicable method for 

handling large-scale probabilistic or stochastic finite element problems with complicated structural 

responses, despite involving expensive computations due to the successive finite element analyses required. 

The MCS method generates the random number zi, by using the pseudo-static method based on recurrent 

procedures [21]. The stochastic variables ui are obtained through the stochastic variable functions for 

lognormal distribution considering them as independent stochastic variables. The generation of a stochastic 

variable can be expressed as 

  𝑢𝑖 = 𝑚𝑥 + 𝑠𝑥√(−2) 𝑙𝑛 𝑧𝑖 𝑐𝑜𝑠( 2𝜋𝑧𝑖 + 1), 

  𝑢𝑖+1 = 𝑚𝑥 + 𝑠𝑥√(−2) 𝑙𝑛 𝑧𝑖 𝑠𝑖𝑛( 2𝜋𝑧𝑖 + 1) (1) 
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The shear modulus expression is given by using a lognormal distribution 

  𝐺(𝑧) = 𝑒[𝐺0,𝑙𝑛𝐺+(𝜎𝑙𝑛𝐺)∗𝑢𝑖] (2) 

with 

  𝜎𝑙𝑛 𝐺
2 = 𝑙𝑛 (1 +

𝜎𝐺
2

𝐺0,𝐺
2 ), 

  𝐺0,𝑙𝑛 𝐺 = 𝑙𝑛(𝐺0,𝐺) −
1

2
𝜎𝑙𝑛 𝐺
2  (3) 

where 𝐺0 and 𝜎𝐺
2 stand for the shear modulus mean and variance, respectively. When substituting 𝜌 instead 

of G into Eqs. (2) and (3), mass density expression can be formulated in the same equations for the lognormal 

distribution.  

 After a set of N individual response functions, X are observed, the mean and standard deviation of X 

(mean of absolute maximum values) can be calculated by  

  𝐸(𝑋) =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1  (4) 

  𝜎𝑋
2 =

1

𝑁(𝑁−1)
(𝑁 ∑ 𝑋𝑖

𝑁
𝑖=1 − (∑ 𝑋𝑖

𝑁
𝑖=1 )2) (5) 

The variation in the response becomes insignificant for a sample size larger than 6000, and therefore, in this 

study, a sample size of 6000 is chosen for the subsequent simulations.  

 

3. Random vibration formulation 

3.1. Stationary random vibration 

Since the formulation of the random vibration theory for spatially varying ground motion is given previously 

by many researchers [17, 22, 23, 24], in this study only the required final equations will be considered. The 

random vibration theory provides an approximate estimate of the mean of the absolute maximum response 

of the structure in terms of the power spectral density function and a coherency function. The free-response 

can be decomposed into pseudo-static and dynamic parts, i.e. 𝑧 = 𝑧𝑠 + 𝑧𝑑when there is a differential 

excitation at the supports. Assuming the stationary excitation, the total variance responses can be obtained 

from: 

  𝜎𝑧
2 = 𝜎𝑧𝑑

2 + 𝜎𝑧𝑠
2 + 2𝐶𝑜𝑣(𝑧𝑠, 𝑧𝑑) (6) 

where 2

dz
  and 2

sz
  are the dynamic and pseudo-static variances, respectively, and 𝐶𝑜𝑣(𝑧𝑠, 𝑧𝑑) is the 

covariance between the dynamic and pseudo-static responses 𝑧𝑑 and 𝑧𝑠 [12]. The three components above 

Eq. (6) are given by 

  𝜎𝑧𝑑
2 = ∫ ∑ ∑ ∑ ∑ 𝜓𝑖𝑗𝜓𝑖𝑘𝛤𝑙𝑗𝛤𝑚𝑘𝐻𝑗(−𝜔)𝐻𝑘(𝜔)𝑆𝑢̈𝑔𝑙𝑢̈𝑔𝑚

(𝜔)𝑟
𝑚=1

𝑟
𝑙=1 𝑑𝜔𝑛

𝑘=1
𝑛
𝑗=1

∞

−∞
 (7) 

  𝜎𝑧𝑠
2 (𝜔) = ∑ ∑ 𝐴𝑖𝑙𝐴𝑖𝑚 ∫

1

𝜔4 𝑆𝑢̈𝑔𝑙𝑢̈𝑔𝑚
(𝜔)𝑑𝜔

∞

−∞
𝑟
𝑚=1

𝑟
𝑙=1  (8) 

  𝐶𝑜𝑣(𝑧𝑠, 𝑧𝑑) = −∑ ∑ ∑ 𝜓𝑖𝑗𝐴𝑖𝑙𝛤𝑚𝑗 ∫
1

𝜔2𝐻𝑗(𝜔)𝑆𝑢̈𝑔𝑙𝑢̈𝑔𝑚
(𝜔)𝑑𝜔

∞

−∞
𝑟
𝑚=1

𝑟
𝑙=1

𝑛
𝑗=1  (9) 

where 𝜓 is the eigenvector, 𝛤 stands for the modal participation factor, 𝑆𝑢̈𝑔𝑙𝑢̈𝑔𝑚
(𝜔) is the cross-spectral 

density function of accelerations between supports l and m, 𝐻(𝜔) is the frequency response function, n is 

the number of free degrees of freedom and r is the number of restrained degrees of freedom. Ail and Aim are 
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equal to the static displacements for unit displacements assigned to each support point [22]. The frequency 

response function is defined as 

  𝐻𝑘(𝜔) =
1

𝜔𝑘
2−𝜔2+2𝑖𝜉𝑘𝜔𝑘𝜔

 (10) 

where 𝜔𝑘 is the modal circular frequency and 𝜉𝑘 is the modal damping ratio.  

3.2. Non-stationary random vibration 

For some linear structures, it may be important to consider transient response due to the structure initially 

being at rest (e.g. long-period structures such as suspension bridges and offshore platforms), and/or short-

duration excitations (e.g. earthquakes). In random vibration analysis, statistical averages are assumed to be 

independent of time for stationary excitation. Earthquake motions cannot be stationary, because they initially 

grow from zero, then have a steady phase and eventually decay. Non-stationary response due to stationary 

excitation beginning at time t = 0 can be easily accommodated into the framework developed for a stationary 

response, and in many cases, such a model is sufficient to assess the impact of non-stationary.  

 In most earthquake engineering applications, it is reasonable to represent the non-stationary ground 

acceleration by an envelope-modulated stationary random process given by 

  𝑢̈𝑔(𝑡) = 𝑎(𝑡)𝑤(𝑡) (11) 

where a(t) = a temporal modulating function; and w(t) = stationary random process. The non-stationary 

mean-square responses at time t can be computed using frequency domain analysis by substituting the time-

dependent modal frequency response function𝐻𝑘(𝜔, 𝑡), defined by [18, 19] 

  𝐻𝑘(𝜔, 𝑡) = 𝐻𝑘(𝜔) [1 − 𝑒−𝜉𝑘𝜔𝑘𝑡𝑒−𝑖𝜔𝑡 (𝑐𝑜𝑠 𝜔𝑘𝑑 𝑡 +
(𝜉𝑘𝜔𝑘+𝑖𝜔)

𝜔𝑘𝑑
𝑠𝑖𝑛 𝜔𝑘𝑑 𝑡)] (12) 

where 𝜔𝑘𝑑 = 𝜔𝑘√1 − 𝜉𝑘
2 is the damped modal frequency. By using 𝐻𝑘(𝜔, 𝑡) at a given instant of time t in 

place of 𝐻𝑘(𝜔) in the stationary formulation, the spectral moment of the transient response at time t can be 

computed. 

3.3. Expected maximum value 

Depending on the peak response and standard deviation (z) of z(t), the mean of maximum value, , in the 

stochastic analysis can be expressed as 

  𝜇 = 𝑝𝜎𝑧 (13) 

where p is a peak factor, which is a function of the time of the motion and the mean zero crossing rate [25]. 

 

  𝑝 = √2 𝑙𝑛( 𝜈𝑒𝑇) +
0.5772

√2 𝑙𝑛(𝜈𝑒𝑇)
 (14) 

where  

  𝑣𝑒 = (1.9𝜉0.15 − 0.73)𝜈0 (15) 

is the equivalent mean zero-crossing rate. In which, T is the duration of the motion,  is the modal damping 

ratio, and 0 is the frequency of occurrence. 

 The frequency of occurrence is described as the average number of times that the line (y(t) = 0) is crossed 

by the response in a unit of time. For the Gaussian process of zero average, the average number of times in 

the zero level crossed by the process in a unit of time is expressed as: 
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  𝜈0 =
1

𝜋
√
𝜆2

𝜆0
 (16) 

Because the zero level is crossed two times for each cycle, the frequency of occurrence for the response 

process will be equal to 𝜈0/2 as 

  𝑓0 =
𝜈0

2
=

1

2𝜋
√
𝜆2

𝜆0
 (17) 

where 𝜆0 and 𝜆2 are the zeroth and second spectral moments, respectively.  

 For any stochastic analysis, it is valuable to be able to calculate the probability of occurrence of a 

particular value of the selected structural response quantity, and this has been achieved by Vanmarkce [26] 

through a cumulative probability distribution function for the first crossing time of a symmetric barrier for a 

zero-mean stationary Gaussian process.  

 

4. Spatially varying ground motion 

The spatial variability of the ground motion is characterized by the coherency function𝛾𝑙𝑚(𝜔). The cross-

power spectral density function between the accelerations 𝑢̈𝑔𝑙 and 𝑢̈𝑔 at the support points l and m for 

homogeneous ground motion is written as  

  𝑆ü𝑔𝑙ü𝑔𝑚
(𝜔) = 𝛾𝑙𝑚(𝜔)𝑆ü𝑔(𝜔) (18) 

where 𝛾𝑙𝑚(𝜔) is the coherency function and 𝑆ü𝑔(𝜔) is the power spectral density function of uniform surface 

ground acceleration.  

 The power spectral density function of ground acceleration is assumed to be in the form of the filtered 

white noise ground motion model originally proposed by Kanai-Tajimi [27, 28] and modified by Clough and 

Penzien [29] as 

  𝑆ü𝑔(𝜔) = 𝑆0
𝜔𝑔
4+4𝜉𝑔

2𝜔𝑔
2𝜔2

(𝜔𝑔
2−𝜔2)2+4𝜉𝑔

2𝜔𝑔
2𝜔2

𝜔4

(𝜔𝑓
2−𝜔2)2+4𝜉𝑓

2𝜔𝑓
2𝜔2 (19) 

where, 𝜔𝑔, 𝜉𝑔 are the resonant frequency and damping ratio of the first filter, 𝜔𝑓 , 𝜉𝑓 are those of the second 

filter, and 𝑆0 is the spectrum of the white-noise bedrock acceleration. 

 The E-W component of the Erzincan Earthquake recorded on March 13, 1992, in Erzincan, Turkey is 

chosen as ground motion and given in Fig.1 since it occurred nearby the dam site. The acceleration power 

spectral density function of this ground motion for the medium soil type is shown in Fig.1. The spectral 

density function for the Filtered White Noise ground motion models is also given in this figure. The 

calculated intensity parameter value for medium soil type is 𝑆0 = 0.00593 m2/s3. Filter parameters 

(𝜔𝑔, 𝜉𝑔 , 𝜔𝑓 , 𝜉𝑓) proposed by Der Kiureghian and Nevenhofer [30] are utilized as 𝜔𝑔 = 10.0 rad/s, 𝜉𝑔 = 0.4, 

𝜔𝑓 = 1.0 rad/s, and 𝜉𝑓 = 0.6. 

 The complex coherency function accounting for the incoherence, wave passage effects is defined as 

  𝛾𝑙𝑚(𝜔) = 𝜌(𝜉, 𝜔)𝑒
(
𝑖𝑤𝑑𝑙𝑚

𝐿

𝑣𝑎𝑝𝑝
)
 (20) 

in which, 𝜌(𝜉, 𝜔) characterizes the incoherence effect and the exponential term represents the wave passage 

effect, vapp is the apparent wave velocity and 𝑑𝑙𝑚
𝐿

 is the projection of 𝑑𝑙𝑚 for the ground surface along the 

direction of propagation of seismic waves.  
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Fig. 1. Power spectral density function at the medium soil 

 

 

 

 
Fig. 2. Muratlı Dam constructed in Artvin, Turkey 
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5. Application 

Muratlı Dam (Fig. 2) located in Artvin in Turkey is selected as the asphaltic lining dam-foundation 

interaction problem. A typical dam cross section has a height of 44.0 meters above the base. The crest has a 

width of 10.0 meters and a maximum length of the dam itself of 213.0 meters. Upstream and downstream 

slopes are at 2:1. The dam itself and the foundation block are included together in the analyses. The height 

and length of the foundation block are 61.5 and 245.0 meters, respectively. The foundation block is made of 

alluvium material (sand and gravel). Fig. 3(a) shows the cross-section at midlength of the dam-foundation 

interaction system. The dam soil and foundation soil are considered to be layered systems that are 

homogeneous in a horizontal plane and have different soil properties. The properties of layers of the dam-

foundation system and interface elements are given in Table 1. Also, the coefficient of variation of shear 

modulus and mass density are shown in Table 1. The initial damping value is selected as 5% for the stochastic 

analysis of the asphaltic lining dam-foundation system. The finite element model consists of 161 three and 

four-node isoparametric finite elements and interface finite elements for the dam-foundation system as 

shown in Fig. 3(b). The nodes representing the extreme left and right sides of the foundation block were 

allowed a horizontal degree of freedom. In this study, structural shear modulus and mass density are assumed 

to be random variables. This study neglects the influence of the correlation for the material properties of the 

dam-foundation system. 

 Figure 3(b) shows the model for spatially varying ground motion, which takes into account the dam-soil 

interaction. The dam-soil part is divided into three zones 69.1 m, 102.9 m, and 72.0 m. Eq. (18), which 

includes correlation and wave effect for these three regions, has been taken into account. 

 

Table 1. Material properties for the cross-section of the Muratlı Dam 

Material Layer 
Shear modulus (kN/m2) Mass density (kN.sn2/m4) Poisson’s 

ratio Mean COV Mean COV 

Rockfill 

1 3.04E+05 

10% 2.19 10% 0.35 

2 4.50E+05 

3 4.91E+05 

4 5.00E+05 

5 6.18E+05 

6 2.06E+05 

7 4.07E+05 

8 5.66E+05 

Foundation (Alluvium) 

1 9.89E+05 

10% 2.14 10% 0.40 2 1.28E+06 

3 1.51E+06 

Asphalt  1.09E+04 10% 2.40 10% 0.35 

Interface Element (Asphalt)  1.53E+05  2.40  0.30 

Cut-off (Concrete)  1.08E+07 10% 2.45 10% 0.15 

Interface Element (Cut-off)  8.33E+06  2.45  0.20 
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(a) 

 

 

(b) 

Fig. 3. (a) Dimensions and materials, and (b) finite element model of the dam-foundation system 
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6. Numerical results 

6.1. Stationary responses 

In this part of the study, the stationary stochastic responses of an asphaltic lining dam-foundation system 

subjected to spatially varying ground motion (SVGM) are calculated for uncertainties of structural 

parameters. To investigate the effect of the randomness in structural parameters on the stochastic behavior 

of the dam-foundation system, four different cases of the structural parameters are considered in the study. 

These special cases can be categorized as the average values of parameters (Case A), randomness in shear 

modulus (Case B), randomness in mass density (Case C), separately, and overall (Case D)(randomness in 

shear modulus and mass density together). Spatially varying ground motion includes the wave-passage effect 

and the incoherence effects. For the incoherence effect, Harichandran and Vanmarcke’s model [31] is used. 

Soil conditions are considered homogeneous throughout the study. The SVGM is applied to the dams in the 

horizontal direction as shown in Fig. 3(b). The apparent wave velocity is taken as vapp = 700 m/s for the 

medium soil case. The duration of the earthquake ground motions applied to the dams is taken as 20.94 

seconds.  

 To compare the results due to the randomness in structural parameters, the means of horizontal 

displacement values on selected nodal points are shown in Figs.4 for different special cases of structural 

parameters. As can be seen from Fig.4, the displacement value obtained from the average values of 

parameters (Case A), randomness in shear modulus (Case B), and randomness in mass density (Case C), 

separately, and overall are very close to each other for selected nodal points. While the difference for 

horizontal displacement values at Node 1 (N1) between the average values of parameters (Case A) and 

randomness in shear modulus (Case B) is 0.09%, those of the average values of parameters (Case A) and 

randomness in mass density (Case C) is 0.01%, and also the displacement values for the average values of 

parameters (Case A) and overall (Case D) have 0.09% difference.  

 
Fig. 4. Comparison of mean horizontal displacements (cm) at nodes 1-4 for Case A, B, C, and D  

Case A
Case B

Case C
Case D

Node 1

Node 2

Node 3

Node 4

18,410 18,427
18,411 18,426

18,011 18,023
18,012 18,023

17,998 18,012
17,999

18,011

17,849
17,861

17,850
17,861
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Fig. 5. Comparison of mean horizontal stresses (kN/m2) at the center of elements 1-4 for Case A, B, C, and D  

 

 
Fig. 6. Comparison of mean vertical stresses (kN/m2) at the center of elements 1-4 for Case A, B, C, and D  

 

Case A
Case B

Case C
Case D

Element 1

Element 2

Element 3

Element 4

404,208 404,229
404,278

404,089

268,944
269,769

269,036
270,190

12,742
12,798

12,770
12,752

2,769
2,771

2,768
2,785

Case A
Case B

Case C
Case D

Element 1

Element 2

Element 3

Element 4

125,437
125,209 125,497

125,425

69,382
70,158

69,364
70,178

3,081
3,096

3,104
3,094

1,886
1,963

1,947
1,965
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Fig. 7. Comparison of mean shear stresses (kN/m2) at the center of elements 1-4 for Case A, B, C, and D  

 

 The means of stress values are calculated at the center of points of the elements for four different cases 

of the structural parameters. The finite elements (E1, E2, E3, E4) on the dam-foundation system are selected 

for the comparison of the mean stress values. The horizontal, vertical, and shear stress obtained on selected 

finite elements for the different cases are shown in Figs. 5-7, respectively. It is observed from the figures that 

the values obtained from the average values of parameters (Case A), randomness in shear modulus (Case B), 

randomness in mass density (Case C), separately, and overall (Case D) are very close to each other for 

horizontal, vertical and shear stresses, separately. At Element 1 (E1) the stress values obtained from the 

randomness in shear modulus (Case B), randomness in mass density (Case C), separately, and overall (Case 

D)) are 0.10%, -0.02% and 0.58% for horizontal stress value, 4.05%, 3.22% and 4.18% for vertical stress 

value, 0.60%, 0.11% and 0.68% for shear stress value larger than those from the average values of parameters 

(Case A), respectively. So, it can be said from the figures that the displacements and stresses due to Case A, 

B, C, and D have the smallest difference values. Consequently, it can be said from the figures the mean 

values of the stochastic response of the selected asphaltic lining dam-foundation system are not significantly 

affected by the randomness in structural parameters.  

6.2. Non-stationary responses 

For a multi-DOF system, the rate at which the total non-stationary response grows depends on the value of 

𝜉𝑖𝜔𝑖  for each mode, and on how much the lower modes contribute to the overall response if the lower modes 

with small 𝜉𝑖𝜔𝑖 do not contribute significantly. The first 5 natural frequencies of 1.99, 2.98, 3.65, 4.05, and 

4.29 of the dam-foundation system are calculated by using the finite element method. Since asphaltic lining 

dams tend to be stiff and have high fundamental frequencies, it may be not important to consider the transient 

response due to the structure initially being at rest when the duration of strong earthquake shaking is short.  
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Fig. 8. Means of non-stationary horizontal displacement at nodes N5, N3, and N6, respectively 

 

 

 
Fig. 9. Means of non-stationary horizontal stress at the center of elements E5, E3, and E6, respectively 
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 To examine the effect of non-stationary excitation on stochastic response with average and randomness 

structural parameters (overall) of an asphaltic lining dam-foundation system, the analyses of the dam are 

calculated at times 1, 3, 5, 10, and 20 seconds and compared with the stationary responses for the spatially 

varying ground motion (general excitation case including the wave passage and incoherence effects).  

 The means of non-stationary horizontal displacements at the marked nodes (Fig. 3) are plotted in Fig.8. 

It is seen from the figures that the values due to the randomness of structural parameters are close to those 

of average structural parameters. In addition to this, these three dam stationary response levels are reached 

within approximately 5 sec for both average and randomness structural parameters. While at t = 1 sec the 

non-stationary displacements are smaller than the corresponding stationary ones, at t = 5 sec, the non-

stationary displacements are very close to the stationary ones in both cases. At node N5, the displacement 

values of 98.57% of stationary response are achieved at the time of 1 sec of the transient response. At node 

N3, the displacement values 98.82% of stationary response is achieved at the time of 1 sec of the transient 

response for randomness structural parameters. Similarly, at node N6, the displacement values of 99.27% of 

stationary response are achieved at the time of 1 sec of the transient response.  

 

 

 
Fig. 10. Means of non-stationary vertical stress at the center of elements E5, E3, and E6, respectively 
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Fig. 11. Means of non-stationary shear stress at the center of elements E5, E3, and E6, respectively 

 

 The mean horizontal, vertical, and shear stress at the marked center of the elements (Fig.3) are shown in 

Figs. 9-11. It can be said from these figures that the stationary stress values obtained from the spatially 

varying ground motion are close to the non-stationary ones for both average and randomness structural 

parameters. In addition, it is seen from the stress graphs that the stresses obtained for both randomness and 

average structural parameters are very close to each other, except for Element 5 (E5) in vertical stresses and  

Element 5, 6 (E5, E6) in shear stresses. For randomness structural parameters, the stationary horizontal, 

vertical, and shear stress values at Element 5 (E5) are larger than as much as 0.98%, 1.29%, and 3.51% when 

compared to the non-stationary ones at the time of 1 sec, respectively. At Element 3 (E3), the stationary 

horizontal, vertical, and shear stress values are larger than as much as 0.70%, 1.50%, and 4.54% when 

compared to the non-stationary ones at the time of 1 sec, respectively. Lastly, at Element 6 (E6), the stationary 

horizontal, vertical, and shear stress values are larger than as much as 0.31%, 1.24%, and 4.55% when 

compared to the non-stationary ones at the time of 1 sec, respectively.  

 These figures indicate that for ground motion duration considered as t = 20.95 sec to compute means of 

stationary responses, close response values are obtained from stationary and non-stationary response 

analyses, especially for t  5 sec. For the selected example dam-foundation system, the assumption of 

stationary response is satisfactory for considered ground motion duration.  

 

7. Conclusion 

This paper presents the influence of the randomness associated with both the ground motion and structural 

parameters on the dynamic response of an asphaltic lining dam-foundation system. A Monte Carlo simulation 
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based on the stochastic finite element method is used to investigate the uncertainty of structural parameters. 

This method, despite being computationally intensive, is found to be realistic. In this study, the spatially 

varying ground motion including the wave-passage and incoherence effects together is taken into account as 

stationary as well as non-stationary random seismic excitation.  

 Obtained results herein indicate that the uncertainty of structural parameters (shear modulus and mass 

density) does not show any significant influence on the stochastic response of the asphaltic dam-foundation 

system. However, in the dynamic analysis of asphaltic dam-foundation systems subjected to spatially varying 

ground motion, more sample structure models and more parameter variability need to be considered to 

generalize the effects of variation in structural parameters on these types of dams. This study is only 

important as it is a precursor to the future work of engineers. 

 In addition, in this study, both stationary and non-stationary responses are computed for the dam-

foundation system with the uncertainty of structural parameters. When comparing the non-stationary 

responses obtained at various times with those of the stationary ones, it is observed that the stationary 

assumption is reasonable for the selected dam-foundation system. More extensive studies are needed to 

generalize such analyzes in such structures. 
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