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Abstract

Starting with total potential energy variational principle, the governing equilibrium coupled equations for the
torsional-warping static analysis of open thin-walled beams under various torsional and warping moments
are derived. The formulation captures shear deformation effects due to warping. The exact closed form
solutions for torsional rotation and warping deformation functions are then developed for the coupled system
of two equations. The exact solutions are subsequently used to develop a family of shape functions which
exactly satisfy the homogeneous form of the governing coupled equations. A super-convergent finite beam
element is then formulated based on the exact shape functions. Key features of the beam element developed
include its ability to (a) eliminate spatial discretization arising in commonly used finite elements, and (e)
eliminate the need for time discretization. The results based on the present finite element solution are found
to be in excellent agreement with those based on exact solution and ABAQUS finite beam element solution
at a small fraction of the computational and modelling cost involved.
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1. Introduction members subjected to twisting moments cannot be
avoided and the designers will then need to
calculate the magnitudes of torsional effects and to
consider the torsional resistance of these thin-
walled members.

For the thin-walled members with open cross-
sections under twisting moments, the cross-sections
undergo longitudinal displacements and a plane
section before deformation generally does not
remain plain. This phenomenon is called warping.
The Saint Venant torsion theory assumed that the
warping is completely unrestrained, in which the
torsional rotation angle per unit length remains
constant along the structural member. In reality,

Thin-walled members having open cross-sections
are generally used as basic structural members in
many engineering applications, as stiffeners in
aircraft frame structures, in steel building
structures, ship and marine structural frames and
truck frames. In such applications, open thin-walled
steel beams subjected to twisting moments prone to
large normal warping stresses caused by the
bimoments and excessive torsional rotation angles.
Thus, it is important for the designers to avoid
torsional moments in steel structures consisting of
open thin-walled steel sections. However, in some
practical applications, open thin-walled steel
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many support details can prevent thin-walled
member ends from warping freely. This causes an
increase of the member torsional stiffness and
introduces longitudinal stresses especially nearby
the member ends. For solid and thin-wall closed
sections these effects can be often ignored, while
for open sections restrained warping can lead to
significant  longitudinal ~ warping  stresses.
Neglecting these warping stresses may generate
significant errors especially for open profile torsion
beams.

Even though a large number of studies have
been developed to investigate the static torsional
response of open thin-walled doubly symmetric
beams, to the best of the author’s knowledge, no
finite element solution based on exact shape
functions have been reported for the static analysis
of coupled torsional-warping of thin-walled doubly
symmetric beams which account for shear
deformation effects due to warping. Within the
above context, the present study aims at developing
an exact finite beam element solution for torsional-
warping coupled static response of thin-walled
open beams with doubly symmetric cross-sections
subjected to various twisting and warping
moments.

2. Literature review

Thin-walled beam theories which capture warping
effects include the works of Vlasov [1],
Timoshenko [2] and Gjelsvik [3]. Vlasov [1]
developed a general theory for isotropic thin-walled
beams with open and closed sections which
captures warping effects. Compared to the typical
Saint Venant torsion theory, the Vlasov theory
introduced the rate of change of the torsional
rotation angle as a measure of warping deformation,
which leads to an additional straining action, the
bimoment. The Vlasov torsion formulation is based
on two fundamental kinematic assumptions: (i) the
cross section of a member remains undeformed (or
rigid) after deformation, and (ii) the shear strain in
the middle surface is neglected. In other words,
Vlasov torsion theory for thin-walled beams
considers the warping stiffness of the beam cross
section but neglects the shear deformation effects at

the middle surface. Timoshenko [2] independently
developed a similar theory for isotropic beams with
open cross-sections in which the shear deformation
effects are included. Gjelsvik [3] extended the
Vlasov’s theory to account for the additional
through-thickness secondary warping for beams
with open and closed cross-sections.

There are well known analytical closed-form
and finite element solutions for torsional static
analysis of thin walled beams with open cross-
section. Among them, Seaburg and Carter [4]
derived the closed-form solutions for the torsional
analysis of thin-walled beams under various
twisting moments and boundary conditions. By
including the transverse shear deformation and
warping deformation, Back and Will [5] developed
a finite element for the analysis of thin-walled
beams with arbitrary open cross-sections. Mohareb
and Nowzartash [6] developed a finite beam
element formulation for torsional static analysis of
thin-walled beams with open cross-sections based
on St. Venant and Vlasov theories. Sapountzakis
and Mokos [7] developed a boundary element
solution for the general linear elastic non-uniform
torsion problem of homogeneous and composite
prismatic bars of arbitrary cross section subjected to
various twisting moments. Kim and Kim [8]
presented an improved thin-walled beam theory
considering the transverse shear deformation due to
the shearing force and restrained warping and the
coupled effect between these two shear
deformations by introducing Vlasov’s assumption
and applying Hellinger- Reissner principle.
Pavazza [9] developed an analytical method for the
torsion of open thin-walled beams with effect of
shear deformation by assuming that the shear stress
was constant along the beam length. Based on
postulated stress field, Erkmen and Mohareb [10]
developed a theory for the torsional static analysis
of open steel thin-walled beams of general cross
sections which accounted for shear deformation
effects. El Fatmi [11,12] presented a beam theory
with a non-uniform warping including the effects of
torsion and shearing forces. Based on Vlasov’s and
Benscoter’s theories, Campanile etal. [13]
presented an exact solution of non-uniform torsion
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for thin-walled elastic beams with asymmetric
cross-section. Based on the boundary element
method, Mokos and Sapountzakis [14] developed a
non-uniform torsion theory of doubly symmetrical
arbitrary  cross-section including  secondary
torsional moment deformation effect. Wang etal.
[15] developed a first-order torsion theory based on
Vlasov theory for restrained torsion of open thin-
walled beams. The theory captured the warping
deformation and restrained shear deformation of the
cross-section. Sapountzakis [16] presented the
static and dynamic analyses of the geometrically
linear or nonlinear, elastic or elasto-plastic non-
uniform torsion problems of bars of constant or
variable arbitrary cross section subjected to
arbitrarily distributed or concentrated twisting and
warping moments along the bar axis. Based on the
classical Vlasov's theory, Pavazza etal. [17]
developed a theory for torsion of thin-walled beams
with influence of shear deformation for open cross-
sections with single and double axes of symmetry
and under various torsional loads. From Saint-
Venant and non-uniform torsional deformations,
Aminbaghui etal. [18] formulated the governing
differential equation for non-uniform torsion of
thin-walled beams with open/closed cross-sections
according to the theory of second-order torsional
warping. Their formulation captured the effect of
variable axial force and secondary torsion-moment
deformation effect on the beam deformations due to
torsional warping. In addition, the transfer matrix
method is derived to develop a finite beam element
with two nodes for static and dynamic analyses of
beams. Mechab etal. [19] presented an analytical
and numerical study of warping phenomenon of
short composite thin-walled structural beams and
thick plates based on the transverse shear higher
order theory. Murin etal. [20] investigated the effect
of torsional warping of thin-walled functionally
graded material beams with doubly symmetric open
and closed cross-sections. In their formulation, the
longitudinal polynomial variation of the material
properties and the secondary torsion moment on the
eigen-frequencies were considered. The differential
equations for Saint-Venant torsional deformations
including the inertial line moments and were

formulated. Considering the transfer functions, the
solution of the differential equations is obtained
using transfer matrix method to derive a local finite
beam element with two-nodes for uniform and non-
uniform torsion of beams. Aribas etal. [21]
investigated the static and dynamic analyses of non-
circular composite helical bars considering the
exact helix geometry and warping effect. Nguyen
etal. [22] developed a finite element method based
on Vlasov theory to analyze the stress state induced
due to bimoments of open thin-walled bars. Aribas
etal. [23] investigated the transient dynamic
response and stresses of composite elliptical and
elliptical cone helices over exact axis geometry
including warping effects using a mixed finite
element method formulation. In their formulation,
the transient response analysis is achieved using the
Newmark time integration algorithm with/without
the amplitude decay factor. According to the three-
dimensional elasticity theory, the constitutive
equations of composite curved rods are derived.
The mixed finite element method formulation is
based on the first-order shear deformation theory
and enhanced by a curvatures and displacement-
type finite elements to investigate the influence of
cross-sectional warping on the torsional rigidity and
to evaluate the normal and shear stress distributions
on the respective cross-sections of the composite
curved rods.

A feature common to the above finite element
studies is use of approximate shape functions
involving spatial discretization errors, and thus
requiring fine meshes to converge to the actual
solution. In contrast, the present study avoids
discretization errors by formulating exact shape
functions which exactly satisfy the homogeneous
solution of the governing equilibrium torsional
static equations. Thus, the objective of this paper is
to develop an accurate and efficient finite beam
element solution which captures the torsional-
warping coupled static response of open thin-
walled doubly symmetric members subjected to
various twisting and warping moments.
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3. Kinematic functions

A straight uniform thin walled doubly symmetric
cross-section beam of length L is shown in Fig. 1.
The thin-walled beam is referenced to a right-
handed rectangular coordinates system X, Y, Z,
where the axis Z is the longitudinal axis of the
beam, while Y and Z are the principal axes of the
cross-section passing through the section centroid
C. Another set of local coordinate system (s, n, Z)
is used, in which the coordinates n and s are taken
along the normal and the tangent to the middle
surface at the generic point p(x, y) located on the
mid-surface of the cross-section. The present theory
is based on the following basic assumptions:

1. The formulation is applicable to thin-walled
beams having doubly symmetric open cross-
sections.

2. The formulation is restricted to the torsional
analysis of open section thin-walled beams.

3. Cross-section is assumed to remain perfectly
rigid in its own plane throughout deformation,

4. The beam material is assumed to remain linearly
elastic throughout deformation.

5. Displacements, strains and
assumed to be small.

6. The beam cross-section is assumed to remain
undeformed in its own plane in a manner

rotations are

consistent with Vlasov’s first assumption
(Vlasov [1]).

7. The shear deformation effects induced by
warping (i.e., non-uniform torsion) at the
middle surface of the cross-section are assumed
non-zero and are characterized by a generalized
displacement function multiplied by the
sectorial coordinate.

According to the assumptions described above and
by considering the doubly symmetric thin-walled
beam to undergo torsional deformation only, the
displacement functions uy(z, s), Vp(S, Z) and wp(z,s)
representing the torsional deformation of arbitrary
point p(x, y) are presented by:

U, (2,8) =-y(5)6,(2) @)
v, (2,5) =x(s)6,(2) )
W, (z,5) = o(s)y(2) ©)

in which 6,(z) is the torsional rotation, x(s) and
y(s) are the coordinates of point p(x,y) along the
principal X and Y axes, w(z) isa function which
characterizes the magnitude of the warping
deformation, (s) is the warping function of the

open cross-section is defined by: w(s) = L h(s)ds .

Fig. 1. Coordinate system and displacement components
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The in-plane lateral and  transverse
displacements u (z,s) and v, (z,s) of the point

p(x,y) are resolved into tangential and normal
displacement components & (z,s) and 7,(z,s)

along the tangential and normal directions,
respectively, yielding:

&, (2,8)=N(s)8,(z,5) 4)
1,(2,8) =1(s)0,(z,5) ®)
where

h(s) = x(s)(dy/ds)— y(s) (dx/ds)
r(s) = x(s)(dx/ds)+ y(s)(dy/ds)

are the perpendicular distances from the shear
center S, to the tangent and normal to the mid-

surface at point p(x,y), respectively. The present

study is focused on the linear response of thin-
walled beams under small deformations, the non-

zero axial and shear strains are then given as:
£q % OW, /32 = )y (2.) (6)

Vas = (W, [05) +(0&, [0z)

=h(s)[w(z.t)+0,(zt)] @

4, Variational formulation

The total potential energy IT of thin-walled beam
is calculated by the sum of elastic strain energy U
stored in the deformed beam and potential energy
V,, of the applied torsional and warping moments.
Using the principle that the variation of the total

potential energy is zero, the following statement is
obtained as:

AI=06U+6V, =0 (8)
where U is the internal strain energy defined as the

sum of contributions of the normal stresses and St.
Venant shear stresses, and is given by

8U = | [ Ee,de, dAdz+ |, [ Gy,b7,, dAdz

+[ GI650.dz
. 9)
- IO [(GD,, +GJ)6,56, +GD,, w0’

+El, 'Sy’ +GD,, (v +6,) Sy |dz
where E isthe modulus of elasticity, G is the shear

modulus, J is the St. Venant torsional constant,

and A is the cross-sectional area. All primes
denote derivatives with respect to space coordinate
Z. The variation of the potential energy 6V, due to

the applied torsional and warping moments is given
by:

N, =~[ [m,(2)6,(2)+m, @ (2)] dz
- [M,(2)86,(2)], - [M,, (2)y (2)],

where m,(z) is the distributed twisting moment,

(10)

m, (z) is the distributed bi-moment, and M, (z,) is
the concentrated twisting moments, M (z,) is the

distributed bi-moment. The concentrated moments
are applied at the beam ends (i.e., z, =0,L).

5. Equilibrium static torsional-warping
equations

From Egs. (1-7) and by substituting into energy
Egs. (9-10), and the resulting expressions into Eq.
(8), the governing coupled torsional-warping
equilibrium static equations can be derived by
integrating the derivatives of the varied quantities
by parts and collecting the coefficients of 56, and

oy , yields [24]:

G(D,,+J)6!(z)+GD,,w'(z) =m,(z) (11)

GD(U(UHZ, (Z) - EIa}W”(Z) + Gwal/l(Z) = m(U (Z)
(12)

The associated boundary conditions are obtained
as:

[G(3+D,,)6,(2)+GD,,y(2)-M, (2)]86,(z)[, = 0
(13)
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[ELy'(2)+M,, )]sy (2)], =0 (14)
in which the sectional properties are defined by
Algl,,1,,D,, =IA[1,y2,xz,a){(da)/ds)?]dA

Egs. (11) and (12) are a set of coupled differential
equations expressed in terms of the two dependent
variables 6,(z) and y(z). By Eq. (11) for v'(2)
and substituting the result in Eqg. (12), a single
fourth-order equation for torsional behavior of thin-
walled doubly symmetric beams under uniform
distributed twisting moment is obtained as:

%(D +3)6'(2)-GIg(2)=-m,(2)  (15)

ww
ww

5.1. Exact solution of torsional static equation

The exact homogeneous solution of Eq. (15) is
attained by setting the right-hand side of Eqg. (15)
equal to zero, i.e., m,(z)=0, and assuming the

torsional displacement 6,(z) to take the following
exponential form:

O,(z) = Ae™ (16)

Substituting Eq. (16) into the homogeneous
form of Eq. (15), the exact solution for torsional
static behavior of open thin walled doubly

1iz: cosh Bz

symmetric I-beams under uniformly distributed
torsional moment is then obtained as:

0,(z) = A+ Bz+Ccosh fz+D sinh gz a7

where 4 =,/GID,,,/El,(J+D,,) .

By substituting Eq. (17) back into Eg. (12), the
warping deformation function (z) is determined

by
w(2) =-B - g sinh gz {H[Gém H C

A
—pcosh Sz [H(GDW ﬂ D (18)
m, (2) m, (2)
+ p—
GD,, (GJ-PRr)

where 4= le (D,,+3)5.

The new Eq. (18) developed in this study is
original for the literature used with Eq. (17) to
obtain the exact shape functions for the present
finite element formulation. Eq. (17) and (18) are
rewritten in matrix form as:

(0@}, =[E@)],. (A}, (19)

in which

sinh Sz

[E(2)]= 0 -1 -B[1+(4/GD,,,)]sinh Bz -B[1+(4/GD,,,)] cosh Bz

where
(0@),, =(0.2) v(2),,

1x4

5.2. Finite element formulation

A new finite beam element is developed for coupled
torsional-warping static analysis of thin-walled
beams under various torsional and warping
moments. The proposed two-noded finite beam
element having four degrees of freedom per

(20)

element is developed. A set of exact shape functions
that exactly satisfy the homogeneous solution of the
coupled torsional-warping equations in (19) is used
to formulate the exact stiffness matrix and load
potential energy vector for the beam element.

5.3. Formulation of exact shape function
To relate the torsional rotation 6,(z) and warping
deformation (z) functions to the nodal torsional

and warping deformation, the vector of integration
constants {A} is expressed in terms of nodal
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torsional and warping displacements
(Se)pu=(4 & & &), by enforcing the
conditions 6(0)=¢,, w(0)=¢,, 6(L)=¢, and
w(L)=¢,, yields

{0(0)},, [EQ],
{Se}pa = {{'é’("ﬂj};hl {[’E'("L')']’;L 1)
{K}m = [(D]4x4 {'&}m

From Eq. (21), by substituting into Eg. (20), one
obtains:

{0@)},, =[E@L,.[®],.,{S.} 0 22)
:[H(Z)]2x4{ 9}4><l

in which

[H@],..=[H.,@ H,,@],,

=[E@)],..[2]..,

is a matrix of eight shape functions for torsional and
warping deformation static behavior. It is seen that,
Eqg. (22) provided the exact shape functions that
exactly satisfy the homogeneous solution of the
torsional-warping static coupled equations are
dependent on the beam length, and cross-sectional
area.

5.4. Energy expressions in terms of nodal
torsional displacements

The variation of strain energy and work done due to
applied static torsional moments for open thin-
walled beams are obtained in terms of nodal
degrees of freedom substituting Eq. (22) into Eq.
(9) as:

ou = <5Se >1><4 [IOL( [H '(Z)]:xz [Zm ]Z><2 [H ’(Z)]2x4
+[H@I,,[2.],,[H.@)],.,

[H (Z)]4><2[ ]2x2[H(Z)]2X4){ }4X1:|dz

(23)
where

[Z ] 0 0
bloo = 0 GDa}(o b

[H.@1, =[H,@ H,@],
M@, =[0 H,@+H,,@],
[Z,],., =diag[G(D,, +J) EI,]

The variation of the work done of the applied
torsional loading presented by equation (10) can be
given in terms of nodal degrees of freedom as:

o, == (55, ([ THOLL (@0 o
HHOL, Qo |

where

<QF >l><2 < m (Z) mw(z)>1x2’
Q) =(M.@] [M, @)

2x2

5.5. Matrix formulation

From Egs. (23-24), by substituting into Eq. (8),
performing integration by parts, the element
stiffness matrix [k,],, couples the nodal

displacements {S,}, ~with corresponding nodal

forces {F,}, , is obtained as:

[ke ]4><4 {Se}4x1 = {Fe}4x1 (25)

in which, the element stiffness matrix [KQ]M4 is

given by:

[k ]4><4 [H (Z)]4x2 [ ]2><2 [H ’(Z)]2x4
+[ H (Z)]4><2 [ ]2><2 [HC (Z)]2x4 (26)
+[Hb(z)]4xz [Zb ]2><2 [H (Z)]2x4

The element load vector {F,}, is given by:

(Fla=[[HOL,{Q},, d
HHOT, Q) |

(27)
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6. Numerical results and discussion

In this section, several examples are presented to
demonstrate the validity, accuracy and applicability
of the finite beam element solution developed in the
present study. The new finite beam element having
two nodes and four degrees of freedom per element
can capture the coupled static response for the
torsional-warping analysis of open thin-walled
beams wunder various torsional and warping
moments. The present finite element formulation is
based on the shape functions which exactly satisfy
the exact solution of the coupled static field
equations. This treatment eliminates mesh
discretization errors arising in conventional
interpolation schemes used in the finite element
solutions and thus converge to the solution using a
minimal number of degrees of freedom. As a result,
it is observed that, the present numerical results
obtained based on a new finite beam element using
a single two-noded finite beam element per span
yielded the corresponding results which exactly
matched with those based on the exact closed-form
solution provided in this study up to six significant
digits. The results based on the present finite beam
element (with two degrees of freedom per node) are
compared with exact solution in [24] and ABAQUS
finite beam BOS13 element (with seven degrees of
freedom per node, i.e., three translations, three
rotations and warping deformation). The numerical
examples are investigated for doubly symmetric

m,(z)=1.2kNm/m

m,,(z)=0.8kNm2/m
. 3m

thin-walled beams with open cross-sections and a
variety of torsional and warping moments and
boundary conditions.

6.1. Example 1 - Cantilever I-beam under various
twisting and warping moments

A 3.0m cantilever beam having open thin-walled
doubly symmetric cross-section is subjected to (i)
concentrated twisting moment M, (L) =2.0kN.m

and warping moment M_ (L) = 0.8kNm?*applied at

the cantilever free end (i.e.,, z=L), and (ii)
uniformly distributed twisting moment
m,(z)=1.2 kN.m/mand distributed  warping

moment m,(z) =0.8 kNm?/m applied along the

beam axis as shown in Fig. 2. Geometrical
properties of the doubly symmetric cross-section
are given in Table 1. To validate the accuracy of the
finite element formulation developed in this study,
the static analyses of the coupled torsional-warping
response of the cantilever thin-walled beam under
the given concentrated and distributed twisting and
warping moments are independently solved. The
numerical results based on the present finite
element formulation are compared to the
corresponding results based on the exact closed-
form solution developed in previous study [24] and
ABAQUS finite beam B310S element solution.

tﬁlS.Smm

M, (L)=2.0kNm 1 T

d=252mm

\
b=203mm

Fig. 2. A cantilever thin-walled 1-beam under various twisting and warping moments
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Table 1. Geometric and properties of doubly symmetric
thin-walled I-beam

E 200x10° MPa
G 78x10° MPa

A 7420 mm?

Ixx 87.10x106 mm*
lyy 18.82x108 mm*
J 373.7x10% mm*
lo 268.0x10° mmé
Doo 77.94x106 mm*

6.1.1. Convergence analysis

For the finite element model developed in the
present finite beam element solution and ABAQUS
finite beam B310S element, various meshing sizes
are considered to achieve the accuracy and validity
of the numerical static results. To perform a
convergence analysis, a cantilever thin-walled I-
beam subjected to uniformly distributed twisting
moment is solved. In order to conform the static
results for maximum torsional rotation &,(L) and

warping deformation function w(L) of the two

finite element models; ABAQUS finite element
model are refined as 20 ,40 ,60, 80, 100 and 120
beam elements to yield the required accuracy, while
the finite-element solution developed in the present
study is based on exact shape functions and is
conducted using a single finite beam element with
two nodes and two degrees of freedom per node.
Fig.3a-b shows the maximum torsional and

©
@w
=}

Maximum Torsional rotation 6,(L) x10-3
@ @
N N
o "

81.5
—— Abaqus FE - Present FE
81.0
0 20 40 60 80 100 120
(a) Number of Elements in Mesh

Warping deformation function (L) x10°3

warping deformation static results, respectively,
obtained from ABAQUS finite element model and
present finite element versus number of finite
elements. It is observed that, the torsional-warping
results obtained from the finite element developed
in the present study using one element are exactly
matching with those based on the exact closed-form
solution up to six significant digits. Whereas the
maximum torsional-warping results obtained from
ABAQUS model are gradually improved by
increasing the number of finite beam elements. As
illustrated from Fig. 3a-b, the differences between
the ABAQUS finite element results and exact
solution results are very small and the best match
with the exact results are given in the ABAQUS
model with 100 beam B310S elements (i.e., seven
degrees of freedom per node, a total of 707 DOFs
in the model) to attain the accuracy.

Therefore, in ABAQUS finite element model
solution, the beam is modelled using 100 beam
B310S elements along the longitudinal axis (i.e.,
707 degrees of freedom) to eliminate the
discretization errors and yield the accuracy of this
example. Whereas the finite beam element solution
developed in the present study is based on exact
shape functions and is conducted using a single
beam element with two nodes and four degrees of
freedom. It was noted that solution based on a
single finite beam element per span yielded results
exactly matching those based on the closed-form
solution provided in the previous study [24] up to
six significant digits.

N
0
S

)
©
5

28.0 B —
27.5
——Abaqus FE =~ - Present FE
27.0
0 20 40 60 80 100 120
(b) Number of Elements in Mesh

Fig. 3. Convergence analysis; (a) the maximum torsional rotation, and (b) the warping deformation function versus
number of finite elements
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Table 2 provides the static results for coupled
torsional-warping analysis obtained based on three
different solutions: finite beam solution (FES)
developed in the present study (which captures the
shear deformation due to warping effects), the exact
closed form solution presented in [24] and
ABAQUS finite beam B310S element solution
(which capture only the shear deformation due to
bending). It is observed that the finite element
formulation developed in this study based on a
single element (4 DOFs) are in excellent agreement
with the results based on ABAQUS beam element
solution using 100 B310S beam elements (707
DOFs). This is a natural outcome of the fact that the
present finite element solution is based on the shape
functions which exactly satisfy the homogeneous
form of the coupled torsional-warping static
equations, which in turn eliminates discretization
errors induced in the conventional finite element
formulations.

Additionally, the static variation of torsional

rotation angle 6,(z) and warping deformation

function w(z) versus beam span z are illustrated in

Figs. 4a,ce,qg,i and 4b,d,fh,j, respectively, for
cantilever beam under various twisting and warping
moments. The solutions, based on the exact closed-
form solution, ABAQUS finite beam B310S
element, and the present finite element solution are
overlaid on the same diagrams for comparison. In
the case of the ABAQUS finite element model, a
total of 100 B310S beam elements (707 DOFs)
were needed to achieve convergence, whereas the
finite-element solution developed in the present
study based on exact shape functions was
conducted using a single finite element but for the
sake of comparison 4 elements (10 DOFs) were
used. It is obvious that, the present finite element
formulation provides excellent agreement with
exact closed form solution developed in [24] and
ABAQUS beam model by keeping the number of
degrees of freedom a minimum.

Table 2. Static results for torsional angle 6,(L) and warping deformation function (L) at cantilever free end

Function [1] [2] [3] Difference
T f load Present FE Exact CF ABAQUS (%)
ype otloa (P{g_es) solution solution solution (3-1)/3
(4 DOFs) (707 DOFs)
Y
) ML) 04(L) 115.2 115.2 115.3 0.09%
ik
|
. N w(L) 53.70 53.70 53.72 0.04%
y
g m,(2) (L) 81.42 81.42 81.66 0.29%
ez
SAN N NN NN N NNNNN]
w(L) 27.77 27.77 27.98 0.75%
. L |
y
4 My (L) 6:(L) 42.96 42.96 42.98 0.05%
=2
= w(L) 39.61 39.61 39.63 0.05%
. L |
y
” m(2) 0:(L) 45.72 45.72 45.78 0.13%
|
‘ z
, | w(L) 21.58 21.58 21.69 0.51%
Y
. m,(z) M,(L) G:(L) 285.5 285.5 285.7 0.07%
CEEEEEE
") ) L‘ ML) w(L) 142.7 142.7 143.0 0.21%
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Fig. 4. Static torsional-warping coupling analysis of cantilever thin-walled 1-beam under various twisting and warping
moments
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Fig. 4. Continued

6.2. Example 2 - Fork-supported beam under
torsional moments

A 6 m thin-walled simply supported I-beam with
fork-type end supports subjected to uniformly
distributed torsional loading m;(z) = 1.2 KNm/m and
distributed warping moment m, = 1.4 KNm%m is
considered as shown in Fig. 5. The beam is
unrestrained along its length except at each beam
end where the fork support prevents the cross-
section from torsional rotation and moving laterally
but allows for the warping. This example is
provided to compute the static response for coupled
torsional-warping behavior of the given simply
supported beam. The material of thin-walled beam
is steel with E = 210 GPa, and G = 80 GPa, while
the geometrical properties of the cross-section are
illustrated in Table 3. For the sake of validation, the
numerical results calculated from the finite element
solution (FES) developed in the present study are
compared with the ABAQUS finite beam B310S
element model and exact solution in [24].

The static analysis for coupled torsional-
warping response of fork-supported I-beam
subjected to uniform distributed twisting moment
m,(z) = 1.2 kNm/m and warping moment m, = 1.4
kNm?/m is computed using three different
solutions: (a) the exact closed-form solution
presented in [24], (b) the finite element solution
using four beam elements (10 DOFs), and (c)

ABAQUS finite element model using 100 beam
B310S elements (707 DOFs). Even though, the
present finite element formulation based on a single
beam element (4 DOFs) provided excellent results
but for the sake of comparison four beam elements
with 10 DOFs were used.
The static results for nodal torsional rotation
0, (z) and warping deformation function y(z), as

illustrated in Fig.6, based on present finite element
solution, ABAQUS beam B310S model, and exact
solution developed in [24] are overlaid on the same
diagrams for comparison. As a general remark, Fig.
6 shows excellent agreement between all three
solutions. Furthermore, the developed finite
element results based on four beam elements shows
excellent agreement with those based on the
ABAQUS finite model solution using 100 beam
B310S elements (707 DOFs).

Table 3. Geometric and properties of doubly symmetric
thin-walled I-section beam

A 6500 mm?

Ixx 45,25x108 mm*
lyy 10.25x108 mm*
J 421.7x10% mm*
lo 87.62x10° mm®
Doo 41.07x106 mm*
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Fig. 5. A Fork-supported I-beam under distributed twisting moment and axial force
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Fig. 6. Static analysis for torsional-warping coupled response of fork-supported thin-walled I-beam under distributed
twisting moment

6.3. Example 4 — Validation of finite element and achieve the required accuracy. The second
formulation solution is based on the present finite element

A fixed-fork thin-walled doubly symmetric I- formulation, in which the beam is subdivided into

section of 5 m length with the same cross-sectionas ~ only four beam elements along the beam span, i.e.,

given in Example 2 is subjected to various torsional ~ the model has only 10 DOFs.

and warping moments; distributed twisting moment The nodal torsional rotation angle 6, and

m,(z) = 0.5 kNm/m and distributed warping  warping  deformation  function y,  (for
— 2
moment Mo __0:8 kNm?/m along beam span, i=1 2, 3,...,10) are provided in Figs. 8a and 8b,
concentrated twisting moments M,1(z = 1.25 m) = ) ) i .
respectively, for the static torsional-warping

1.0 kNm and M(z = 3.75 m) = 2.5 kNm applied as . .
- . . coupled response of the given beam. It is observed
shown in Fig. 7. The geometric properties of the - . .
form the figures that, the nodal torsional rotation

beam section are provided in Table 3. It is required . i . .
L and warping deformation functions predicted by the
to assess the accuracy and efficiency of the present Y ;
. . L L present finite element model using four beam
finite element formulation solution in determining . )
. . . elements provide an excellent agreement with those
the static response of torsional warping coupled o . )
. based on ABAQUS finite beam solution using 200
behavior of the beam. .
. . . beam B310S elements at a fraction of the
Two solutions are provided for the given beam. . . . .
computational and modelling cost. Again, this is a

The first solution is based on ABAQUS finite wral out f the fact that th ¢ finit
element model of 200 beam B310S elements in natural outcome c_> _e act that the present tinite
element formulation is based on the exact shape

which a total of 1,407 degrees of freedom were i . .. . .
. . o functions which in turn eliminates discretization
needed to eliminate the mesh discretization errors . .
errors encountered in finite element formulations.
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Fig. 7. A fixed-fork thin-walled I-beam under various twisting and warping moments
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Fig. 8. Static torsional-warping coupled analysis of fixed-fork I-beam under various twisting and warping moments

Conclusions

A super-convergent finite element formulation
was developed for open thin-walled beams with
doubly symmetric sections. The two-noded
beam element is based on shape functions which
exactly satisfy the homogeneous form of the
static equilibrium torsional-warping coupled
equations.

The new beam element involves no
discretization errors encountered under other
interpolation schemes and generally exhibits
excellent results while keeping the number of
degrees of freedom a minimum.

The present finite element solution provides
excellent agreement with ABAQUS finite
B310S beam elements at a fraction of the
computational and modeling effort.

The finite element formulation successfully
captures the coupled torsional-warping
response of open thin-walled beam with doubly
symmetric cross-sections under various twisting
and warping moments.
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