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Abstract 

Starting with total potential energy variational principle, the governing equilibrium coupled equations for the 

torsional-warping static analysis of open thin-walled beams under various torsional and warping moments 

are derived. The formulation captures shear deformation effects due to warping. The exact closed form 

solutions for torsional rotation and warping deformation functions are then developed for the coupled system 

of two equations. The exact solutions are subsequently used to develop a family of shape functions which 

exactly satisfy the homogeneous form of the governing coupled equations. A super-convergent finite beam 

element is then formulated based on the exact shape functions. Key features of the beam element developed 

include its ability to (a) eliminate spatial discretization arising in commonly used finite elements, and (e) 

eliminate the need for time discretization. The results based on the present finite element solution are found 

to be in excellent agreement with those based on exact solution and ABAQUS finite beam element solution 

at a small fraction of the computational and modelling cost involved. 
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1. Introduction 

Thin-walled members having open cross-sections 

are generally used as basic structural members in 

many engineering applications, as stiffeners in 

aircraft frame structures, in steel building 

structures, ship and marine structural frames and 

truck frames. In such applications, open thin-walled 

steel beams subjected to twisting moments prone to 

large normal warping stresses caused by the 

bimoments and excessive torsional rotation angles. 

Thus, it is important for the designers to avoid 

torsional moments in steel structures consisting of 

open thin-walled steel sections.  However, in some 

practical applications, open thin-walled steel 
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members subjected to twisting moments cannot be 

avoided and the designers will then need to 

calculate the magnitudes of torsional effects and to 

consider the torsional resistance of these thin-

walled members.  

 For the thin-walled members with open cross-

sections under twisting moments, the cross-sections 

undergo longitudinal displacements and a plane 

section before deformation generally does not 

remain plain. This phenomenon is called warping. 

The Saint Venant torsion theory assumed that the 

warping is completely unrestrained, in which the 

torsional rotation angle per unit length remains 

constant along the structural member. In reality, 
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many support details can prevent thin-walled 

member ends from warping freely. This causes an 

increase of the member torsional stiffness and 

introduces longitudinal stresses especially nearby 

the member ends. For solid and thin-wall closed 

sections these effects can be often ignored, while 

for open sections restrained warping can lead to 

significant longitudinal warping stresses. 

Neglecting these warping stresses may generate 

significant errors especially for open profile torsion 

beams.  

 Even though a large number of studies have 

been developed to investigate the static torsional 

response of open thin-walled doubly symmetric 

beams, to the best of the author’s knowledge, no 

finite element solution based on exact shape 

functions have been reported for the static analysis 

of coupled torsional-warping of thin-walled doubly 

symmetric beams which account for shear 

deformation effects due to warping. Within the 

above context, the present study aims at developing 

an exact finite beam element solution for torsional-

warping coupled static response of thin-walled 

open beams with doubly symmetric cross-sections 

subjected to various twisting and warping 

moments. 

 

2. Literature review 

Thin-walled beam theories which capture warping 

effects include the works of Vlasov [1], 

Timoshenko [2] and Gjelsvik [3]. Vlasov [1] 

developed a general theory for isotropic thin-walled 

beams with open and closed sections which 

captures warping effects. Compared to the typical 

Saint Venant torsion theory, the Vlasov theory 

introduced the rate of change of the torsional 

rotation angle as a measure of warping deformation, 

which leads to an additional straining action, the 

bimoment. The Vlasov torsion formulation is based 

on two fundamental kinematic assumptions: (i) the 

cross section of a member remains undeformed (or 

rigid) after deformation, and (ii) the shear strain in 

the middle surface is neglected. In other words, 

Vlasov torsion theory for thin-walled beams 

considers the warping stiffness of the beam cross 

section but neglects the shear deformation effects at 

the middle surface. Timoshenko [2] independently 

developed a similar theory for isotropic beams with 

open cross-sections in which the shear deformation 

effects are included. Gjelsvik [3] extended the 

Vlasov’s theory to account for the additional 

through-thickness secondary warping for beams 

with open and closed cross-sections.  

 There are well known analytical closed-form 

and finite element solutions for torsional static 

analysis of thin walled beams with open cross-

section. Among them, Seaburg and Carter [4] 

derived the closed-form solutions for the torsional 

analysis of thin-walled beams under various 

twisting moments and boundary conditions. By 

including the transverse shear deformation and 

warping deformation, Back and Will [5] developed 

a finite element for the analysis of thin-walled 

beams with arbitrary open cross-sections. Mohareb 

and Nowzartash [6] developed a finite beam 

element formulation for torsional static analysis of 

thin-walled beams with open cross-sections based 

on St. Venant and Vlasov theories. Sapountzakis 

and Mokos [7] developed a boundary element 

solution for the general linear elastic non-uniform 

torsion problem of homogeneous and composite 

prismatic bars of arbitrary cross section subjected to 

various twisting moments. Kim and Kim [8] 

presented an improved thin-walled beam theory 

considering the transverse shear deformation due to 

the shearing force and restrained warping and the 

coupled effect between these two shear 

deformations by introducing Vlasov’s assumption 

and applying Hellinger- Reissner principle. 

Pavazza [9] developed an analytical method for the 

torsion of open thin-walled beams with effect of 

shear deformation by assuming that the shear stress 

was constant along the beam length. Based on 

postulated stress field, Erkmen and Mohareb [10] 

developed a theory for the torsional static analysis 

of open steel thin-walled beams of general cross 

sections which accounted for shear deformation 

effects. El Fatmi [11,12] presented a beam theory 

with a non-uniform warping including the effects of 

torsion and shearing forces. Based on Vlasov’s and 

Benscoter’s theories, Campanile etal. [13] 

presented an exact solution of non-uniform torsion 
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for thin-walled elastic beams with asymmetric 

cross-section. Based on the boundary element 

method, Mokos and Sapountzakis [14] developed a 

non-uniform torsion theory of doubly symmetrical 

arbitrary cross-section including secondary 

torsional moment deformation effect. Wang etal. 

[15] developed a first-order torsion theory based on 

Vlasov theory for restrained torsion of open thin-

walled beams. The theory captured the warping 

deformation and restrained shear deformation of the 

cross-section. Sapountzakis [16] presented the 

static and dynamic analyses of the geometrically 

linear or nonlinear, elastic or elasto-plastic non-

uniform torsion problems of bars of constant or 

variable arbitrary cross section subjected to 

arbitrarily distributed or concentrated twisting and 

warping moments along the bar axis. Based on the 

classical Vlasov's theory, Pavazza etal. [17] 

developed a theory for torsion of thin-walled beams 

with influence of shear deformation for open cross-

sections with single and double axes of symmetry 

and under various torsional loads. From Saint-

Venant and non-uniform torsional deformations, 

Aminbaghui etal. [18] formulated the governing 

differential equation for non-uniform torsion of 

thin-walled beams with open/closed cross-sections 

according to the theory of second-order torsional 

warping. Their formulation captured the effect of 

variable axial force and secondary torsion-moment 

deformation effect on the beam deformations due to 

torsional warping. In addition, the transfer matrix 

method is derived to develop a finite beam element 

with two nodes for static and dynamic analyses of 

beams. Mechab etal. [19] presented an analytical 

and numerical study of warping phenomenon of 

short composite thin-walled structural beams and 

thick plates based on the transverse shear higher 

order theory. Murin etal. [20] investigated the effect 

of torsional warping of thin-walled functionally 

graded material beams with doubly symmetric open 

and closed cross-sections. In their formulation, the 

longitudinal polynomial variation of the material 

properties and the secondary torsion moment on the 

eigen-frequencies were considered. The differential 

equations for Saint-Venant torsional deformations 

including the inertial line moments and were 

formulated. Considering the transfer functions, the 

solution of the differential equations is obtained 

using transfer matrix method to derive a local finite 

beam element with two-nodes for uniform and non-

uniform torsion of beams.  Aribas etal. [21] 

investigated the static and dynamic analyses of non-

circular composite helical bars considering the 

exact helix geometry and warping effect. Nguyen 

etal. [22] developed a finite element method based 

on Vlasov theory to analyze the stress state induced 

due to bimoments of open thin-walled bars. Aribas 

etal. [23] investigated the transient dynamic 

response and stresses of composite elliptical and 

elliptical cone helices over exact axis geometry 

including warping effects using a mixed finite 

element method formulation. In their formulation, 

the transient response analysis is achieved using the 

Newmark time integration algorithm with/without 

the amplitude decay factor. According to the three-

dimensional elasticity theory, the constitutive 

equations of composite curved rods are derived. 

The mixed finite element method formulation is 

based on the first-order shear deformation theory 

and enhanced by a curvatures and displacement-

type finite elements to investigate the influence of 

cross-sectional warping on the torsional rigidity and 

to evaluate the normal and shear stress distributions 

on the respective cross-sections of the composite 

curved rods.  

 A feature common to the above finite element 

studies is use of approximate shape functions 

involving spatial discretization errors, and thus 

requiring fine meshes to converge to the actual 

solution. In contrast, the present study avoids 

discretization errors by formulating exact shape 

functions which exactly satisfy the homogeneous 

solution of the governing equilibrium torsional 

static equations. Thus, the objective of this paper is 

to develop an accurate and efficient finite beam 

element solution which captures the torsional-

warping coupled static response of open thin-

walled doubly symmetric members subjected to 

various twisting and warping moments. 
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3. Kinematic functions 

A straight uniform thin walled doubly symmetric 

cross-section beam of length L is shown in Fig. 1. 

The thin-walled beam is referenced to a right-

handed rectangular coordinates system X, Y, Z, 

where the axis Z is the longitudinal axis of the 

beam, while Y and Z are the principal axes of the 

cross-section passing through the section centroid 

C. Another set of local coordinate system (s, n, Z) 

is used, in which the coordinates n and s are taken 

along the normal and the tangent to the middle 

surface at the generic point p(x, y) located on the 

mid-surface of the cross-section. The present theory 

is based on the following basic assumptions:  

1. The formulation is applicable to thin-walled 

beams having doubly symmetric open cross-

sections.  

2. The formulation is restricted to the torsional 

analysis of open section thin-walled beams. 

3. Cross-section is assumed to remain perfectly 

rigid in its own plane throughout deformation,  

4. The beam material is assumed to remain linearly 

elastic throughout deformation. 

5. Displacements, strains and rotations are 

assumed to be small. 

6. The beam cross-section is assumed to remain 

undeformed in its own plane in a manner 

consistent with Vlasov’s first assumption 

(Vlasov [1]). 

7. The shear deformation effects induced by 

warping (i.e., non-uniform torsion) at the 

middle surface of the cross-section are assumed 

non-zero and are characterized by a generalized 

displacement function multiplied by the 

sectorial coordinate. 

According to the assumptions described above and 

by considering the doubly symmetric thin-walled 

beam to undergo torsional deformation only, the 

displacement functions up(z, s), vp(s, z) and wp(z,s) 

representing the torsional deformation of arbitrary 

point p(x, y) are presented by: 

( , ) ( ) ( )p zu z s y s z= −   (1) 

( , ) ( ) ( )p zv z s x s z=   (2) 

( , ) ( ) ( )pw z s s z =   (3) 

in which ( )z z  is the torsional rotation, ( )x s  and 

( )y s  are the coordinates of point ,p x y( )  along the 

principal X  and Y  axes, ( )z  is a function which 

characterizes the magnitude of the warping 

deformation, ( )s  is the warping function of the 

open cross-section is defined by: ( ) ( )
s

s h s ds =  . 

 

 

 
Fig. 1. Coordinate system and displacement components 
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 The in-plane lateral and transverse 

displacements ( , )pu z s  and ( , )pv z s  of the point 

( , )p x y  are resolved into tangential and normal
 

displacement components ( , )p z s  and ( , )p z s  

along the tangential and normal directions, 

respectively, yielding: 

( , ) ( ) ( , )p zz s h s z s =   (4) 

( , ) ( ) ( , )p zz s r s z s =   (5) 

where 

( ) ( )( ) ( ) ( )h s x s dy ds y s dx ds= −  

( ) ( )( ) ( ) ( )r s x s dx ds y s dy ds= +  

are the perpendicular distances from the shear 

center cS  to the tangent and normal to the mid-

surface at point ( )p x, y , respectively. The present 

study is focused on the linear response of thin-

walled beams under small deformations, the non-

zero axial and shear strains are then given as: 

( ) ( )zz pw z s z,t      =   (6) 

( ) ( ) ( )

( ) ( )

, ,

zs p p

z

w s z

h s z t z t

 

 

   +  

= +  

  (7) 

 

4. Variational formulation 

The total potential energy   of thin-walled beam 

is calculated by the sum of elastic strain energy U

stored in the deformed beam and potential energy 

mV of the applied torsional and warping moments. 

Using the principle that the variation of the total 

potential energy is zero, the following statement is 

obtained as: 

0mU V   = + =   (8) 

where U is the internal strain energy defined as the 

sum of contributions of the normal stresses and St. 

Venant shear stresses, and is given by 

( )

( )

0 0

0

0

zz zz zs zs
A A

z z

L

z zz

z

U E dAdz G dAdz

GJ dz

GD GJ GD

EI GD dz

 

 

    

 

  

    

= +

 +

  = + +

  + + + 

   





 (9) 

where E  is the modulus of elasticity, G  is the shear 

modulus, J  is the St. Venant torsional constant, 

and  A  is the cross-sectional area. All primes 

denote derivatives with respect to space coordinate 

z. The variation of the potential energy mV  due to 

the applied torsional and warping moments is given 

by: 

 

   

0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L

m z z

z z

V m z z m z z dz

M z z M z z





  

 

= − +

− −


 (10) 

where ( )zm z  is the distributed twisting moment, 

( )m z  is the distributed bi-moment, and ( )z eM z  is 

the concentrated twisting moments, ( )eM z  is the 

distributed bi-moment. The concentrated moments 

are applied at the beam ends (i.e., 0,ez L= ). 

 

5. Equilibrium static torsional-warping 

equations 

From Eqs. (1-7) and by substituting into energy 

Eqs. (9-10), and the resulting expressions into Eq. 

(8), the governing coupled torsional-warping 

equilibrium static equations can be derived by 

integrating the derivatives of the varied quantities 

by parts and collecting the coefficients of z and 

 , yields [24]: 

( ) ( ) ( ) ( )z zG D J z GD z m z   + + =  (11) 

( ) ( ) ( ) ( )zGD z EI z GD z m z      − + =  

   (12) 

The associated boundary conditions are obtained 

as: 

( ) ( ) ( ) ( ) ( ) 0z z z 0
G J D z GD z M z z =   + + −

   (13) 
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 ( ) ( ) ( ) 0
0

EI z +M z z =    (14) 

in which the sectional properties are defined by 

( )
22 2 21xx yy

A
A,I ,I , I ,D , y ,x , , d ds dA    =

   

Eqs. (11) and (12) are a set of coupled differential 

equations expressed in terms of the two dependent 

variables ( )z z  and ( )z . By Eq. (11) for ( )z   

and substituting the result in Eq. (12), a single 

fourth-order equation for torsional behavior of thin-

walled doubly symmetric beams under uniform 

distributed twisting moment is obtained as: 

( ) ( ) ( ) ( )iv

z z z

EI
D J z GJ z m z

D






 + − = −  (15) 

5.1. Exact solution of torsional static equation 

The exact homogeneous solution of Eq. (15) is 

attained by setting the right-hand side of Eq. (15) 

equal to zero, i.e., ( ) 0zm z = , and assuming the 

torsional displacement ( )z z  to take the following 

exponential form: 

( ) im z

z iz A e =   (16) 

 Substituting Eq. (16) into the homogeneous 

form of Eq. (15), the exact solution for torsional 

static behavior of open thin walled doubly 

symmetric I-beams under uniformly distributed 

torsional moment is then obtained as:  

( ) cosh sinhz z A Bz C z D z  = + + +  (17) 

where ( )GJD EI J D   = + . 

 By substituting Eq. (17) back into Eq. (12), the 

warping deformation function ( )z  is determined 

by  

( )2

( ) sinh 1

cosh 1

( ) ( )z

z o

z B z C
GD

z D
GD

m z m z
z

GD GJ P r










  


 

  
= − − +  

   

  
− +  

   

+ −
−

 (18) 

where ( ) 2EI
D J

D






 = + . 

 The new Eq. (18) developed in this study is 

original for the literature used with Eq. (17) to 

obtain the exact shape functions for the present 

finite element formulation. Eq. (17) and (18) are 

rewritten in matrix form as: 

     2 1 4 4 1
( ) ( )z E z A

  
 =   (19) 

in which  

 

    ( ) ( )

1 cosh sinh
( )

0 1 1 sinh 1 cosh

z z z
E z

GD z GD z 

 

     

 
=  

− − + − +        

 (20) 

 

where 

1 2 1 2
( ) ( ) ( )zz z z 

 
 =  

11
A A B C D


=  

5.2. Finite element formulation 

A new finite beam element is developed for coupled 

torsional-warping static analysis of thin-walled 

beams under various torsional and warping 

moments. The proposed two-noded finite beam 

element having four degrees of freedom per 

element is developed. A set of exact shape functions 

that exactly satisfy the homogeneous solution of the 

coupled torsional-warping equations in (19) is used 

to formulate the exact stiffness matrix and load 

potential energy vector for the beam element. 

5.3. Formulation of exact shape function 

To relate the torsional rotation ( )z z  and warping 

deformation ( )z  functions to the nodal torsional 

and warping deformation, the vector of integration 

constants  
4 1

A


 is expressed in terms of nodal 
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torsional and warping displacements 

1 2 3 41 4 1 4eS    
 
=  by enforcing the 

conditions 1(0) = , 2(0) = , 3( )L =  and 

4( )L = , yields 

 
 

 

 
 

     

2 1 2 4

4 1

2 1 2 44 1 4 4

4 44 1 4 1

(0) (0)

( ) ( )e

E
S

L E L

A A

 



  

 

    
= =   

      

= 

 (21) 

From Eq. (21), by substituting into Eq. (20), one 

obtains: 

       

   

1

2 1 4 14 4 4

4 14

( ) ( )

( )

e

e

z E z S

H z S

−

  



 = 

=
 (22) 

in which 

 

   

1, 2,4 2 4

1

4 4 4

( ) ( ) ( )

( )

j jH z H z H z

E z

 

−

 

 =  

= 
 

is a matrix of eight shape functions for torsional and 

warping deformation static behavior. It is seen that, 

Eq. (22) provided the exact shape functions that 

exactly satisfy the homogeneous solution of the 

torsional-warping static coupled equations are 

dependent on the beam length, and cross-sectional 

area. 

5.4. Energy expressions in terms of nodal 

torsional displacements 

The variation of strain energy and work done due to 

applied static torsional moments for open thin-

walled beams are obtained in terms of nodal 

degrees of freedom substituting Eq. (22) into Eq. 

(9) as: 

 (    

     

      ) 

1 4 4 2 2 2 2 40

4 2 2 2 2 4

4 14 2 2 2 2 4

( ) ( )

( ) ( )

( ) ( )

L T

e m

T

c c

T

b b e

U S H z Z H z

H z Z H z

H z Z H z S dz

 
   

  

  

  =


+

+




 

   (23) 

where 

 
2 2

2 2

0 0

0
cZ

GD




 
=  
 

, 

 
2 2

2 2

0 0

0
bZ

GD




 
=  
 

, 

  1, 2,4 2 4 2
( ) ( ) ( )

TT

c j jH z H z H z
 

 =   , 

  1, 2,4 2 4 2
( ) 0 ( ) ( )

TT

b j jH z H z H z
 

 = +  , 

  ( )
2 2 2 2mZ diag G D J EI  

= +    

 The variation of the work done of the applied 

torsional loading presented by equation (10) can be 

given in terms of nodal degrees of freedom as: 

   (
   

2 11 4 4 20

2 14 2
0

( )

( )

L T

m e F

L
T

m

V S H z Q dz

H z Q

 
 



= −

 +
 


 (24) 

where  

1 2 1 2
( ) ( )F zQ m z m z 

= , 

   
1 2 0 0

1 2

( ) ( )
L L

m zQ M z M z


=  

5.5. Matrix formulation 

From Eqs. (23-24), by substituting into Eq. (8), 

performing integration by parts, the element 

stiffness matrix  
4 4ek


 couples the nodal 

displacements  
4 1eS


 with corresponding nodal 

forces  
4 1eF


 is obtained as: 

     
4 1 4 14 4e e ek S F
 
=   (25) 

in which, the element stiffness matrix  
4 4eK


 is 

given by: 

       

     

     

4 4 4 2 2 2 2 4

4 2 2 2 2 4

4 2 2 2 2 4

( ) ( )

( ) ( )

( ) ( )

T

e m

T

c c

T

b b

k H z Z H z

H z Z H z

H z Z H z

   

  

  

 =

+

+

 (26) 

The element load vector  
4 1eF


 is given by: 

     

   

4 1 2 14 20

2 14 2
0

( )

( )

L T

e F

L
T

m

F H z Q dz

H z Q

 



=

 +
 


 (27) 
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6. Numerical results and discussion 

In this section, several examples are presented to 

demonstrate the validity, accuracy and applicability 

of the finite beam element solution developed in the 

present study. The new finite beam element having 

two nodes and four degrees of freedom per element 

can capture the coupled static response for the 

torsional-warping analysis of open thin-walled 

beams under various torsional and warping 

moments. The present finite element formulation is 

based on the shape functions which exactly satisfy 

the exact solution of the coupled static field 

equations. This treatment eliminates mesh 

discretization errors arising in conventional 

interpolation schemes used in the finite element 

solutions and thus converge to the solution using a 

minimal number of degrees of freedom. As a result, 

it is observed that, the present numerical results 

obtained based on a new finite beam element using 

a single two-noded finite beam element per span 

yielded the corresponding results which exactly 

matched with those based on the exact closed-form 

solution provided in this study up to six significant 

digits. The results based on the present finite beam 

element (with two degrees of freedom per node) are 

compared with exact solution in [24] and ABAQUS 

finite beam BOS13 element (with seven degrees of 

freedom per node, i.e., three translations, three 

rotations and warping deformation). The numerical 

examples are investigated for doubly symmetric 

thin-walled beams with open cross-sections and a 

variety of torsional and warping moments and 

boundary conditions. 

 

6.1. Example 1 - Cantilever I-beam under various 

twisting and warping moments 

A 3.0m cantilever beam having open thin-walled 

doubly symmetric cross-section is subjected to (i) 

concentrated twisting moment ( ) 2.0 .zM L kN m=  

and warping moment 2( ) 0.8M L kNm = applied at 

the cantilever free end (i.e., )z L= , and (ii) 

uniformly distributed twisting moment 

( ) 1.2 . /zm z kN m m= and distributed warping 

moment 2( ) 0.8 /m z kNm m = applied along the 

beam axis as shown in Fig. 2. Geometrical 

properties of the doubly symmetric cross-section 

are given in Table 1. To validate the accuracy of the 

finite element formulation developed in this study, 

the static analyses of the coupled torsional-warping 

response of the cantilever thin-walled beam under 

the given concentrated and distributed twisting and 

warping moments are independently solved. The 

numerical results based on the present finite 

element formulation are compared to the 

corresponding results based on the exact closed-

form solution developed in previous study [24] and 

ABAQUS finite beam B31OS element solution. 

 

 

 

  
Fig. 2. A cantilever thin-walled I-beam under various twisting and warping moments 
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Table 1. Geometric and properties of doubly symmetric 

thin-walled I-beam 

E 200x103 MPa 

G 78x103 MPa 

A 7420 mm2 

Ixx 87.10x106 mm4 

Iyy 18.82x106 mm4 

J 373.7x103 mm4 

Iω 268.0x109 mm6 

Dωω 77.94x106 mm4 

6.1.1. Convergence analysis 

For the finite element model developed in the 

present finite beam element solution and ABAQUS 

finite beam B31OS element, various meshing sizes 

are considered to achieve the accuracy and validity 

of the numerical static results. To perform a 

convergence analysis, a cantilever thin-walled I-

beam subjected to uniformly distributed twisting 

moment is solved. In order to conform the static 

results for maximum torsional rotation ( )z L  and 

warping deformation function ( )L  of the two 

finite element models; ABAQUS finite element 

model are refined as 20 ,40 ,60, 80, 100 and 120 

beam elements to yield the required accuracy, while 

the finite-element solution developed in the present 

study is based on exact shape functions and is 

conducted using a single finite beam element with 

two nodes and two degrees of freedom per node. 

Fig.3a-b shows the maximum torsional and 

warping deformation static results, respectively, 

obtained from ABAQUS finite element model and 

present finite element versus number of finite 

elements. It is observed that, the torsional-warping 

results obtained from the finite element developed 

in the present study using one element are exactly 

matching with those based on the exact closed-form 

solution up to six significant digits. Whereas the 

maximum torsional-warping results obtained from 

ABAQUS model are gradually improved by 

increasing the number of finite beam elements. As 

illustrated from Fig. 3a-b, the differences between 

the ABAQUS finite element results and exact 

solution results are very small and the best match 

with the exact results are given in the ABAQUS 

model with 100 beam B31OS elements (i.e., seven 

degrees of freedom per node, a total of 707 DOFs 

in the model) to attain the accuracy. 

 Therefore, in ABAQUS finite element model 

solution, the beam is modelled using 100 beam 

B31OS elements along the longitudinal axis (i.e., 

707 degrees of freedom) to eliminate the 

discretization errors and yield the accuracy of this 

example. Whereas the finite beam element solution 

developed in the present study is based on exact 

shape functions and is conducted using a single 

beam element with two nodes and four degrees of 

freedom. It was noted that solution based on a 

single finite beam element per span yielded results 

exactly matching those based on the closed-form 

solution provided in the previous study [24] up to 

six significant digits.  

 

  

Fig. 3. Convergence analysis; (a) the maximum torsional rotation, and (b) the warping deformation function versus 

number of finite elements
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 Table 2 provides the static results for coupled 

torsional-warping analysis obtained based on three 

different solutions: finite beam solution (FES) 

developed in the present study (which captures the 

shear deformation due to warping effects), the exact 

closed form solution presented in [24] and 

ABAQUS finite beam B31OS element solution 

(which capture only the shear deformation due to 

bending). It is observed that the finite element 

formulation developed in this study based on a 

single element (4 DOFs) are in excellent agreement 

with the results based on ABAQUS beam element 

solution using 100 B31OS beam elements (707 

DOFs). This is a natural outcome of the fact that the 

present finite element solution is based on the shape 

functions which exactly satisfy the homogeneous 

form of the coupled torsional-warping static 

equations, which in turn eliminates discretization 

errors induced in the conventional finite element 

formulations. 

Additionally, the static variation of torsional 

rotation angle ( )z z  and warping deformation 

function ( )z  versus beam span z are illustrated in 

Figs. 4a,c,e,g,i and 4b,d,f,h,j, respectively, for 

cantilever beam under various twisting and warping 

moments. The solutions, based on the exact closed-

form solution, ABAQUS finite beam B31OS 

element, and the present finite element solution are 

overlaid on the same diagrams for comparison. In 

the case of the ABAQUS finite element model, a 

total of 100 B31OS beam elements (707 DOFs) 

were needed to achieve convergence, whereas the 

finite-element solution developed in the present 

study based on exact shape functions was 

conducted using a single finite element but for the 

sake of comparison 4 elements (10 DOFs) were 

used. It is obvious that, the present finite element 

formulation provides excellent agreement with 

exact closed form solution developed in [24] and 

ABAQUS beam model by keeping the number of 

degrees of freedom a minimum. 

 

 

Table 2. Static results for torsional angle θz(L) and warping deformation function ψ(L) at cantilever free end  

Type of load 

Function 

type  

(x10-3) 

[1] 

Present FE 

solution 

(4 DOFs) 

[2] 

Exact CF 

solution  

 

[3] 

ABAQUS  

solution 

(707 DOFs) 

Difference 

(%) 

(3-1)/3 

 

θz(L) 115.2 115.2 115.3 0.09% 

ψ(L) 53.70 53.70 53.72 0.04% 

 

θz(L) 81.42 81.42 81.66 0.29% 

ψ(L) 27.77 27.77 27.98 0.75% 

 

θz(L) 42.96 42.96 42.98 0.05% 

ψ(L) 39.61 39.61 39.63 0.05% 

 

θz(L) 45.72 45.72 45.78 0.13% 

ψ(L) 21.58 21.58 21.69 0.51% 

 

θz(L) 285.5 285.5 285.7 0.07% 

ψ(L) 142.7 142.7 143.0 0.21% 
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Fig. 4. Static torsional-warping coupling analysis of cantilever thin-walled I-beam under various twisting and warping 

moments 
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Fig. 4. Continued 

 

6.2. Example 2 - Fork-supported beam under 

torsional moments 

A 6 m thin-walled simply supported I-beam with 

fork-type end supports subjected to uniformly 

distributed torsional loading mz(z) = 1.2 kNm/m and 

distributed warping moment m = 1.4 kNm2/m is 

considered as shown in Fig. 5. The beam is 

unrestrained along its length except at each beam 

end where the fork support prevents the cross-

section from torsional rotation and moving laterally 

but allows for the warping. This example is 

provided to compute the static response for coupled 

torsional-warping behavior of the given simply 

supported beam. The material of thin-walled beam 

is steel with E = 210 GPa, and G = 80 GPa, while 

the geometrical properties of the cross-section are 

illustrated in Table 3. For the sake of validation, the 

numerical results calculated from the finite element 

solution (FES) developed in the present study are 

compared with the ABAQUS finite beam B31OS 

element model and exact solution in [24].  
 The static analysis for coupled torsional-

warping response of fork-supported I-beam 

subjected to uniform distributed twisting moment 

mz(z) = 1.2 kNm/m and warping moment m = 1.4 

kNm2/m is computed using three different 

solutions: (a) the exact closed-form solution 

presented in [24], (b) the finite element solution 

using four beam elements (10 DOFs), and (c) 

ABAQUS finite element model using 100 beam 

B31OS elements (707 DOFs). Even though, the 

present finite element formulation based on a single 

beam element (4 DOFs) provided excellent results 

but for the sake of comparison four beam elements 

with 10 DOFs were used. 

 The static results for nodal torsional rotation 

( )z z  and warping deformation function ( )z , as 

illustrated in Fig.6, based on present finite element 

solution, ABAQUS beam B31OS model, and exact 

solution developed in [24] are overlaid on the same 

diagrams for comparison. As a general remark, Fig. 

6 shows excellent agreement between all three 

solutions. Furthermore, the developed finite 

element results based on four beam elements shows 

excellent agreement with those based on the 

ABAQUS finite model solution using 100 beam 

B31OS elements (707 DOFs).  

 

Table 3. Geometric and properties of doubly symmetric 

thin-walled I-section beam 

A 6500 mm2 

Ixx 45.25x106 mm4 

Iyy 10.25x106 mm4 

J 421.7x103 mm4 

Iω 87.62x109 mm6 

Dωω 41.07x106 mm4 
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Fig. 5. A Fork-supported I-beam under distributed twisting moment and axial force 

 

  

Fig. 6. Static analysis for torsional-warping coupled response of fork-supported thin-walled I-beam under distributed 

twisting moment 

 

6.3. Example 4 – Validation of finite element 

formulation 

A fixed-fork thin-walled doubly symmetric I-

section of 5 m length with the same cross-section as 

given in Example 2 is subjected to various torsional 

and warping moments; distributed twisting moment 

mz(z) = 0.5 kNm/m and distributed warping 

moment m = 0.8 kNm2/m along beam span, 

concentrated twisting moments Mz1(z = 1.25 m) = 

1.0 kNm and Mz2(z = 3.75 m) = 2.5 kNm applied as 

shown in Fig. 7. The geometric properties of the 

beam section are provided in Table 3. It is required 

to assess the accuracy and efficiency of the present 

finite element formulation solution in determining 

the static response of torsional warping coupled 

behavior of the beam. 

 Two solutions are provided for the given beam. 

The first solution is based on ABAQUS finite 

element model of 200 beam B31OS elements in 

which a total of 1,407 degrees of freedom were 

needed to eliminate the mesh discretization errors 

and achieve the required accuracy. The second 

solution is based on the present finite element 

formulation, in which the beam is subdivided into 

only four beam elements along the beam span, i.e., 

the model has only 10 DOFs.  

 The nodal torsional rotation angle zi and 

warping deformation function i  (for 

1, 2, 3,...., 10i = ) are provided in Figs. 8a and 8b, 

respectively, for the static torsional-warping 

coupled response of the given beam. It is observed 

form the figures that, the nodal torsional rotation 

and warping deformation functions predicted by the 

present finite element model using four beam 

elements provide an excellent agreement with those 

based on ABAQUS finite beam solution using 200 

beam B31OS elements at a fraction of the 

computational and modelling cost. Again, this is a 

natural outcome of the fact that the present finite 

element formulation is based on the exact shape 

functions which in turn eliminates discretization 

errors encountered in finite element formulations. 
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Fig. 7. A fixed-fork thin-walled I-beam under various twisting and warping moments 

 

  

Fig. 8. Static torsional-warping coupled analysis of fixed-fork I-beam under various twisting and warping moments  

 

7. Conclusions 

1. A super-convergent finite element formulation 

was developed for open thin-walled beams with 

doubly symmetric sections. The two-noded 

beam element is based on shape functions which 

exactly satisfy the homogeneous form of the 

static equilibrium torsional-warping coupled 

equations. 

2. The new beam element involves no 

discretization errors encountered under other 

interpolation schemes and generally exhibits 

excellent results while keeping the number of 

degrees of freedom a minimum.  

3. The present finite element solution provides 

excellent agreement with ABAQUS finite 

B31OS beam elements at a fraction of the 

computational and modeling effort. 

4. The finite element formulation successfully 

captures the coupled torsional-warping 

response of open thin-walled beam with doubly 

symmetric cross-sections under various twisting 

and warping moments. 
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