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To determine the dynamic characteristics of bridges with prestressed girders, their 

natural frequencies and mode shapes used to construct the superstructure must be 

known. However, there is no agreement among scientists on how prestress force 

affects the dynamic characteristics of a precast prestressed girder. The purpose of 

this paper is to obtain the dynamic characteristics of prestressed concrete girders 

through analytically, numerically, and operational modal testing. For this purpose, 

one of a typical precast I-girder with 1.2 m height and 27.45 m effective span length 

is selected as a numerical application. The three-dimensional (3D) finite element 

model (FEM) of the girder is modeled by SAP2000. Experimental measurements of 

the girder were conducted at the construction site by the operational modal testing 

method. For experimental measurements, ten uniaxial seismic accelerometers were 

mounted at the top flange of the PSC girder in the x- and z-direction. The vibrations 

that occur from the movement of trucks and cranes at the construction site and the 

impact of the hammer were measured by these accelerometers as acceleration. The 

measured signal was collected at the data bank and then sent to the computer 

equipped with Operational Modal Analysis software which used Enhanced 

Frequency Domain Decomposition and Stochastic Subspace Identification 

techniques. The dynamic behaviors of girder were derived from analysis performed 

by this software. At the end of the study, the dynamic characteristic was obtained by 

the analytical prediction, numerical and experimental were compared with each 

other. It is seen that natural frequencies and mode shapes obtained from theoretical 

prediction, numerical and operational modal testing are not too far apart. 
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1. Introduction 

The increasing world population triggers an increase in the demand for transportation. Bridges are one of the 

most important components of transportation and there are different types of bridges to meet different needs. 

Prestressed concrete (PSC) I-girder bridges are preferred to construct extensively in medium span (15 m to 

40 m) highway bridges. The US national bridge inventory (NBI) and Turkish General Directory of Highways 

data show that the PSC bridges cover a significant percentage of the existing bridges. Moravcik [1], 

Bujnakova, and Strieska [2] stated that a significant portion of the highway bridges in Slovakia was produced 

with prestressed concrete technology and that about 200 km of the new bridge, according to recent plans, 

would be made using PSC technology. It is also clear that the construction of PSC bridges will continue to 
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increase when the increasing transportation needs of the communities and superior properties of PSC are 

considered. One of the construction views of the PSC I-girder bridges is given in Fig.1. 

 The natural frequency (NF) and mode shape (MS) are important modal parameters of engineering 

structures. To determine these parameters of bridges built with prestressed concrete (PSC) or reinforced (RC) 

beams, the dynamic properties of such beams should be known to obtain the current state of the bridge for 

damage detection. Dynamic characteristics are also an important reference for earthquake-resistance design 

so it is very important to obtain the theoretical modal parameters of PSC girders correctly in risky areas for 

earthquakes [4]. PSC girders are subjected to prestressing force (PF) different from RC beams. Dynamic 

behavior of simply supported girder is existing in literature but the effect of PF on the dynamic behavior of 

PSC girder has been a debated topic and still, there is no agreement about how PF affects the modal 

parameters of PSC girder. The scientific community reported contradictory results on this topic. Some reports 

state that PF affects the dynamic behavior of PSC girder. Tse et al. [5], Saiidi et al. [6], and Chan and Yung 

[7] emphasized that compression softening, is a gradual reduction of mechanical resistance due to a 

continuous increment of deformation forced upon a concrete, affects the dynamic characteristic of PSC beam 

and the higher level of PF causes to reduce the NFs of the beam. Grace and Rose [8] point out that the modal 

parameters especially NFs of girder are affected by the level of PF and location of prestressing tendon at the 

bottom flange of the girder. However modal shapes are less affected by such parameters. Miyamoto et al. [9] 

struggled to identify NFs and MSs of a prestressed beam that stiffened with external tendons. They have 

concluded that NFs show decreasing tendency when the magnitude of PF boost. The NF of a simply 

supported axially compressed beam is 
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where EI is the flexural rigidity of the girder, Lgirder is the length of the girder, mgirder is the mass per unit 

length of the girder, n is the mode number and N is the axial compressive force [10]. Eqs. (1) demonstrates 

that when the value of the PF rises, the NF of the axially compressed simple supported beam tends to 

decrease. As seen from many reports, the PF affects the NFs of the PSC girder, whereas some reports state 

that the PF has no effect. Deak [11] put forward that the NFs were not affected by the level of the prestress 

force. However, this claim has not been proved by any comprehensive work. Hamed and Frostig [12] 

examined how the NFs of prestressed beams which have bonded or unbonded tendons were affected by 

applied prestress force. They were suggested a nonlinear analytical formulation to obtain the NF of the PSC 

beam. NFs of bonded or unbounded PSC beams were obtained from this suggested formulation. The results 

show that the NFs of selected beams were not affected by the level of applied prestress force. Pavic et al. 

[13] reached analogous results that the prestress forces do not have a significant impact on the dynamic 

properties. Only parameters such as mass, stiffness, and damping properties were affected by the NFs and 

MSs of the PSC girder. Noble et al. [14] conducted an experimental study to obtain the effect of post-

tensioning force level on the post-tensioned concrete beam. For this purpose, they worked on various levels 

of PF with zero eccentricity. The result of this experimental study shows that magnitude of PF is not affected 

the NF. Fengge and Rong [15] emphasized that the NFs of unbounded PSC beams are not affected by the 

prestress force. It is seen that the references mentioned above, studies on the impact of PF on NFs of PSC 

girders are debated topics.  

 This paper aims to determine the dynamic characteristics of PSC girder through the analytical method 

suggested by [10], numerically by FEM, and operational modal testing. For this purpose, one of the typical 

precast I-girder is selected as an example. The 3D FEM of the girder is created with SAP2000 [16]. The 

experimental measurements of the girder were conducted at the construction site by operational modal 
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testing. For experimental measurements, ten uni-axial seismic accelerometers were mounted at the top flange 

of the PSC girder in x- and z-direction. The vibrations that occur from the movement of trucks and cranes at 

the construction site and also the impact of the hammer were measured by these accelerometers as 

acceleration. The measured signal was collected at the data bank and then sent to the computer equipped 

with Operational Modal Analysis (OMA) [17] software which used Enhanced Frequency Domain 

Decomposition (EFDD) and Stochastic Subspace Identification (SSI) techniques. The dynamic behaviors of 

girders were derived from the analysis performed by this software.  

 

2. Modal parameter estimation techniques 

The operational modal analysis (OMA) is evaluated in this paper as a technique for the identification of 

modal parameters. Many modal parameter identification techniques developed by researchers for different 

uses. In this study, the enhanced frequency domain decomposition (EFDD) method in the frequency domain, 

and the more advanced stochastic subspace identification (SSI) method in the time domain among these 

techniques are implemented to extract the modal parameters. 

2.1. Enhanced frequency domain decomposition (EFDD) method 

The EFDD method is primarily based on the fact that the frequency response function goes through an 

extreme around the natural frequencies. In the context of ambient vibration measurements, the frequency 

response function is replaced by the auto spectra of the output-only data. To include the measurement 

channels of all setups, the average normalized power spectral densities (ANPSDs) are used. In such a way, 

the identified natural frequencies are simply obtained from the observation of the peaks on the graphs of 

ANPSDs. 

The relationship between the input x(t) and the output y(t) can be written [18] and [19]: 

      ( ) ( ) ( )
*( )

T
H G HG     = yy xx  (2) 

where G
xx  is the Power Spectral Density (PSD) matrix of the input, G

yy
 is the PSD matrix of the output, H  

is the Frequency Response Function (FRF) matrix, and * and T denote complex conjugate and transpose 

respectively. After some mathematical manipulations the output PSD can be reduced to a pole/residue form 

as follows [18]: 
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Fig. 1. Cross-section of the investigated girder [3] 
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where kA  is the kth residue matrix of the output PSD. The response spectral density matrix can be written in 

the following final form considering a lightly damped system [18]: 
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where kd  is a scalar constant and k  is the kth mode shape vector. Thus, performing the singular value 

decomposition of the output PSD matrix known at discrete frequencies i −  one obtains [18]: 

  ˆ ( ) H

yy i i i iG j U SU =  (5) 

where the matrix iU  is a unitary matrix holding the singular vector 
iju  and iS  is a diagonal matrix holding 

the scalar singular values 
ijs . The superscript H denotes complex conjugate and transpose. Near a peak 

corresponding to the kth mode in the spectrum, only the kth mode is dominant, and the PSD matrix 

approximates a rank-one matrix as [18]: 

  
1 1 i k

ˆ ( )   ,       H

yy i i i iG j s u u  = →  (6) 

 The first singular vector at the rth resonance is an estimate of the rth mode shape [18]: 

  ˆ
r r1= u  (7) 

2.2. Stochastic subspace identification (SSI) method 

The stochastic subspace identification technique is a time-domain method that directly works with time data, 

without the need to convert them to correlations or spectra. The stochastic subspace identification algorithm 

identifies the state-space matrices based on the measurements by using robust numerical techniques. Once 

the mathematical description of the structure (the state-space model) is found, it is straightforward to 

determine the modal parameters. The theoretical background is given in by Van Overschee and De Moor 

[20], as well as Peeters [21]. The model of vibration structures can be defined by a set of linear, constant-

coefficient, and second-order differential equations [21]: 

  
* *( ) ( ) ( ) ( ) ( )MU t C U t KU t F t B u t+ + = =  (8) 

where M , *C , K  are the mass, damping, and stiffness matrices, ( )F t  is the excitation force, and ( )U t  is 

the displacement vector at continuous time t. Observe that the force vector ( )F t  is factorized into a matrix 

*B  describing the inputs in space and a vector ( )u t . Although Eq. (8) represents quite closely the true 

behavior of a vibrating structure, it is not directly used in SSI methods. So, the equation of dynamic 

equilibrium (8) will be converted to a more suitable form: the discrete-time stochastic state-space model [21]. 

The state-space model originates from control theory, but it also appears in mechanical/civil engineering to 

compute the modal parameters of a dynamic structure with a general viscous damping model [22]. With the 

following definitions, 
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 Eq. (9) can be transformed into the state equation 

  ( ) ( ) ( )c cx t A x t B u t= +  (10) 

where cA  is the state matrix, cB  is the input matrix, and ( )x t  is the state vector. The number of elements of 

the state-space vector is the number of independent variables needed to describe the state of a system. If it is 

assumed that the measurements are evaluated at only one sensor location and that these sensors can be 

accelerometers, velocity, or displacement transducers, the observation equation is [21]: 

  ( ) ( ) ( ) ( )a v dy t C U t C U t C U t= + +  (11) 

where ( )y t  are the outputs, and Ca, Cv, Cd are the output matrices for displacement, velocity, and 

acceleration, respectively. With the following definitions [21] 
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 Eq. (11) can be transformed into: 

  ( ) ( ) ( )y t Cx t Du t= +  (13) 

where C  is the output matrix and D  is the direct transmission matrix. Eqs (10) and (13) constitute a 

continuous-time deterministic state-space model. Continuous-time means that the expressions can be 

evaluated at each time instant t   and deterministic means that the input-output quantities ( )u t , ( )y t  can 

be measured exactly. Of course, this is not realistic since measurements are available at discrete time instants 

k t , k   with t , the sample time and noise are always influencing the data. After sampling, the state-

space model looks like this: 

  1k k k

k k k
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y Cx Du

+ = + 

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where ( )kx x k t=   is the discrete-time state vector, exp( )cA A t=   is the discrete state matrix, and 

  1

c cB A I A B−= −  is the discrete input matrix. If cA  is not invertible, another expression holds B . The 

stochastic components (noise) are included, and we obtain the following discrete-time combined 

deterministic-stochastic state-space model: 

  1k k k k

k k k k
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
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 (15) 

where kw  is the process noise due to disturbances and modeling inaccuracies and kv  is the measurement 

noise due to sensor inaccuracy. They are both immeasurable vector signals, but we assume that they are zero-

mean, white, and with covariance matrices [21] 
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where E  is the expected value operator and 
pq  is the Kronecker delta. 
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 The vibration information that is available in structural health monitoring is usually the responses of a 

structure excited by the operational inputs that are some immeasurable inputs. Due to the lack of input 

information, it is impossible to distinguish deterministic input ku  from the noise terms kw , kv  in Eq. (15). If 

the deterministic input term ku  is modeled by the noise terms kw , kv  the discrete-time purely stochastic 

state-space model of a vibration structure is obtained: 

  1k k k

k k k

x Ax w

y Cx v

+ = + 


= + 
 (17) 

 Eq. (17) constitutes the basis for the time-domain system identification through operational vibration 

measurements. The SSI method identifies the state-space matrices based on the output-only measurements 

and by using robust numerical techniques. 

 

3. Prestressed concrete girder models 

In this paper, a simply supported prestressed I-girder with 120 cm height and 27.45 m effective span length 

is selected as an application. A typical appearance and the dimensions of the cross-section are given in Fig. 

2. The ultimate strength of concrete (fc) is taken as 40 MPa (based on cylinders). The low-relaxation 

Grade270 prestressing strand (characteristic tensile strength fu of 1860 MPa) 15 mm (0.6 in.) in diameter is 

selected as a strand type. Strands layout along the girder length is assumed as linear. The distance between 

strands is 6 cm. The modulus of elasticity, passion ratio, and density of concrete and strand is given in Table 

1. 

 

 

Fig. 2. Cross-section of the investigated girder 

 

Table 1. Material properties of selected girder 

Material Density (kg/m3) Modulus of elasticity (MPa) Poisson’s ratio 

Concrete 2440 36000 0.2 

Strand 7850 201600 0.3 
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4. Operational modal testing of the PSC girder 

Operational Modal Analyses (OMA) [17] were performed to identify the exact dynamic characteristic of 

structures with the help of response vibrations. These response vibrations are acquired from structures then 

recorded at the data bank then sent for the processing phase with the help of PULSE [23] and OMA (2006) 

software which are operated EFDD and SSI techniques. To obtain the modal parameters, NFs and MSs, of 

PSC girder the operational modal testing was performed (Fig. 3). The uniaxial seismic accelerometers, which 

have a 1-1500 Hz frequency range and 10 V/g sensitivity were used to measure the response signal. To 

measure the exact structural response, enough points are determined on the top flange of the girder, and a 

total of ten accelerometers were mounted at the top flange of the PSC girder in x- and z-direction. The location 

of the mounting point of accelerometers on the PSC girder is shown in Fig. 4 schematically. The 

measurements were continued for 20 min and the response vibrations occurred from construction site effects 

such as truck and crane loads. In addition to these loads, an impact hammer was used to vibrate the girder to 

provide that all modes of the girder were obtained easily. Response signals that occurred from the ambient 

vibrations were measured by accelerometers. Then, these signals were recorded and sent to a computer 

equipped with OMA software. This software was analyzed the collected signal with the help of EFDD and 

SSI techniques. At the end of the analysis, exact dynamic characteristics such as the power spectral densities 

matrices, the stabilization diagrams, MSs, and NFs of the PSC girder were obtained. The power spectral 

densities matrices of the PSC girder obtained from the EFDD and SSI techniques are given in Figs. 5 and 6. 

The stabilization diagrams from the SSI technique are also given in Fig. 7.  

 NFs of the first four modes of PSC girder obtained from EFDD and SSI techniques are given in Table 2. 

Since the MSs obtained from both EFDD and SSI methods are very close to each other, only MSs of EFDD 

are given in Fig. 8. 

 

 

Fig. 3. Operational model testing of the PSC girder 

 

 

Fig. 4. The location of mounted point of accelerometers on PSC girder 
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Fig. 5. The power spectral density function obtained from the EFDD technique 

 

 

Fig. 6. The power spectral density function obtained from the SSI technique 

 

 

Fig. 7. The stabilization diagram of the SSI technique 

 

Table 2. Natural frequencies of the first four modes of girder obtained from EFDD and SSI techniques 

Technique 
Frequency [Hz] 

1st mode 2nd mode 3rd mode 4th mode 

EFDD 2.225 4.543 7.867 16.590 

SSI 2.218 4.540 7.872 16.610 
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Fig. 8. The first four mode shapes of the PSC girder from OMA 
 

5. Finite element modeling 

To obtain the dynamic characteristics of the PSC girder, 3D FEM of the girder was created using the 

commercial software program SAP2000 [16]. The selected PSC girder is modeled with 275 frame elements 

and 24 tendons. The girder and strands were represented by frame and tendon elements, respectively. The 

3D FEM of the girder created in this context is given in Fig. 9. To take into consideration, the changes of 

deformations and internal forces in the beam after the prestressing force is transferred to this type of girder, 

geometric nonlinearity should take into account in prestress loads case. Stiffness at the end of this case was 

used in modal analyses. 

 As a boundary condition, the left- and right-hand supports were selected as pinned and roller, 

respectively. Adjacent nodes between the frame elements and strands were connected to represent the perfect 

bond assumption. Transfer length was not taken into consideration. Self-weight of the girder was calculated 

from the finite element software directly. PF was calculated as 175 kN when the prestressing losses were 

taken into account and this force was simultaneously applied to all strands on both sides. 

 

 
Fig. 9. Finite element model of the girder 

 

1st Transverse Mode 

 

1st Vertical Mode 

) 

2st Transverse Mode 

 

2st Vertical Mode 

 

f = 2.225 Hz f = 4.543 Ha 

f = 16.590 Hz f = 7.867 Hz 
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6. Finite element analysis results 

The first four MSs and NFs of the PSC girder obtained from the FEM modal analyses are shown in Fig 10. 

The numbers of four NFs of the girder were obtained which order between 1.89 and 15.29 Hz. The first four 

types of MSs of girder: transverse, vertical, transverse, and vertical modes, respectively. 

 The value of NFs obtained by an analytical formula suggested by Timoshenko et al. (1974), numerically 

by FEM and operational modal testing are given in Table 3. 

 It is seen that NFs obtained from analytical prediction and numerical by FEM where geometric 

nonlinearity was taken into account in the prestressing loads' case and stiffness at the end of this case was 

used in modal analyses are getting closer to each other. It is seen that the values obtained from the two 

methods mentioned are quite close to each other in all the given modes. The natural frequencies of PSC 

girder identify from EFDD and SSI techniques is not too far apart. When the results obtained from the 

analytical, numerical, and operational modal analysis used in determining the natural frequencies of the 

selected PSC girder are compared, it is seen that the values are quite close to each other. The differences 

between techniques used to identify the natural frequencies of PSC girder are fewer than 15%. From the 

results given in Table 3, it can be concluded that it is possible to obtain the modes and natural frequencies of 

the PSC girder by using only the formula suggested by Timoshenko without the laborious and long-term 

finite element method and operational modal analysis. 

 

 
 

Fig. 10. MSs of the PSC girder obtained by the FEM. 

 

Table 3. Natural frequencies of the first four modes of girder obtained using different techniques 

Techniques 
Frequency [Hz] 

1st mode 2nd mode 3rd mode 4th mode 

Analytical 1.937 3.958 8.667 16.303 

Numerical 1.893 3.906 7.933 15.296 

EFDD 2.225 4.543 7.867 16.590 

SSI 2.218 4.540 7.872 16.610 

f = 1.893 Hz 

1st Transverse Mode 

f = 3.906 Hz 

1st Vertical Mode 

 

f = 7.933 Hz 

2st Transverse Mode 

 

f = 15.296 Hz 

2st Vertical Mode 
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7. Conclusions 

The purpose of this paper is to obtain the modal parameters of prestressed concrete girder by analytical 

prediction suggested by Timoshenko et al. [10], numerically by FEM, and operational modal testing by 

OMA. For this purpose, one of a typical precast I-girder with 120 cm height and 27.45 m effective span 

length is selected as an application. The three-dimensional finite element model of the girder is modeled with 

SAP2000. The experimental measurements of the girder were conducted at the construction site by the 

operational modal testing method. For experimental measurements, ten uni-axial seismic accelerometers 

were mounted at the top flange of the PSC girder in the x- and z-direction. The vibrations that occur from the 

movement of trucks and cranes at the construction site and also the impact of the hammer were measured by 

these accelerometers as acceleration. The measured signal was collected at the data bank and then sent to the 

computer equipped with OMA software which used Enhanced Frequency Domain Decomposition and 

Stochastic Subspace Identification techniques. The dynamic behaviors of girders were derived from the 

analysis of this software. At the end of the study, mode shapes and natural frequencies obtained analytically, 

numerically, and experimentally were compared with each other. The main conclusions obtained from this 

study are: 

▪ The mode shapes of the PSC girder obtained from FEM modal analysis and OMA are overlapping with 

each other. 

▪ The analytical and numerical natural frequencies of the PSC girder are getting closer to each other. 

▪ The natural frequencies and mode shapes of PSC girder identified by EFDD and SSI techniques are close 

to each other. 

▪ The differences among techniques used to identify the natural frequencies of PSC girder are smaller than 

15%. 

 This study concludes that dynamic characteristics of PSC girders such as natural frequencies and mode 

shapes obtained from theoretical prediction, FEM and operational modal testing are not too far apart. 
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