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1. Introduction

To determine the dynamic characteristics of bridges with prestressed girders, their
natural frequencies and mode shapes used to construct the superstructure must be
known. However, there is no agreement among scientists on how prestress force
affects the dynamic characteristics of a precast prestressed girder. The purpose of
this paper is to obtain the dynamic characteristics of prestressed concrete girders
through analytically, numerically, and operational modal testing. For this purpose,
one of a typical precast I-girder with 1.2 m height and 27.45 m effective span length
is selected as a numerical application. The three-dimensional (3D) finite element
model (FEM) of the girder is modeled by SAP2000. Experimental measurements of
the girder were conducted at the construction site by the operational modal testing
method. For experimental measurements, ten uniaxial seismic accelerometers were
mounted at the top flange of the PSC girder in the x- and z-direction. The vibrations
that occur from the movement of trucks and cranes at the construction site and the
impact of the hammer were measured by these accelerometers as acceleration. The
measured signal was collected at the data bank and then sent to the computer
equipped with Operational Modal Analysis software which used Enhanced
Frequency Domain Decomposition and Stochastic Subspace Identification
techniques. The dynamic behaviors of girder were derived from analysis performed
by this software. At the end of the study, the dynamic characteristic was obtained by
the analytical prediction, numerical and experimental were compared with each
other. It is seen that natural frequencies and mode shapes obtained from theoretical
prediction, numerical and operational modal testing are not too far apart.

The increasing world population triggers an increase in the demand for transportation. Bridges are one of the
most important components of transportation and there are different types of bridges to meet different needs.
Prestressed concrete (PSC) I-girder bridges are preferred to construct extensively in medium span (15 m to
40 m) highway bridges. The US national bridge inventory (NBI) and Turkish General Directory of Highways
data show that the PSC bridges cover a significant percentage of the existing bridges. Moravcik [1],
Bujnakova, and Strieska [2] stated that a significant portion of the highway bridges in Slovakia was produced
with prestressed concrete technology and that about 200 km of the new bridge, according to recent plans,
would be made using PSC technology. It is also clear that the construction of PSC bridges will continue to
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increase when the increasing transportation needs of the communities and superior properties of PSC are
considered. One of the construction views of the PSC I-girder bridges is given in Fig.1.

The natural frequency (NF) and mode shape (MS) are important modal parameters of engineering
structures. To determine these parameters of bridges built with prestressed concrete (PSC) or reinforced (RC)
beams, the dynamic properties of such beams should be known to obtain the current state of the bridge for
damage detection. Dynamic characteristics are also an important reference for earthquake-resistance design
S0 it is very important to obtain the theoretical modal parameters of PSC girders correctly in risky areas for
earthquakes [4]. PSC girders are subjected to prestressing force (PF) different from RC beams. Dynamic
behavior of simply supported girder is existing in literature but the effect of PF on the dynamic behavior of
PSC girder has been a debated topic and still, there is no agreement about how PF affects the modal
parameters of PSC girder. The scientific community reported contradictory results on this topic. Some reports
state that PF affects the dynamic behavior of PSC girder. Tse et al. [5], Saiidi et al. [6], and Chan and Yung
[7] emphasized that compression softening, is a gradual reduction of mechanical resistance due to a
continuous increment of deformation forced upon a concrete, affects the dynamic characteristic of PSC beam
and the higher level of PF causes to reduce the NFs of the beam. Grace and Rose [8] point out that the modal
parameters especially NFs of girder are affected by the level of PF and location of prestressing tendon at the
bottom flange of the girder. However modal shapes are less affected by such parameters. Miyamoto et al. [9]
struggled to identify NFs and MSs of a prestressed beam that stiffened with external tendons. They have
concluded that NFs show decreasing tendency when the magnitude of PF boost. The NF of a simply
supported axially compressed beam is

W = nz 1 EI( nﬂJ_N )

L girder

girder mgirder

where El is the flexural rigidity of the girder, Lgirger i the length of the girder, mgirder iS the mass per unit
length of the girder, n is the mode number and N is the axial compressive force [10]. Egs. (1) demonstrates
that when the value of the PF rises, the NF of the axially compressed simple supported beam tends to
decrease. As seen from many reports, the PF affects the NFs of the PSC girder, whereas some reports state
that the PF has no effect. Deak [11] put forward that the NFs were not affected by the level of the prestress
force. However, this claim has not been proved by any comprehensive work. Hamed and Frostig [12]
examined how the NFs of prestressed beams which have bonded or unbonded tendons were affected by
applied prestress force. They were suggested a nonlinear analytical formulation to obtain the NF of the PSC
beam. NFs of bonded or unbounded PSC beams were obtained from this suggested formulation. The results
show that the NFs of selected beams were not affected by the level of applied prestress force. Pavic et al.
[13] reached analogous results that the prestress forces do not have a significant impact on the dynamic
properties. Only parameters such as mass, stiffness, and damping properties were affected by the NFs and
MSs of the PSC girder. Noble et al. [14] conducted an experimental study to obtain the effect of post-
tensioning force level on the post-tensioned concrete beam. For this purpose, they worked on various levels
of PF with zero eccentricity. The result of this experimental study shows that magnitude of PF is not affected
the NF. Fengge and Rong [15] emphasized that the NFs of unbounded PSC beams are not affected by the
prestress force. It is seen that the references mentioned above, studies on the impact of PF on NFs of PSC
girders are debated topics.

This paper aims to determine the dynamic characteristics of PSC girder through the analytical method
suggested by [10], numerically by FEM, and operational modal testing. For this purpose, one of the typical
precast I-girder is selected as an example. The 3D FEM of the girder is created with SAP2000 [16]. The
experimental measurements of the girder were conducted at the construction site by operational modal
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testing. For experimental measurements, ten uni-axial seismic accelerometers were mounted at the top flange
of the PSC girder in x- and z-direction. The vibrations that occur from the movement of trucks and cranes at
the construction site and also the impact of the hammer were measured by these accelerometers as
acceleration. The measured signal was collected at the data bank and then sent to the computer equipped
with Operational Modal Analysis (OMA) [17] software which used Enhanced Frequency Domain
Decomposition (EFDD) and Stochastic Subspace Identification (SSI) techniques. The dynamic behaviors of
girders were derived from the analysis performed by this software.

2. Modal parameter estimation techniques

The operational modal analysis (OMA) is evaluated in this paper as a technique for the identification of
modal parameters. Many modal parameter identification techniques developed by researchers for different
uses. In this study, the enhanced frequency domain decomposition (EFDD) method in the frequency domain,
and the more advanced stochastic subspace identification (SSI) method in the time domain among these
techniques are implemented to extract the modal parameters.

2.1. Enhanced frequency domain decomposition (EFDD) method

The EFDD method is primarily based on the fact that the frequency response function goes through an
extreme around the natural frequencies. In the context of ambient vibration measurements, the frequency
response function is replaced by the auto spectra of the output-only data. To include the measurement
channels of all setups, the average normalized power spectral densities (ANPSDSs) are used. In such a way,
the identified natural frequencies are simply obtained from the observation of the peaks on the graphs of
ANPSDs.

The relationship between the input x(t) and the output y(t) can be written [18] and [19]:

[G,,(@)]=[H@] [Gu@][H@)] @

where G,, is the Power Spectral Density (PSD) matrix of the input, G is the PSD matrix of the output, H

is the Frequency Response Function (FRF) matrix, and * and T denote complex conjugate and transpose
respectively. After some mathematical manipulations the output PSD can be reduced to a pole/residue form
as follows [18]:
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Fig. 1. Cross-section of the investigated girder [3]
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where A is the kth residue matrix of the output PSD. The response spectral density matrix can be written in
the following final form considering a lightly damped system [18]:

T N ¢
[Gw(a))]= z d.k‘//kl//k_'_dk‘//kl//:- (4)
k—sw(w)| JO— A, jo-2,

where d, is a scalar constant and y, is the kth mode shape vector. Thus, performing the singular value
decomposition of the output PSD matrix known at discrete frequencies @ — @, one obtains [18]:

A "
G, (jm)=U;SU, (5)
where the matrix U; is a unitary matrix holding the singular vector u, and $, is a diagonal matrix holding

the scalar singular values s, . The superscript H denotes complex conjugate and transpose. Near a peak

corresponding to the kth mode in the spectrum, only the kth mode is dominant, and the PSD matrix
approximates a rank-one matrix as [18]:

éyy(ja)l)zsiuilui': ) @, —> @ (6)

The first singular vector at the rth resonance is an estimate of the rth mode shape [18]:

A

¢r = url (7)

2.2. Stochastic subspace identification (SSI) method

The stochastic subspace identification technique is a time-domain method that directly works with time data,
without the need to convert them to correlations or spectra. The stochastic subspace identification algorithm
identifies the state-space matrices based on the measurements by using robust numerical techniques. Once
the mathematical description of the structure (the state-space model) is found, it is straightforward to
determine the modal parameters. The theoretical background is given in by Van Overschee and De Moor
[20], as well as Peeters [21]. The model of vibration structures can be defined by a set of linear, constant-
coefficient, and second-order differential equations [21]:

MU (t) + CU (t) + KU (t) = F(t) = B.u(t) 8)
where M, C,, K are the mass, damping, and stiffness matrices, F(t) is the excitation force, and U (t) is
the displacement vector at continuous time t. Observe that the force vector F(t) is factorized into a matrix

B. describing the inputs in space and a vector u(t). Although Eq. (8) represents quite closely the true

behavior of a vibrating structure, it is not directly used in SSI methods. So, the equation of dynamic
equilibrium (8) will be converted to a more suitable form: the discrete-time stochastic state-space model [21].
The state-space model originates from control theory, but it also appears in mechanical/civil engineering to
compute the modal parameters of a dynamic structure with a general viscous damping model [22]. With the

following definitions,
_(u® (0 L,
X(t)_(u'(t)j’ A:_(—MlK —Mlc*j’

0
Bc = [ -1 J
M B,
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Eqg. (9) can be transformed into the state equation
X(t) = Ax(t) + B.u(t) (10)

where A, is the state matrix, B, is the input matrix, and x(t) is the state vector. The number of elements of

the state-space vector is the number of independent variables needed to describe the state of a system. If it is
assumed that the measurements are evaluated at only one sensor location and that these sensors can be
accelerometers, velocity, or displacement transducers, the observation equation is [21]:

y®) =C,U®)+CU(t)+C,U(t) (11)

where y(t) are the outputs, and C, C,, Cq4 are the output matrices for displacement, velocity, and
acceleration, respectively. With the following definitions [21]

c=[¢,-C,M'K C,-CMC|
(12)
D=C,M'B.
Eqg. (11) can be transformed into:
y(t) = Cx(t) + Du(t) (13)

where C is the output matrix and D is the direct transmission matrix. Eqs (10) and (13) constitute a
continuous-time deterministic state-space model. Continuous-time means that the expressions can be
evaluated at each time instant t € R and deterministic means that the input-output quantitiesu(t) , y(t) can

be measured exactly. Of course, this is not realistic since measurements are available at discrete time instants
kAt , k e N with At, the sample time and noise are always influencing the data. After sampling, the state-
space model looks like this:

X,y = AX + Buk} (14)

Yy, =Cx, +Du,
where x, =x(kAt) is the discrete-time state vector, A=exp(A.At) is the discrete state matrix, and
B=[A-1]A"B, is the discrete input matrix. If A is not invertible, another expression holds B . The

stochastic components (noise) are included, and we obtain the following discrete-time combined
deterministic-stochastic state-space model:

X1 = AX, +Bu, +w, (15)
Y, =Cx, +Du, +v,
where w, is the process noise due to disturbances and modeling inaccuracies and v, is the measurement

noise due to sensor inaccuracy. They are both immeasurable vector signals, but we assume that they are zero-
mean, white, and with covariance matrices [21]

[ -2

where E is the expected value operator and &, is the Kronecker delta.
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The vibration information that is available in structural health monitoring is usually the responses of a
structure excited by the operational inputs that are some immeasurable inputs. Due to the lack of input
information, it is impossible to distinguish deterministic input u, from the noise termsw, , v, in Eq. (15). If

the deterministic input term u, is modeled by the noise termsw, , v, the discrete-time purely stochastic
state-space model of a vibration structure is obtained:

X, = AX, +Wk}

17
Y =CX +V, ()

Eqg. (17) constitutes the basis for the time-domain system identification through operational vibration
measurements. The SSI method identifies the state-space matrices based on the output-only measurements
and by using robust numerical techniques.

3. Prestressed concrete girder models

In this paper, a simply supported prestressed I-girder with 120 cm height and 27.45 m effective span length
is selected as an application. A typical appearance and the dimensions of the cross-section are given in Fig.
2. The ultimate strength of concrete (f) is taken as 40 MPa (based on cylinders). The low-relaxation
Grade270 prestressing strand (characteristic tensile strength f, of 1860 MPa) 15 mm (0.6 in.) in diameter is
selected as a strand type. Strands layout along the girder length is assumed as linear. The distance between
strands is 6 cm. The modulus of elasticity, passion ratio, and density of concrete and strand is given in Table
1.

1275
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Fig. 2. Cross-section of the investigated girder

Table 1. Material properties of selected girder

Material Density (kg/m?3) Modulus of elasticity (MPa) Poisson’s ratio

Concrete 2440 36000 0.2
Strand 7850 201600 0.3
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4. Operational modal testing of the PSC girder

Operational Modal Analyses (OMA) [17] were performed to identify the exact dynamic characteristic of
structures with the help of response vibrations. These response vibrations are acquired from structures then
recorded at the data bank then sent for the processing phase with the help of PULSE [23] and OMA (2006)
software which are operated EFDD and SSI techniques. To obtain the modal parameters, NFs and MSs, of
PSC girder the operational modal testing was performed (Fig. 3). The uniaxial seismic accelerometers, which
have a 1-1500 Hz frequency range and 10 V/g sensitivity were used to measure the response signal. To
measure the exact structural response, enough points are determined on the top flange of the girder, and a
total of ten accelerometers were mounted at the top flange of the PSC girder in x- and z-direction. The location
of the mounting point of accelerometers on the PSC girder is shown in Fig. 4 schematically. The
measurements were continued for 20 min and the response vibrations occurred from construction site effects
such as truck and crane loads. In addition to these loads, an impact hammer was used to vibrate the girder to
provide that all modes of the girder were obtained easily. Response signals that occurred from the ambient
vibrations were measured by accelerometers. Then, these signals were recorded and sent to a computer
equipped with OMA software. This software was analyzed the collected signal with the help of EFDD and
SSI techniques. At the end of the analysis, exact dynamic characteristics such as the power spectral densities
matrices, the stabilization diagrams, MSs, and NFs of the PSC girder were obtained. The power spectral
densities matrices of the PSC girder obtained from the EFDD and SSI techniques are given in Figs. 5 and 6.
The stabilization diagrams from the SSI technique are also given in Fig. 7.

NFs of the first four modes of PSC girder obtained from EFDD and SSI techniques are given in Table 2.
Since the MSs obtained from both EFDD and SSI methods are very close to each other, only MSs of EFDD
are given in Fig. 8.

Xxaxis

Fig. 4. The location of mounted point of accelerometers on PSC girder
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Fig. 5. The power spectral density function obtained from the EFDD technique
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Fig. 6. The power spectral density function obtained from the SSI technique
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Fig. 7. The stabilization diagram of the SSI technique

Table 2. Natural frequencies of the first four modes of girder obtained from EFDD and SSI techniques

Frequency [Hz]

Technique
15t mode 2" mode 34 mode 4t mode

EFDD 2.225 4.543 7.867 16.590
SSI 2.218 4.540 7.872 16.610
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f=2225Hz f=4543 Ha

15t Transverse Mode 15t Vertical Mode
f=7.867 Hz f=16.590 Hz P
2% Transverse Mode 2% Vertical Mode

Fig. 8. The first four mode shapes of the PSC girder from OMA

5. Finite element modeling

To obtain the dynamic characteristics of the PSC girder, 3D FEM of the girder was created using the
commercial software program SAP2000 [16]. The selected PSC girder is modeled with 275 frame elements
and 24 tendons. The girder and strands were represented by frame and tendon elements, respectively. The
3D FEM of the girder created in this context is given in Fig. 9. To take into consideration, the changes of
deformations and internal forces in the beam after the prestressing force is transferred to this type of girder,
geometric nonlinearity should take into account in prestress loads case. Stiffness at the end of this case was
used in modal analyses.

As a boundary condition, the left- and right-hand supports were selected as pinned and roller,
respectively. Adjacent nodes between the frame elements and strands were connected to represent the perfect
bond assumption. Transfer length was not taken into consideration. Self-weight of the girder was calculated
from the finite element software directly. PF was calculated as 175 kN when the prestressing losses were
taken into account and this force was simultaneously applied to all strands on both sides.

Wil

Fig. 9. Finite element model of the girder
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6. Finite element analysis results

The first four MSs and NFs of the PSC girder obtained from the FEM modal analyses are shown in Fig 10.
The numbers of four NFs of the girder were obtained which order between 1.89 and 15.29 Hz. The first four
types of MSs of girder: transverse, vertical, transverse, and vertical modes, respectively.

The value of NFs obtained by an analytical formula suggested by Timoshenko et al. (1974), numerically
by FEM and operational modal testing are given in Table 3.

It is seen that NFs obtained from analytical prediction and numerical by FEM where geometric
nonlinearity was taken into account in the prestressing loads' case and stiffness at the end of this case was
used in modal analyses are getting closer to each other. It is seen that the values obtained from the two
methods mentioned are quite close to each other in all the given modes. The natural frequencies of PSC
girder identify from EFDD and SSI techniques is not too far apart. When the results obtained from the
analytical, numerical, and operational modal analysis used in determining the natural frequencies of the
selected PSC girder are compared, it is seen that the values are quite close to each other. The differences
between techniques used to identify the natural frequencies of PSC girder are fewer than 15%. From the
results given in Table 3, it can be concluded that it is possible to obtain the modes and natural frequencies of
the PSC girder by using only the formula suggested by Timoshenko without the laborious and long-term
finite element method and operational modal analysis.

f=1.893 Hz f=3.906 Hz

15t Transverse Mode 1t Vertical Mode

f=7.933 Hz f=15.296 Hz

2% Transverse Mode

2% Vertical Mode

Fig. 10. MSs of the PSC girder obtained by the FEM.

Table 3. Natural frequencies of the first four modes of girder obtained using different techniques

Frequency [Hz]
Techniques
1% mode 2" mode 3 mode 4™ mode
Analytical 1.937 3.958 8.667 16.303
Numerical 1.893 3.906 7.933 15.296
EFDD 2.225 4.543 7.867 16.590

SSI 2.218 4.540 7.872 16.610
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7. Conclusions

The purpose of this paper is to obtain the modal parameters of prestressed concrete girder by analytical
prediction suggested by Timoshenko et al. [10], numerically by FEM, and operational modal testing by
OMA. For this purpose, one of a typical precast I-girder with 120 cm height and 27.45 m effective span
length is selected as an application. The three-dimensional finite element model of the girder is modeled with
SAP2000. The experimental measurements of the girder were conducted at the construction site by the
operational modal testing method. For experimental measurements, ten uni-axial seismic accelerometers
were mounted at the top flange of the PSC girder in the x- and z-direction. The vibrations that occur from the
movement of trucks and cranes at the construction site and also the impact of the hammer were measured by
these accelerometers as acceleration. The measured signal was collected at the data bank and then sent to the
computer equipped with OMA software which used Enhanced Frequency Domain Decomposition and
Stochastic Subspace Identification techniques. The dynamic behaviors of girders were derived from the
analysis of this software. At the end of the study, mode shapes and natural frequencies obtained analytically,
numerically, and experimentally were compared with each other. The main conclusions obtained from this
study are:
= The mode shapes of the PSC girder obtained from FEM modal analysis and OMA are overlapping with
each other.
= The analytical and numerical natural frequencies of the PSC girder are getting closer to each other.
= The natural frequencies and mode shapes of PSC girder identified by EFDD and SSI techniques are close
to each other.
= The differences among techniques used to identify the natural frequencies of PSC girder are smaller than
15%.
This study concludes that dynamic characteristics of PSC girders such as natural frequencies and mode
shapes obtained from theoretical prediction, FEM and operational modal testing are not too far apart.
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