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Accepted 19 October 2022 stochastic dynamic response of an asphaltic lining dam-foundation system subjected

to stationary as well as non-stationary random excitation. Uncertain structural
parameters of interest are shear modulus and mass density, modeled using the
lognormal distribution. The stochastic seismic response of the dam-foundation
Interface finite element system to the random loads with uncertain structural parameters is carried out with
the Monte Carlo simulation method. The spatial variability of ground motion is
considered with incoherence and wave passage effects as stationary as well as non-
stationary random excitation. A time-dependent frequency response function is used
throughout the study for non-stationary responses. Obtained results indicate that the
variability of shear modulus and mass density can be neglected in stochastic
dynamic analysis of an asphaltic lining dam-foundation system. Also, it is seen from
the results that stationarity is a reasonable assumption for asphaltic lining dams to
typical durations of strong shaking.
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1. Introduction

The recent development of stochastic finite element methods verifies that the uncertainties with the input
motions and the dynamical properties of the materials in geotechnical earthquake engineering significantly
affect the dynamic behaviors of soil structures. Firstly, the uncertainties of the material properties are mainly
a consequence of the fact that the soil properties are naturally formed in many different depositional
environments; therefore, their physical properties will vary from point to point. Secondly, the uncertainty of
ground motion is related mainly to earthquake input which is caused by earthquake input source mechanism,
transmission path, and others. There have been significant prior studies [1-9] related to stochastic finite
element analysis of the geotechnical area including the parametric uncertainties as well as the random loads.

The dam-foundation interaction systems subjected to earthquake ground motion are geotechnical
problems. The standard seismic analysis of these systems assumes that the same ground motion acts
simultaneously at all points along the base of the dam. However, for large structures, such as pipelines, long-
span bridges, dams, etc. it is obvious that ground motions will be subjected to significant variations because
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of the finite velocity of wave propagation, loss of coherency of seismic waves due to reflections and
refractions in the medium of the ground and differences in local soil conditions. It is well known that earth
and rock-fill dams are subjected to different ground motions at their foundations. The effect of spatially
varying ground motion on the response of the fill dams has been analyzed in the past few years [10-17].

This paper aims to investigate the effect of uncertainties of structural parameters on the dynamic response
of dam-foundation systems to stationary as well as non-stationary random excitation. For this purpose, the
spatially varying ground motion including the wave-passage and incoherence effects together is taken into
account in this study. The stationary process is represented by using the spectral density function. It is
reasonable to represent the non-stationary process with a time-dependent modal frequency function [18, 19].
The uncertainties of the shear modulus and unit weight (or mass density) of the dam-foundation system are
taken into account in the study. But, the structural parameters are completely assumed as uncorrelated. Due
to the nature of the material, it is proposed to model the low-strain shear moduli as a lognormal random field,
so the material nonlinearity is omitted in this study. In this frame, the Monte Carlo Simulation method using
the stochastic finite element method is used to estimate the effect of the uncertainties of the structural
parameters on the dynamic response analysis of an asphaltic lining dam-foundation system subjected to
random loads taking into account the spatially varying ground motion. The main drawback of the simulation
method used herein is its enormous computation requirement, but it is simple, direct, and quite powerful.
Two-dimensional interface finite elements between the dam soil deposit and asphaltic lining layer as well as
the foundation soil deposit and cut-off wall and Monte Carlo simulation method are coded in the computer
program SVEM [20] by the authors.

2. Uncertainty of structural parameters

Asphaltic lining dam-foundation systems are non-homogeneous structures constructed from soil and asphalt
materials. Since the structural parameters of such types of these dam structures are estimated from a limited
set of data and vary from place to place resulting deposits have an uncertainty characteristic. Uncertain
material properties are best defined as random variables described by a mean, a standard deviation, and a
probability distribution function. To investigate the influence of randomness in structural parameters on the
seismic response of the dam-foundation system to random loads, the randomness in the soil shear modulus
and mass density are considered in the study. While the randomness of shear modulus affects the dynamic
stiffness matrix, those of mass density influence the dynamic mass matrix of the structure finite element
formulation. The shear modulus and mass density are modeled using the lognormal distribution. This choice
is motivated by the fact that these parameters are positive, and lognormal distribution enables analyzing its
large variability [9]. The random field for shear modulus and mass density are generated using simulations
by the Monte Carlo method (MCS). Thus, a standard stochastic finite element analysis using spatially varying
ground motion is carried out per MCS generating the random variables.

The Monte Carlo simulation technique (MCS) is the most effective and widely applicable method for
handling large-scale probabilistic or stochastic finite element problems with complicated structural
responses, despite involving expensive computations due to the successive finite element analyses required.
The MCS method generates the random number z;, by using the pseudo-static method based on recurrent
procedures [21]. The stochastic variables u; are obtained through the stochastic variable functions for
lognormal distribution considering them as independent stochastic variables. The generation of a stochastic
variable can be expressed as

u; = My + Se+/ (—2) Inz; cos(2nz; + 1),
Ui = My + Sey/(—2) Inz; sin(2mz; + 1) 1)
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The shear modulus expression is given by using a lognormal distribution
G(2) = elGoinG+(om e )
with
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where G, and o2 stand for the shear modulus mean and variance, respectively. When substituting p instead
of G into Egs. (2) and (3), mass density expression can be formulated in the same equations for the lognormal
distribution.

After a set of N individual response functions, X are observed, the mean and standard deviation of X
(mean of absolute maximum values) can be calculated by

E(X) =3, X, 4)

0f = —— (NI, X, — (CL, X)) ©)

N(N-1)

The variation in the response becomes insignificant for a sample size larger than 6000, and therefore, in this
study, a sample size of 6000 is chosen for the subsequent simulations.

3. Random vibration formulation

3.1. Stationary random vibration
Since the formulation of the random vibration theory for spatially varying ground motion is given previously
by many researchers [17, 22, 23, 24], in this study only the required final equations will be considered. The
random vibration theory provides an approximate estimate of the mean of the absolute maximum response
of the structure in terms of the power spectral density function and a coherency function. The free-response
can be decomposed into pseudo-static and dynamic parts, i.e. z = z; + zz;when there is a differential
excitation at the supports. Assuming the stationary excitation, the total variance responses can be obtained
from:

o7 = 0}, + 07 +2Cov(zs,z4) (6)
where o-fd and o-fs are the dynamic and pseudo-static variances, respectively, and Cov(z, z,) is the

covariance between the dynamic and pseudo-static responses z; and z, [12]. The three components above
Eg. (6) are given by

07, = 2, Xy Ziter Biea Bnea WijWue 1 s Hy (= 0) Hi (@) Sy, (@) do (7)
o 1
07 (@) = Xzt X1 Auhim |, 73 Sig g, (@)dw ®)
o 1
Cov(zs,2q) = — Xieq Xi=1 2om=1 YijAulmj f_w;Hj(ﬂ))Saglagm (w)dw %)

where 1 is the eigenvector, I" stands for the modal participation factor, Sj; (w) is the cross-spectral

a1tlgm
density function of accelerations between supports | and m, H(w) is the frequency response function, n is
the number of free degrees of freedom and r is the number of restrained degrees of freedom. Ail and Aim are
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equal to the static displacements for unit displacements assigned to each support point [22]. The frequency
response function is defined as

1
wE-w2+2ipwEw

Hi(w) = (10)

where w,, is the modal circular frequency and &, is the modal damping ratio.

3.2. Non-stationary random vibration
For some linear structures, it may be important to consider transient response due to the structure initially
being at rest (e.g. long-period structures such as suspension bridges and offshore platforms), and/or short-
duration excitations (e.g. earthquakes). In random vibration analysis, statistical averages are assumed to be
independent of time for stationary excitation. Earthquake motions cannot be stationary, because they initially
grow from zero, then have a steady phase and eventually decay. Non-stationary response due to stationary
excitation beginning at time t = 0 can be easily accommodated into the framework developed for a stationary
response, and in many cases, such a model is sufficient to assess the impact of non-stationary.

In most earthquake engineering applications, it is reasonable to represent the non-stationary ground
acceleration by an envelope-modulated stationary random process given by

iy (t) = a(®w(t) 11)

where a(t) = a temporal modulating function; and w(t) = stationary random process. The non-stationary
mean-square responses at time t can be computed using frequency domain analysis by substituting the time-
dependent modal frequency response functionHy (w, t), defined by [18, 19]

H,(w,t) = H,(w) [1 — e Sk@ktgmint (cos Wig t + %sin Wra t)] (12)

where wyq = wy+/1 — &Z is the damped modal frequency. By using H, (w, t) at a given instant of time t in
place of H, (w) in the stationary formulation, the spectral moment of the transient response at time t can be
computed.

3.3. Expected maximum value
Depending on the peak response and standard deviation (o) of z(t), the mean of maximum value, g, in the
stochastic analysis can be expressed as

1= poy, (13)

where p is a peak factor, which is a function of the time of the motion and the mean zero crossing rate [25].

0.5772
p=+2Imn(v,T) +7m (14)
where
v, = (1.96%15 — 0.73)v, (15)

is the equivalent mean zero-crossing rate. In which, T is the duration of the motion, £ is the modal damping
ratio, and vy is the frequency of occurrence.

The frequency of occurrence is described as the average number of times that the line (y(t) = 0) is crossed
by the response in a unit of time. For the Gaussian process of zero average, the average number of times in
the zero level crossed by the process in a unit of time is expressed as:
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A
vy == \//1:2 (16)

Because the zero level is crossed two times for each cycle, the frequency of occurrence for the response

process will be equal to v, /2 as
_Y_1 |&
fo=+5 =5 /zo (17)

where A, and A, are the zeroth and second spectral moments, respectively.

For any stochastic analysis, it is valuable to be able to calculate the probability of occurrence of a
particular value of the selected structural response quantity, and this has been achieved by Vanmarkce [26]
through a cumulative probability distribution function for the first crossing time of a symmetric barrier for a
zero-mean stationary Gaussian process.

4. Spatially varying ground motion
The spatial variability of the ground motion is characterized by the coherency functiony;,, (w). The cross-
power spectral density function between the accelerations i, and i, at the support points | and m for
homogeneous ground motion is written as

Saglagm (@) = Vim(@)S;, (@) (18)

where y;,, (w) is the coherency function and Sig (w) is the power spectral density function of uniform surface
ground acceleration.

The power spectral density function of ground acceleration is assumed to be in the form of the filtered
white noise ground motion model originally proposed by Kanai-Tajimi [27, 28] and modified by Clough and
Penzien [29] as
wi+4Eiwhw? w?
~w2)2+4Efwiw? (0F-w?)2+4§fwiw?

Siig (w) =S, @2 (19)
where, wg, &, are the resonant frequency and damping ratio of the first filter, w, & are those of the second
filter, and S, is the spectrum of the white-noise bedrock acceleration.

The E-W component of the Erzincan Earthquake recorded on March 13, 1992, in Erzincan, Turkey is
chosen as ground motion and given in Fig.1 since it occurred nearby the dam site. The acceleration power
spectral density function of this ground motion for the medium soil type is shown in Fig.1. The spectral
density function for the Filtered White Noise ground motion models is also given in this figure. The
calculated intensity parameter value for medium soil type is S, = 0.00593 m?s®. Filter parameters
(wg, &4, wr, €5) proposed by Der Kiureghian and Nevenhofer [30] are utilized as w, = 10.0 rad/s, £, = 0.4,
wy = 1.0 rad/s, and & = 0.6.

The complex coherency function accounting for the incoherence, wave passage effects is defined as

L
lwdlm>

Vim(@) = p(§, w)e(m

in which, p(¢, w) characterizes the incoherence effect and the exponential term represents the wave passage

(20)

effect, vapp is the apparent wave velocity and dle is the projection of d,,,, for the ground surface along the
direction of propagation of seismic waves.
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Fig. 1. Power spectral density function at the medium soil

Fig. 2. Muratli Dam constructed in Artvin, Turkey
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5. Application

Murath Dam (Fig. 2) located in Artvin in Turkey is selected as the asphaltic lining dam-foundation
interaction problem. A typical dam cross section has a height of 44.0 meters above the base. The crest has a
width of 10.0 meters and a maximum length of the dam itself of 213.0 meters. Upstream and downstream
slopes are at 2:1. The dam itself and the foundation block are included together in the analyses. The height
and length of the foundation block are 61.5 and 245.0 meters, respectively. The foundation block is made of
alluvium material (sand and gravel). Fig. 3(a) shows the cross-section at midlength of the dam-foundation
interaction system. The dam soil and foundation soil are considered to be layered systems that are
homogeneous in a horizontal plane and have different soil properties. The properties of layers of the dam-
foundation system and interface elements are given in Table 1. Also, the coefficient of variation of shear
modulus and mass density are shown in Table 1. The initial damping value is selected as 5% for the stochastic
analysis of the asphaltic lining dam-foundation system. The finite element model consists of 161 three and
four-node isoparametric finite elements and interface finite elements for the dam-foundation system as
shown in Fig. 3(b). The nodes representing the extreme left and right sides of the foundation block were
allowed a horizontal degree of freedom. In this study, structural shear modulus and mass density are assumed
to be random variables. This study neglects the influence of the correlation for the material properties of the
dam-foundation system.

Figure 3(b) shows the model for spatially varying ground motion, which takes into account the dam-soil
interaction. The dam-soil part is divided into three zones 69.1 m, 102.9 m, and 72.0 m. Eq. (18), which
includes correlation and wave effect for these three regions, has been taken into account.

Table 1. Material properties for the cross-section of the Muratli Dam
Shear modulus (kN/m?)  Mass density (kN.sn?’m*)  poisson’s

Mean cov Mean Ccov ratio
3.04E+05
4.50E+05
4.91E+05
5.00E+05
6.18E+05
2.06E+05
4.07E+05
5.66E+05
9.89E+05

1.28E+06 10% 2.14 10% 0.40
1.51E+06

Asphalt 1.09E+04 10% 2.40 10% 0.35

Interface Element (Asphalt) 1.53E+05 2.40 0.30

Cut-off (Concrete) 1.08E+07 10% 2.45 10% 0.15

Interface Element (Cut-off) 8.33E+06 2.45 0.20

Material Layer

Rockfill 10% 2.19 10% 0.35

Foundation (Alluvium)

W N P00 N OO OB W N
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6. Numerical results

6.1. Stationary responses

In this part of the study, the stationary stochastic responses of an asphaltic lining dam-foundation system
subjected to spatially varying ground motion (SVGM) are calculated for uncertainties of structural
parameters. To investigate the effect of the randomness in structural parameters on the stochastic behavior
of the dam-foundation system, four different cases of the structural parameters are considered in the study.
These special cases can be categorized as the average values of parameters (Case A), randomness in shear
modulus (Case B), randomness in mass density (Case C), separately, and overall (Case D)(randomness in
shear modulus and mass density together). Spatially varying ground motion includes the wave-passage effect
and the incoherence effects. For the incoherence effect, Harichandran and Vanmarcke’s model [31] is used.
Soil conditions are considered homogeneous throughout the study. The SVGM is applied to the dams in the
horizontal direction as shown in Fig. 3(b). The apparent wave velocity is taken as Vap = 700 m/s for the
medium soil case. The duration of the earthquake ground motions applied to the dams is taken as 20.94
seconds.

To compare the results due to the randomness in structural parameters, the means of horizontal
displacement values on selected nodal points are shown in Figs.4 for different special cases of structural
parameters. As can be seen from Fig.4, the displacement value obtained from the average values of
parameters (Case A), randomness in shear modulus (Case B), and randomness in mass density (Case C),
separately, and overall are very close to each other for selected nodal points. While the difference for
horizontal displacement values at Node 1 (N1) between the average values of parameters (Case A) and
randomness in shear modulus (Case B) is 0.09%, those of the average values of parameters (Case A) and
randomness in mass density (Case C) is 0.01%, and also the displacement values for the average values of
parameters (Case A) and overall (Case D) have 0.09% difference.

Fig. 4. Comparison of mean horizontal displacements (cm) at nodes 1-4 for Case A, B, C, and D
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Fig. 7. Comparison of mean shear stresses (KN/m?) at the center of elements 1-4 for Case A, B, C, and D

The means of stress values are calculated at the center of points of the elements for four different cases
of the structural parameters. The finite elements (E1, E2, E3, E4) on the dam-foundation system are selected
for the comparison of the mean stress values. The horizontal, vertical, and shear stress obtained on selected
finite elements for the different cases are shown in Figs. 5-7, respectively. It is observed from the figures that
the values obtained from the average values of parameters (Case A), randomness in shear modulus (Case B),
randomness in mass density (Case C), separately, and overall (Case D) are very close to each other for
horizontal, vertical and shear stresses, separately. At Element 1 (E1) the stress values obtained from the
randomness in shear modulus (Case B), randomness in mass density (Case C), separately, and overall (Case
D)) are 0.10%, -0.02% and 0.58% for horizontal stress value, 4.05%, 3.22% and 4.18% for vertical stress
value, 0.60%, 0.11% and 0.68% for shear stress value larger than those from the average values of parameters
(Case A), respectively. So, it can be said from the figures that the displacements and stresses due to Case A,
B, C, and D have the smallest difference values. Consequently, it can be said from the figures the mean
values of the stochastic response of the selected asphaltic lining dam-foundation system are not significantly
affected by the randomness in structural parameters.

6.2. Non-stationary responses

For a multi-DOF system, the rate at which the total non-stationary response grows depends on the value of
&, w; for each mode, and on how much the lower modes contribute to the overall response if the lower modes
with small ¢;w; do not contribute significantly. The first 5 natural frequencies of 1.99, 2.98, 3.65, 4.05, and
4.29 of the dam-foundation system are calculated by using the finite element method. Since asphaltic lining
dams tend to be stiff and have high fundamental frequencies, it may be not important to consider the transient
response due to the structure initially being at rest when the duration of strong earthquake shaking is short.



233 Haciefendioglu & Basada

Average structura
parameters
19.00 Node 3 :
g 18.50 e
E I
> I
€ 18.00 T
q) I
% I
o 1
'5 1750 4 - g o -
Stationary = o
17.00 f
0 5 10 15— o
Time (sec)

Fig. 8. Means of non-stationary horizontal displacement at nodes N5, N3, and N6, respectively

[—e— Randomness in all ;]
<= - Average structural parameter
5.08E+4
4.95E+4 - @/i 7777777777777777777
4.88E+4 + -~ - === ----
+
(Element
< 4.80E+4 - = .
£ 2.72E45
£
B 270E+5 | - O O ¢
7]
z At e :
S 269E+5 b7t ---TToToIIIITIT
S
5 2.67E+5 T T
I 5.27E+5
5.25E+5 o - -t THooomotmooom oo m ooy
5.24E+5 4 T A 2 - . ®
Stationary = o«
5.22E+5 T T T
0 5 10 15—
Time (sec)

Fig. 9. Means of non-stationary horizontal stress at the center of elements E5, E3, and E6, respectively



Journal of Structural Engineering & Applied Mechanics 234

To examine the effect of non-stationary excitation on stochastic response with average and randomness
structural parameters (overall) of an asphaltic lining dam-foundation system, the analyses of the dam are
calculated at times 1, 3, 5, 10, and 20 seconds and compared with the stationary responses for the spatially
varying ground motion (general excitation case including the wave passage and incoherence effects).

The means of non-stationary horizontal displacements at the marked nodes (Fig. 3) are plotted in Fig.8.
It is seen from the figures that the values due to the randomness of structural parameters are close to those
of average structural parameters. In addition to this, these three dam stationary response levels are reached
within approximately 5 sec for both average and randomness structural parameters. While at t = 1 sec the
non-stationary displacements are smaller than the corresponding stationary ones, at t = 5 sec, the non-
stationary displacements are very close to the stationary ones in both cases. At node N5, the displacement
values of 98.57% of stationary response are achieved at the time of 1 sec of the transient response. At node
N3, the displacement values 98.82% of stationary response is achieved at the time of 1 sec of the transient
response for randomness structural parameters. Similarly, at node N6, the displacement values of 99.27% of
stationary response are achieved at the time of 1 sec of the transient response.
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Fig. 10. Means of non-stationary vertical stress at the center of elements E5, E3, and E6, respectively
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The mean horizontal, vertical, and shear stress at the marked center of the elements (Fig.3) are shown in
Figs. 9-11. It can be said from these figures that the stationary stress values obtained from the spatially
varying ground motion are close to the non-stationary ones for both average and randomness structural
parameters. In addition, it is seen from the stress graphs that the stresses obtained for both randomness and
average structural parameters are very close to each other, except for Element 5 (E5) in vertical stresses and
Element 5, 6 (E5, E6) in shear stresses. For randomness structural parameters, the stationary horizontal,
vertical, and shear stress values at Element 5 (E5) are larger than as much as 0.98%, 1.29%, and 3.51% when
compared to the non-stationary ones at the time of 1 sec, respectively. At Element 3 (E3), the stationary
horizontal, vertical, and shear stress values are larger than as much as 0.70%, 1.50%, and 4.54% when
compared to the non-stationary ones at the time of 1 sec, respectively. Lastly, at Element 6 (E6), the stationary
horizontal, vertical, and shear stress values are larger than as much as 0.31%, 1.24%, and 4.55% when
compared to the non-stationary ones at the time of 1 sec, respectively.

These figures indicate that for ground motion duration considered as t = 20.95 sec to compute means of
stationary responses, close response values are obtained from stationary and non-stationary response
analyses, especially for t> 5 sec. For the selected example dam-foundation system, the assumption of
stationary response is satisfactory for considered ground motion duration.

7. Conclusion

This paper presents the influence of the randomness associated with both the ground motion and structural
parameters on the dynamic response of an asphaltic lining dam-foundation system. A Monte Carlo simulation
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based on the stochastic finite element method is used to investigate the uncertainty of structural parameters.
This method, despite being computationally intensive, is found to be realistic. In this study, the spatially
varying ground motion including the wave-passage and incoherence effects together is taken into account as
stationary as well as non-stationary random seismic excitation.

Obtained results herein indicate that the uncertainty of structural parameters (shear modulus and mass
density) does not show any significant influence on the stochastic response of the asphaltic dam-foundation
system. However, in the dynamic analysis of asphaltic dam-foundation systems subjected to spatially varying
ground motion, more sample structure models and more parameter variability need to be considered to
generalize the effects of variation in structural parameters on these types of dams. This study is only
important as it is a precursor to the future work of engineers.

In addition, in this study, both stationary and non-stationary responses are computed for the dam-
foundation system with the uncertainty of structural parameters. When comparing the non-stationary
responses obtained at various times with those of the stationary ones, it is observed that the stationary
assumption is reasonable for the selected dam-foundation system. More extensive studies are needed to
generalize such analyzes in such structures.
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