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Abstract 

The aim in this study is to numerically present some characteristic features of the rectangular finite element 

using the matrix displacement method and to show the utility of this element in plane stress problems 

compared to the finite element method. The paper consisted of three parts. In the first part, all of the finite 

element formulation steps from choosing the convenient coordinate system to creating element stiffness 

matrix are presented respectively. In the second part of the study, a static finite element analysis of the shear 

wall is also made by ANSYS Mechanical APDL. In the final part, the results (displacements, strains and 

stresses) obtained from the previous parts are compared with each other by the help of tables and graphics. 

The results show that this method is effective and preferable for the stress analysis of shell structures. Further 

studies should be conducted in order to indicate the efficiency of the matrix displacement method for the 

solution of different types of plane stress problems using different finite elements. 
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1. Introduction 

The finite element method (FEM) was created 

because of the need to solve complex elasticity and 

structural problems in civil and aeronautical 

engineering. Hrennikoff [1] and Courant [2] made 

significant contributions to the development of 

FEM with their studies. While Courant divided the 

domain into finite triangular elements to solve 

second order elliptic partial different equations, 

Hrennikoff discretized the domain by using a lattice 

analogy. In 1950s, this method came into use for the 

solution of problems in applied sciences and 

engineering area, particularly for stress analysis of 

aircraft bodies. In later years, FEM obtained its real 
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impetus by available open-source finite element 

software programs like finite element program SAP 

IV made by UC Berkeley. The method has been 

commonly used since 1950s and 1960s for the 

numerical modeling and analysis of physical 

systems in a wide variety of engineering 

disciplines. In the civil engineering area, the studies 

on linear and nonlinear analyses of structures can 

be given as examples of FEM applications [3-9]. 

 The basic idea of FEM is that the main problem 

is divided into sub-problems to create discrete 

problems that are more understandable and easily 

solvable; thus, the solution of the main problem 

consists of combining the solutions of the discrete 
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sub-problems. In engineering applications, 

approximate solutions at an acceptable level are 

adequate rather than exact results for some 

complicated problems. Since exact results for these 

types of problems are considered impossible due to 

their complexity, approximate solutions are the 

only options for design. When mathematical tools 

are inadequate for obtaining precise or even 

approximate result, FEM is the only method that 

can be used. 

 Two-dimensional elastic problems were the first 

successful examples of the application of the finite 

element method [10]. Different analytical methods 

were used to analyze shell structures; however, 

studies of behavior of this type of structure have 

significantly increased since the development of 

FEM. Studies have been conducted by researchers 

for years to develop new finite elements that 

properly present behaviors of shell structures. Lee 

and Bathe [11] developed a simple method to 

design isotropic triangular shell finite elements 

based on the mixed interpolation of tensorial 

components (MITC) approach. The proposed 

method is mechanically clear as well as simple and 

effective. Numerical tests are carried out using 

selected MITC elements. Proposed elements show 

good performance for test elements with different 

thickness. Mousa and Tayeh [12] developed a new 

triangular finite element called SBTREIR for 

general plane elasticity. This element has three 

degrees of freedom at each of the three corner 

nodes. The performance of the new element was 

compared with a well-known constant strain 

triangle (CST) element. The new finite element 

showed good behavior in the elasticity theory. Also, 

it had fewer discontinuities in the corner stresses 

than the CST. A new three-node triangular shell 

element was developed using discrete Kirchhoff 

theory and a mixed method [13]. The goal of this 

study was to conduct stress analyses of shell 

structures using the free mesh method, an improved 

8-node shell element for the analysis of plates and 

shells [14]. The finite element, based on refined 

first-order shear deformation theory, was further 

improved by the combined use of the assumed 

natural strain method. They analyzed the influence 

of the shell element with the different patterns of 

sampling points for interpolating different 

components of strains. Rebiai and Belounar [15] 

developed a new simple and efficient four-node 

quadrilateral membrane finite element with drilling 

rotation. Wang and Sun [16] developed a new 4-

node quadrilateral flat shell element for 

geometrically nonlinear analyses of thin and 

moderately thick laminated shell structures. The flat 

shell element was constructed by combining a 

quadrilateral area coordinate method (QAC) based 

membrane element AGQ6-II, and a Timoshenko 

beam function (TBF) method-based shear 

deformable plate bending element ARS-Q12. 

Numerical results showed that the present shell 

element had an excellent numerical performance 

for the test examples and was applicable to stiffened 

plates. Ergun and Ates [17] obtained the stress 

distribution of a shear wall with matrix 

displacement method using CST. The solution 

obtained from this method showed excellent 

agreements with the results of the analytical 

method. 

 Different types of computer software coded by 

finite element methods have been commonly used 

to analyze shell structures. However, engineers 

usually focus on structural behaviors such as 

stresses, strains, displacements, and internal forces 

to design these types of structures. They do not 

concern themselves with the logic of computer 

software programs, so, in this study, we tried to 

present the general structure of the rectangular 

finite element, one of the most popular element 

types of FEM, in three stages. In the first part, all of 

the finite element formulation steps including 

choosing the appropriate coordinate system and 

numbering, idealization of the system with 

rectangular finite elements, developing the 

structural and loading characteristics of the 

structure in matrix form, and creating element 

stiffness matrixes and the matrix algebra analysis 

for displacements and stresses of the structure, was 

presented respectively. In the second part of the 

study, a static finite element analysis of the shear 

wall was conducted [18]. In the third and final part, 

the results (displacements, strains, and stresses) 
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obtained from the parts one and two were compared 

with each other with the help of tables and graphics. 

Consequently, the basic aim in our study is to 

present numerically some characteristic features of 

a rectangular finite element using the matrix 

displacement method and to show the utility of this 

element in plane stress problems by comparison 

with finite element method, so the next parts of the 

paper include studies carried out for this purpose. 

 

2. The finite element formulation of the 

rectangular element 

The rectangular finite element (RFE) is very useful 

in solving many stress problems wherever the 

domain can be discretized into rectangles. In this 

paper, RFE is used to create a finite element model 

of a plane stress problem. The steps for the 

development of the element stiffness matrix are 

described below. 

2.1. Choosing the appropriate coordinate system 

and numbering 

There are two displacement parameters in both X 

and Y directions for each node of RFE as shown in 

Fig. 1. 

2.2. Choosing the displacement function  that 

defines displacements  at every point of the 

element 

The displacement function can be written for each 

direction using Pascal’s triangle as may be seen 

below. 

2 2

3 2 2 3

1

X Y

X XY Y

X X Y XY Y

 

1 2 3 4

5 6 7 8

X

Y

U X Y XY

U X Y XY

   

   

= + + +

= + + +
  (1) 

where α1, α2, α3, α4, α5, α6, α7, α8 are adjustable 

parameters. It is assumed that the displacements 

vary linearly within the element in this notation. 

2.3. The strain  ε(X,Y) - displacement 

 U(X,Y) relationship at any point of the 

element 

Using the strain-displacement equations, the 

internal strain can be written as 
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( )    ,X Y B U =   (6) 

 

 
 

Fig. 1. Rectangular element and its coordinates 
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where [B] matrix is created as below: 

 

1 1
0 0 0 0

1 1
0 0 0 0

1 1 1 1

Y Y Y Y

a ab a ab ab ab

X X X X
B

b ab ab ab b ab

X Y X Y X Y X Y

b ab a ab ab a ab ab ab b ab ab

 
− + − − 
 
 = − + − −
 
 
 − + − + − − − −
  

 

 

2.4. The stress σ(X,Y) -strain  ε(X,Y)

relationship at any point of the element 

Using the stress-strain equations, the internal stress 

can be written as 

( )    ( ) σ X,Y = D ε X,Y   (7) 

where [D] is material matrix given by  

 
11 12

21 22

33

0

0

0 0

d d

D d d

d

 
 

=
 
  

 

Elements of this matrix are given in Table 1.  

2.5. The relationship between nodal 

displacements and nodal forces 

According to the virtual work principle, the total 

work done by all forces in a system in static 

equilibrium is zero for a set of infinitesimally small 

displacements. The equation below must be 

satisfied in order to fulfill this principle. 

intextW W=   (8) 

where Wext and Wint are strain works done by 

external forces and internal forces respectively. 

   *
T

extW U F=   (9) 

where  F and  *U denote nodal forces and nodal 

virtual displacements respectively. 

( )  ( ) 
*

int

0

, ,

Tv

W X Y X Y dv =   (10) 

where ( )
*

,X Y is strain caused an arbitrary virtual 

displacement, and ( ),X Y is real stress in the 

element. 

 If Eqs. (6)-(7) are written in their own places at 

Eq. (10), the Eq. (11) is obtained as below. 

   *

int [ ] [ ][ ]

T

v

W B U D B U dv =
   (11) 

where  U is displacement vector. Eq. (11) can be 

written again as below using the property of

( )
T T TAB B A= . 

       *

int

T T

v

W B U D B U dv=   (12) 

 

 

Table 1. Constants for plane stress and plane strain problems [19] 
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 If Eqs. (9)-(12) are written in their own places 

at Eq. (8), the Eq. (13) is obtained as below: 

       * * [ ] [ ][ ]
T T

T

v

U F U B D B U dv=   (13) 

     [ ][ ]
T

v

F B B D U dv=    (14) 

The relationship between force and displacement is 

known as 

    F K U=   (15) 

When Eqs. (13)-(14) are compared with each other, 

stiffness matrix of RFE is calculated as below: 

  [ ] [ ][ ]T

v

K B D B dv=    (16) 

where dv tdxdy= , in this case stiffness of RFE can 

be written again as below: 

 
0 0

[ ] [ ][ ]

Y b X a

T

Y X

K t B D B dxdy

= =

= =

=    (17) 

where t is thickness of RFE. 

 Finally, if [B]T, [D] and [B] are written in their 

own places at Eq. (15), and integral is calculated, 

the stiffness matrix (8×8) can be obtained, which is 

given in Appendix. 

 

3. Stress analysis of shear wall with numerical 

methods (Matrix Displacement Method and 

ANSYS Mechanical APDL) 

First, the static analysis of the shear wall under 

external loads are performed by the help of the 

matrix displacement method. Discretized finite 

element model of the considered shear wall is 

shown in Fig. 2. For the material, E = 2.1×107 

kN/m2, and  = 0.2. Thickness of the wall is taken 

to be t = 20 cm.  

 The stiffness matrix of the shear wall, and the 

strain and stress functions for both elements are, 

respectively, given in Appendix. The nodal 

displacements and stresses obtained from this 

approach are given in Fig. 3. 

 Second, the static analysis of the shear wall 

under external loads are performed by the help of 

the finite element method using ANSYS 

Mechanical APDL. Nodal displacements, strains 

and stresses obtained from this approach are given 

in Tables 2-6 and Fig. 4. 

 

 
 

Fig. 2. Discretized finite element model, nodes and 

loading case of the shear wall 

 

 

 

 

Fig. 3. Deformed shape, nodal displacements and nodal stresses 
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Table 2. Nodal displacement values of the shear wall under concentrated loads 

Node UX (m) UY (m) UZ (m) 

1 0.00000000 0.00000000 0.00000000 

2 0.00000000 0.00000000 0.00000000 

3 0.00000000 0.00000000 0.00000000 

4 0.00236600 -0.00137490 0.00000000 

5 0.00205310 -0.00013821 0.00000000 

6 0.00223500 0.00068836 0.00000000 

 

Table 3. Elastic strain values of the Element 1 under concentrated loads 

Node ε
X
 ε

Y
 ε

Z
 γ

XY
 

1 0.000000000 0.000344180 -0.000086044 0.001117500 

2 0.000000000 -0.000069104 0.000017276 0.001026500 

5 -0.000181940 -0.000069104 0.000062762 0.000199990 

6 -0.000181940 0.000344180 -0.000040558 0.000290960 

 

Table 4. Elastic strain values of the Element 2 under concentrated loads 

Node ε
X
 ε

Y
 ε

Z
 γ

XY
 

2 0.00000000 -0.000069104 0.000017276 0.001026500 

3 0.00000000 -0.000687430 0.000171860 0.001178300 

4 0.00030352 -0.000687430 0.000095978 -0.000058341 

5 0.00030352 -0.000069104 -0.000058604 -0.000210100 

 

Table 5. Stress values of the Element 1 under concentrated loads 

Node σ
X

 (kN/m2) σ
Y
 (kN/m2) σ

Z
 (kN/m2) τ

XY
 (kN/m2) 

1 1505.8000 7528.9000 0.0000 9778.3000 

2 -302.3300 -1511.6000 0.0000 8982.3000 

5 -4282.3000 -2307.6000 0.0000 1749.9000 

6 -2474.2000 6732.9000 0.0000 2545.9000 

 

Table 6. Stress values of the Element 2 under concentrated loads 

Node σ
X

 (kN/m2) σ
Y
 (kN/m2) σ

Z
 (kN/m2) τ

XY
 (kN/m2) 

2 -302.3300 -1511.6000 0.0000 8982.3000 

3 -3007.5000 -15037.0000 0.0000 10310.0000 

4 3632.0000 -13710.0000 0.0000 -510.4800 

5 6337.1000 -183.7500 0.0000 -1838.4000 



The stress analysis of a shear wall with matrix displacement method using rectangular finite element 24 

 

 
 a) Element 1  b). Element 2 

 

Fig. 4. Stress contour diagram of Element 1 and Element 2 under concentrated loads 

 

4. Results 

The results obtained from the analysis made by 

using both methods on the shear wall are compared 

with each other and given in the Tables 7-8. 

 The basic aim of our study is to numerically 

present some characteristic features of the 

rectangular finite element using the matrix 

displacement method and show the utility of this 

element in plane stress problems by comparison 

with the finite element method. The results given in 

Tables 7 and 8 show that this method is effective 

and preferable for the stress analysis of shell 

structures. 

 

 
Table 7. Nodal stress values obtained from both approaches 

        kN/m2 Matrix Displacement Method FEM (ANSYS Mechanical APDL) 

E
le

m
en

t 
1
 

σ
1X

 1505.800 1505.800 

σ
1Y

 7528.900 7528.900 

τ
1XY

 9778.100 9778.300 

σ
2X

 -302.334 -302.330 

σ
2Y

 -1511.700 -1511.600 

τ
2XY

 8982.300 8982.300 

σ
5X

 -4281.400 -4282.300 

σ
5Y

 -2307.500 -2307.600 

τ
5XY

 1749.800 1749.900 

σ
6X

 -2473.300 -2474.200 

σ
6Y

 6733.100 6732.900 

τ
6XY

 2545.600 2545.900 

E
le

m
en

t 
2
 

σ
2X

 -302.334 -302.330 

σ
2Y

 -1511.700 -1511.600 

τ
2XY

 8982.300 8982.300 

σ
3X

 -3007.600 -3007.500 

σ
3Y

 -15038.000 -15037.000 

τ
3XY

 10310.000 10310.000 

σ
4X

 3631.500 3632.000 

σ
4Y

 -13710.000 -13710.000 
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Table 7. Continued 

        kN/m2 Matrix Displacement Method FEM (ANSYS Mechanical APDL) 

E
le

m
en

t 
2

 τ
4XY

 -510.913 -510.480 

σ
5X

 6336.700 6337.100 

σ
5Y

 -183.859 -183.750 

τ
5XY

 -1838.700 -1838.400 

 

Table 8. Nodal displacement obtained from both approaches 

       m Matrix Displacement Method (FEM) ANSYS Mechanical APDL 

E
le

m
en

t 
1
 

U
1X

 0 0 

U
1Y

 0 0 

U
2X

 0 0 

U
2Y

 0 0 

U
5X

 0.00210000 0.00205310 

U
5Y

 -0.00010000 -0.00013821 

U
6X

 0.00220000 0.00223500 

U
6Y

 0.00070000 0.00068836 

E
le

m
en

t 
2
 

U
2X

 0 0 

U
2Y

 0 0 

U
3X

 0 0 

U
3Y

 0 0 

U
4X

 0.00240000 0.00235660 

U
4Y

 -0.00140000 -0.00137490 

U
5X

 0.00210000 0.00205310 

U
5Y

 -0.00010000 -0.00013821 

5. Conclusions 

In this paper, we present the characteristic features 

of the rectangular finite element using the matrix 

displacement method and show utility of this 

element in plane stress problems by comparison 

with the finite element method. A shear wall used 

as an example of a plane stress problem is 

discretized into rectangular finite elements. The 

stress distribution of the shear wall is obtained by 

using the matrix displacement method and ANSYS 

Mechanical APDL. 

 From the results of both numerical and analytic 

studies, the following observations can be made: 

▪ The stress values of the Element-1 and Element-

2 under concentrated loads obtained by using 

matrix displacement method show excellent 

agreements with the results of ANSYS 

Mechanical APDL. 

▪ The strain values of Element-1 and Element-2 

obtained from matrix displacement method 

overlap those obtained from ANSYS 

Mechanical APDL. 

▪ The nodal displacement values of the shear wall 

obtained from both numerical and analytic 

methods are almost the same.  

 The results show that the proposed method is 

effective and preferable for the stress analysis of 

shells. Further studies should be conducted in order 

to indicate the efficiency of the matrix displacement 

method for the solution of different types of plane 

stress problems using different finite elements. 
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Appendix 

 

-1 1 1 1

11 33 21 33 11 33 21 33 11 33 21 33 11 33 33 21

-1 1 1 1

21 33 22 33 33 12 22 33 12 33 22 33 12 33 33 22

-1

11 33

4 4 3 3 -4 2 3 3 2 2 3 3 2 4 3 3

3 3 4 4 3 3 2 4 3 3 2 2 3 3 2 4

-4 2

12

d p d p d d d p d p d d d p d p d d d p d p d d

d d d p d p d d d p d p d d d p d p d d d p d p

d p d p

t
K

− − −

− − −

+ + + − − − − − − −

+ + − − − − − − − −

+

=

1 1 1

33 12 11 33 21 33 11 33 21 33 11 33 21 33

-1 1 1 1

21 33 22 33 21 33 22 33 33 12 33 22 12 33 22 33

-1 1

11 33 12 33 11

3 - 3 4 4 3 3 2 4 3 3 2 2 3 3

3 - 3 2 - 4 -3 3 4 4 3 3 2 4 3 3 2 2

-2 - 2 -3 - 3 2 4

d d d p d p d d d p d p d d d p d p d d

d d d p d p d d d p d p d d d p d p d d d p d p

d p d p d d d p

− − −

− − −

−

+ − − − − − − +

− + − − + − −

− 1 1

33 33 12 11 33 21 33 33 11 21 33

-1 1 1 1

21 33 22 33 21 33 33 22 21 33 22 33 33 12 22 33

-1 1

11 33 12 33 11 33 12 33 33

3 3 4 4 3 3 2 4 3 3

-3 - 3 -2 - 2 3 3 2 4 3 3 4 4 3 3 2 4

2 - 4 3 - 3 -2 2 3 3 2 4

d p d d d p d p d d d p d p d d

d d d p d p d d d p d p d d d p d p d d d p d p

d p d p d d d p d p d d d p d

− −

− − −

−

− + + − −

− − + + − −

− + − 1 1

11 33 12 11 33 21 33

-1 1 1 1

33 21 33 22 21 33 22 33 21 33 22 33 21 33 22 33

3 3 4 4 3 3

3 - 3 2 - 4 3 3 2 2 3 3 2 4 3 3 4 4

p d d d p d p d d

d d d p d p d d d p d p d d d p d p d d d p d p

− −

− − −

 
 
 
 
 
 
 
 
 
 

− + − − 
 + − − − − − − +
 

 

 

 

192,500,000 39,375,000 166,250,000 13,125,000 0 0

39,375,000 113,750,000 13,125,000 48,125,000 0 0

166,250,000 13,125,000 385,000,000 0 166,250,000 13,125,0000.2

1,3125,000 48,125,000 0 227,500,000 13,125,000 412
K

− −

−

− − −
=

− − − 8,125,000

0 0 166,250,000 13,125,000 192,500,000 39,375,000

0 0 13,125,000 48,125,000 39,375,000 113,750,000

 
 
 
 
 
 
 − −
 

− − −  

 

 Strain and stress expressions for the element 1,  

( / 20000) (1/ 20000)

(3 / 20000) ( / 2500)

(27 / 40000) ( / 2500) ( / 20000)

x

y

xy

y

x

y x







= − −

= −

= − −

 

( 1750 ) (4375 / 4) (875 / 2)

(6125 / 2) (875 / 4) (8750 )

(23625 / 4) (3500 ) (875 / 2)

x

y

xy

x y

y x

y x







= − − −

= − −

= − −

 

and for the element 2, 

(3 / 20000) (3 / 20000)

( 13 / 20000) (3 / 8000)

(3 / 20000) (13 / 20000) (19 / 40000)

x

y

xy

y

x

x y







= +

= − −

= − +

 

(13125 / 4) (11375 / 4) (13125 / 8)

(2625 / 4) (56875 / 4) (60375 / 8)

(2625 / 2) (11375 / 2) (16625 / 4)

x

y

xy

y x

y x

x y







= − +

= − −

= − +

 

 


