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Abstract 

In civil engineering applications columns with variable cross-sections are commonly used for various reasons 

and buckling has a very important role in the design of these members. In this investigation square columns 

with variable cross-sections and circular columns with variable cross-sections is considered. These examples 

evaluated for four different strength classes of normal strength concrete and four different boundary 

conditions. ANSYS Parametric Design Language codes are developed to analyze the columns with variable 

cross-sections models systematically and obtained results are presented with tables and graphics. It has been 

revealed that boundary conditions and the shape of the cross-section effects the stability of the columns 

dependent to the critical buckling load values. 
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1. Introduction 

Columns are structural members that transmit 

vertical loads to the foundation in structural 

engineering. As seen in Fig.1, in civil engineering 

applications columns with variable cross-section 

are commonly used in order to reduce weight and 

increase strength, or to satisfy architectural needs. 

By using high strength materials structural 

members are becoming thinner and more slender. 

Against the loss of stability the structural members 

must be safe guarded also. 

 Buckling has a very important role in the design 

of these members. And also minimization of 

structural weight with maximization of critical 
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buckling load is an important design problem for 

variable cross-section members. 

 The cross-sectional variation in structural 

members is used in order to provide the economy 

from the material and to lighten the structure in 

stability problems as in the stress problems. 

Variable cross-section structural members have less 

weight than uniform thickness ones. 

 Buckling loads are critical loads where 

structures become unstable. There are two kind 

solutions to perform a buckling analysis. One is 

eigenvalue buckling analysis, and the other is 

nonlinear buckling analysis. Eigenvalue buckling 

analysis computes the structural eigenvalues for the 

constraints and given system loading. This is also 

called classical Euler buckling analysis.  
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Fig. 1. Column examples with variable cross-sections 

 

In nonlinear buckling analysis to predict buckling 

loads; non-linear, large-deflection, static analysis is 

employed. Therefore this method is more accurate 

than eigenvalue analysis. [1]. 

 Timoshenko and Gere are the father of modern 

engineering mechanics who wrote the best 

available guide to the elastic stability of structures. 

In their book the principles and theory of structural 

stability introduces[2] . Gursoy , solved buckling 

problems of elastic bar by using variational 

derivation and finite difference methods in his 

master thesis [3]. Karabalis and Beskos proposed a 

new numerical method for the stability analysis of 

linear elastic plane structures consisting of beams 

with constant width and variable depth [4]. 

Qiusheng et al. used Bessel functions and geometric 

series in their studies to analyze the buckling 

analysis of fixed and variable section bar systems 

under constant and variable axial load effects [5]. 

Gun, instigated an analysis of buckling of elastic 

straight bars using a new functional in his master 

thesis [6]. Pekbey et al., developed and designed an 

optimized composite column against buckling in 

their study and verified their solution with 

numerical analysis using ANSYS [7]. Li et al., 

made the stability analysis of a composite column 

under end force and distributed axial load in their 

studies. The composite column has variable 

material properties and varying cross-section and 

the integral equation method is formulated to model 

this problem [8]. Arbabi and Li, presented an 

integral-equation approach procedure for the axial 

buckling of variable cross-section elastic columns 

with step-varying profiles [9]. Eisenberger gives 

exact solutions for the buckling loads of variable 

cross-section members, loaded by variable axial 

force for several boundary conditions in his work 

[10]. Coşkun and Öztürk are investigated elastic 

stability analysis of Euler columns by using 

analytical approximate techniques [11]. Coşkun, 

used the Homotopy Perturbation Method for elastic 

stability analysis of tilt-buckled Euler columns with 

variable flexural stiffness [12]. Soltani and Sistani 

are applied the finite difference method (FDM) to 

investigate the buckling load of columns with 

variable flexural rigidity with different boundary 

conditions subjected to axial loads in their study 

[13]. Qiusheng et al. presented the exact solutions 

for stability analysis of bars with varying cross 

sections subjected to simple or complicated loads, 

including concentrated and variably distributed 

axial loads [14]. Sapalas et al. are studied a 

theoretical and a numerical analysis of tapered 

structural element subjected to an axial force and a 

bending moment in their paper [15]. Chen et al. are 

presented a new numerical method for evaluating 
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the buckling loads of columns with varying cross-

sections [16]. Eisenberger studied the exact 

solution of buckling loads for variable cross-section 

bars in a nonuniform thermal field [17]. Avcar 

investigated the elastic buckling of steel columns 

with three different cross sections and two different 

boundary conditions [18]. Darbandi et al. 

considered the static stability of the variable cross-

section columns, subjected to distributed axial force 

in their study [19]. Yongjiu et al. investigate the 

buckling loads of a thin-walled box column with 

variable cross-section by using the approximate 

formulas based on the energy principle and the 

Galerkin's method [20]. Saracoglu and Uzun 

studied about buckling analysis of structural 

members with variable cross-sections and they 

investigate the effects of variable cross-sections by 

using finite element software ANSYS [21]. 

 The purpose of this study is to investigate the 

effects of variable cross-section on the buckling 

load of the columns. In this study, a number of 

analyses are performed in ANSYS by using the 

developed APDL codes. This codes gives the 

calculation results practically for the systematic 

variation of the cross-section for the considered 

examples in the study. So that comparison for 

critical buckling loads between square varying 

columns and circular varying columns has been 

made easily. 

 

2. Material and methods 

The critical buckling load expression obtained for 

the prismatic column is stated below: 
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In this equation E is modulus of elasticity, I is 

moment of inertia for the constant cross-section and 

Lef is the effective buckling length. 

 Fig. 2 shows columns with four different 

boundary conditions as Clamped-Free (CF), 

Hinged-Hinged (HH), Clamped-Hinged (CH) and 

Clamped-Guided (CG) with effective buckling 

lengths. The cross-section of the columns are 

constant and the moment of inertia of the columns 

are also constant. 

 If the cross-section of the column is not 

constant, the critical buckling load will also be 

different depending on the variable cross-section 

[2]. In this case, the expression is as follows: 
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Fig. 2. Columns with different boundary conditions with effective buckling lengths. 
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 In this equation, α is a numeric factor based on 

the ratio of the variable cross-sectional length to the 

total length of the column, E is modulus of 

elasticity, I0 is moment of inertia for the constant 

part of the cross section and Lef is the effective 

buckling length. 

 In this study, ANSYS 19.0 software were used 

to get the analytic results of buckling of columns 

with variable cross-sections. To perform an 

eigenvalue buckling analysis in ANSYS, prestress 

effects must be activated. To determine the critical 

buckling load in ANSYS, unit load must be used. 

Applying a load other than unit load will scale the 

answer by a factor of the load. 

 All of the buckling examples were analyzed for 

determining the critical buckling loads. The 

columns with variable cross-sections were modeled 

as a beam element (BEAM188) which is a linear (2-

node) beam element in 3D with six degrees of 

freedom at each node. The degrees of freedom at 

each node include translations in x, y and z-

directions and rotations about the x, y and z-

directions [1]. 

 With default settings, in BEAM188 element, six 

degrees of freedom occur at each node; these 

include translations in the x, y and z-directions and 

rotations about the x, y and z-directions (Fig. 3). 

 This element is suitable for analyzing elements 

with any cross-sections defined by using some 

special APDL commands. The beam elements are 

well-suited for linear, large rotation, and/or large 

strain nonlinear applications. The BEAM188 

element is also suitable for analyzing slender to 

moderately stubby/thick beam structures. The 

element is based on Timoshenko beam theory 

which includes shear-deformation effects. And also 

warping of cross-sections is assumed to be 

unrestrained. 

 

3. Numerical examples 

In this study for investigating the effect of variable 

cross-section in buckling of columns two types of 

examples discussed. One of the problem has 

variable square cross-sections and the other one has 

variable circular cross-sections. All of the problems 

have the same constant length of L = 10 meters. To 

give a more general result for variable cross-section 

columns under buckling the same configuration in 

length for both square and circular columns were 

selected. The length of the L1 in the varying part of 

the columns vary from 0 to 10 as shown in Fig. 4. 

 These examples evaluated for four different 

strength classes of normal strength concrete. 

Properties of these normal strength concrete is 

shown in Table 1. 

 Critical buckling loads were determined by 

using ANSYS and after the analyses numeric 

factors α are calculated from Eq. 2. While analyzing 

the problem, BEAM188 element in ANSYS library 

was selected. 

 In the finite element analysis, complex 

geometries are divided into simple elements with 

meshing process. Number of mesh elements affects 

the convergence, accuracy, and speed of the 

analysis. Significant amount of total time of the 

solution is depend on meshing of the problem. 

 

Fig. 3.. Geometry of BEAM188 finite element in ANSYS 
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Fig. 4. Some examples of columns with variable cross-section according to L1/L ratio 

 

Table 1. Mechanical properties of normal strength concrete. 

Strength class C25/30 C30/37 C35/45 C40/50 

Characteristic cylinder strength (fck, N/mm2) 25 30 35 40 

Characteristic cube strength (fck, N/mm2) 30 37 45 50 

Characteristic axial tensile strength (fctk, N/mm2) 1.75 1.92 2.07 2.21 

Modulus of elasticity (E, N/mm2) 30250 31800 33227 34555 

Shear modulus (G, N/mm2) 12100 12720 13291 13822 

Poisson’s ratio 0.2 0.2 0.2 0.2 

Coefficient of thermal expansion 1.00E-05 1.00E-05 1.00E-05 1.00E-05 

This step is important for determining an accurate 

solution in finite element analyses. For this purpose 

a mesh refinement study is performed in this study. 

HH boundary condition is considered and graphs 

for critical buckling loads Pcr according to number 

of mesh elements for square and circular varying 

columns for L1/L ratio is 0.50 is presented in Fig.5. 

From the graphs it can be seen that 100 mesh 

elements is the most suitable for the analyses. So 

that examples were modelled to the program by 

using 100 mesh elements. 

3.1. Square columns with variable cross-sections 

The total length of the column L and the length of 

the L1 from the top varies to the smaller cross-

section. As can be seen from Fig. 6, at the top of the 

column there is a square cross-section and one side 

of the square has a length a1. Cross-section varies 

along to the length L1 to the smaller and constant 

square cross-section and one side of the constant 

square cross-section has a length a0. 

 In the square columns with variable cross-

sections, length a1 and a0 is taken as 1,5m and 0,5m 

respectively as constants. The total length of the 

column was taken L = 10 meters as constant 

 Examples are modeled in ANSYS and critical 

buckling loads determined (Fig. 7). Constant αs are 

calculated from Eq. (2). 

 Results for αs coefficients and critical buckling 

loads in kN are presented for square varying 

columns in Table 2. 
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Fig. 5. Mesh refinement for varying columns with HH boundary condition. 

 

 

Fig. 6. Square column with variable cross-section 

 

 

Fig. 7. ANSYS model for square columns 
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Table 2. Critical buckling loads Pcr (kN) and αs coefficients for square varying columns 

BC 
L1/L 

  Conc. 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

CF 

C25/30 3882 3887 3916 3993 4141 4390 4790 5430 6506 8523 13258 

C30/37 4081 4086 4117 4198 4353 4615 5035 5708 6840 8959 13938 

C35/45 4264 4269 4302 4386 4549 4822 5261 5964 7147 9361 14563 

C40/50 4434 4440 4474 4562 4730 5015 5471 6203 7432 9735 15145 

α 0.999 1.000 1.007 1.027 1.065 1.129 1.232 1.397 1.674 2.192 3.410 

HH 

C25/30 15461 15537 15963 16998 18906 22107 27422 36571 53375 85430 135720 

C30/37 16254 16333 16781 17869 19875 23240 28827 38446 56110 89808 142670 

C35/45 16983 17066 17534 18671 20767 24283 30121 40171 58628 93838 149070 

C40/50 17662 17748 18235 19418 21597 25254 31325 41776 60972 97590 155030 

α 0.994 0.999 1.027 1.093 1.216 1.422 1.763 2.352 3.433 5.494 8.728 

CH 

C25/30 31407 31722 33363 37073 43575 54158 71260 99161 142740 198130 271470 

C30/37 33016 33348 35073 38973 45808 56933 74911 104240 150054 208282 285380 

C35/45 34498 34843 36647 40721 47863 59487 78272 108918 156790 217626 298190 

C40/50 35877 36237 38111 42349 49777 61866 81402 113274 163055 226330 310110 

α 0.990 1.000 1.051 1.168 1.373 1.707 2.246 3.125 4.498 6.243 8.554 

CG 

C25/30 60810 72140 86840 106120 131150 160910 188350 217120 273710 372690 508830 

C30/37 63926 75837 91290 111560 137870 169150 198000 228240 287730 391790 534900 

C35/45 66795 79240 95390 116560 144050 176740 206880 238490 300640 409370 558910 

C40/50 69464 82410 99200 121220 149810 183800 215150 248010 312650 425720 581240 

α 0.978 1.160 1.396 1.706 2.109 2.587 3.028 3.491 4.401 5.992 8.181 

3.2. Circular columns with variable cross-

sections 

In the second example cross-section of the column 

with variable cross-section is taken as circular (Fig. 

8). Square columns with variable cross-sections is 

taken as a reference and circular columns with 

variable cross sections are equivalent to square 

ones. So that radius of the cross-sections are 

dependent with the size of the cross-sections of the 

square columns with variable cross-sections. In 

order to be the same volumes for all L1/L ratio of 

the examples, radii of the circular cross-sections are 

taken as  

( )0,1i

i

a
r i


= =   (3) 

 Radius of constant cross-section part of 

structural member r0 and the radius r1 at the tips is 

taken dependent to a0 and a1 respectively. Total 

height of the column L is taken as 10m and the 

variable cross-section height L1 is varies from 0 to 

10 same as square columns with variable cross-

sections (Fig. 4). 

 Examples are modeled in ANSYS and critical 

buckling loads determined (Fig. 9). Constant αc are 

calculated from Eq. (2). 

 Results for αc coefficients and critical buckling 

loads in kN are presented for square varying 

columns in Table 3. 

 

4. Results and discussion 

From the results obtained it is possible to see that 

square varying columns and circular varying 

columns which has the same configurations and 

volumes, critical buckling loads and also α 

coefficient of the square varying columns are 

greater than the circular varying columns. Variation 

of α coefficients for varying columns are presented 

as a graph in Fig. 10. One can see from the Fig. 10 

that when the L1/L ratio is increasing the 

coefficients are increasing functionally for all 

boundary conditions. This means that when this 

ratio is increasing the volume of the column is also 

increasing so that critical buckling load is also 

increases.



Stability analysis of columns with variable cross-sections 176 

 

 
Fig. 8. Circular column with variable cross-section. 

 

 
Fig. 9. ANSYS model for circular columns 

 

 
Fig. 10. Variation of α coefficients for varying columns. 
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Table 3. Critical buckling loads Pcr (kN) and αc coefficients for circular varying columns. 

BC L1/L 

  Conc. 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

CF 

C25/30 3700 3704 3732 3806 3946 4184 4564 5175 6200 8122 12635 

C30/37 3889 3894 3924 4001 4149 4398 4798 5440 6518 8538 13283 

C35/45 4064 4069 4100 4180 4335 4596 5014 5684 6811 8921 13879 

C40/50 4226 4232 4264 4347 4508 4779 5214 5911 7083 9278 14434 

α 0.997 0.998 1.005 1.025 1.063 1.127 1.230 1.394 1.670 2.188 3.404 

HH 

C25/30 14740 14811 15216 16204 18022 21076 26145 34875 50915 81537 129580 

C30/37 15495 15570 15996 17034 18946 22156 27485 36662 53524 85715 136220 

C35/45 16190 16269 16714 17799 19796 23151 28718 38308 55925 89563 142330 

C40/50 16837 16919 17382 18510 20587 24076 29866 39838 58161 93141 148020 

α 0.993 0.997 1.025 1.091 1.214 1.419 1.761 2.349 3.429 5.491 8.727 

CH 

C25/30 29954 30252 31817 35358 41565 51673 68018 94701 136434 189438 259570 

C30/37 31489 31802 33447 37169 43694 54320 71502 99552 143424 199143 272870 

C35/45 32902 33229 34948 38837 45655 56758 74711 104020 149860 208080 285120 

C40/50 34217 34557 36344 40389 47479 59025 77696 108176 155840 216393 296510 

α 0.988 0.998 1.050 1.167 1.372 1.705 2.245 3.125 4.502 6.251 8.566 

CG 

C25/30 58033 68865 82926 101382 125360 153880 180161 207702 262060 357206 487780 

C30/37 61007 72394 87175 106580 131784 161767 189390 218346 275486 375511 512770 

C35/45 63744 75642 91088 111361 137700 169027 197893 228144 287849 392363 535780 

C40/50 66292 78665 94727 115810 143200 175780 205800 237260 299350 408040 557200 

α 0.977 1.159 1.396 1.707 2.111 2.591 3.033 3.497 4.412 6.014 8.212 

 It can be seen from Tables 2 and 3 that when the 

cross-section ratio increases α coefficient is also 

increases.  

 For all of the boundary conditions, when the 

L1/L ratio increases, α coefficient also increases 

functionally. 

 In cases where L1/L is less than 0.70, the alpha 

coefficient is listed from small to large with CF, 

HH, CH and CG boundary conditions; however, if 

L1/L is greater than 0.70, the alpha value obtained 

for the CG boundary condition is smaller than that 

of CH. Also, the difference between CF examples 

and others are getting greater. When the L1/L ratio 

increases, the difference of α coefficient value 

between CF examples and other examples also 

increases. 

 

5. Conclusion 

Critical buckling loads for columns with variable 

cross-sections are different from prismatic columns 

with constant cross-sections because of their shape 

configurations. It is possible to see that columns 

with variable cross-sections are used in engineering 

structures. This type of geometry make the 

structural elements more stable under buckling. In 

such structures, as well as saving material a 

significant decrease in weight is also observed. 

 If the column ends are variable, the buckling 

length of the column decreases and the stability to 

buckling increases. From the examples, it can be 

seen that critical buckling load increases when the 

column section is variable. Basically two different 

examples considered in this study as square varying 

columns and circular varying columns. This 

problem investigated with four boundary 
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conditions as CF, HH, CH and CG. Also, all of the 

critical buckling load calculations performed for 

four different concrete materials. 

 In this study, a number of analyses are 

performed in finite element software ANSYS with 

the use of developed APDL codes and critical 

buckling loads for the examples considered are 

determined. By using this buckling loads α 

coefficients are calculated from Eq. (2). The results 

are presented in tables and graphs. From the results 

it could be seen that in columns with variable cross-

sections critical buckling loads varies dependent to 

the length ratio of the column. Length ratio is taken 

as varying length of the column to the total length 

of the column (L1/L). As shown in the figures that 

presents the variation of α coefficients, although 

behavior of the problems are similar results are 

different. 

 As a result, boundary conditions and the shape 

of cross-section affect the stability of the columns 

dependent to the critical buckling load values. 

 This variable cross-section column problem can 

also be examined by taking different cross-sections. 

Furthermore, cross-sectional calculations can be 

made for the maximum critical load using 

optimization techniques. 
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