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Abstract

In this study, ratcheting behavior of thick spherical vessels subjected to mechanical cyclic loads at elevated
temperature, using the Chaboche unified viscoplastic model with combined kinematic and isotropic theory
of plasticity, is investigated. Since this model is rate dependent, loading rate plays a crucial role on the
ratcheting responses. A precise and general numerical procedure, using the modified successive
approximation iterative method of solution to solve the non-linear equations, is developed to obtain the cyclic
inelastic creep and plastic strains. Effects of loading and unloading rate, inside pressure, thickness of vessel,
creep time and environmental temperature on ratcheting responses, and stress amplitude of the vessel due to
the inside pressure cyclic loading at elevated temperature are obtained. The ratcheting response is observed
for the load-controlled conditions, as investigated in this paper. It is shown that increasing the loading and
unloading rates and the thickness of pressure vessels, result into decrease in the ratcheting rate while
increasing the inside pressure, creep time, and temperature distribution increase the ratcheting rate. Also,
stress amplitude decreases with increasing the creep time and thickness of vessel. On the other hand,
increasing the loading and unloading rate, inside pressure, and temperature distribution result into increasing
the stress amplitude. The results obtained using the applied method in this study is verified with the
experimental data given in the literature. By simplifying the constitutive model, numerical results are
compared with the finite elements results.
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1. Introduction some applied cases, the load might be increased
enough to bring the structure into plastic range. As
a result, the accumulated strain plays an acute role
in design problems. In special cases, the structures
are used in high temperature environments by
which the structure shows viscoplastic behavior.

Since many structures that are widely used in
industry and power plants are subjected to cyclic
loading, the study of these structures is crucial and
important in the structural design problems. In
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Thus, the investigation of structural failure in order
to predict lifetime of structure and allowable
loading rate is significantly important.

Numerous constitutive models to estimate the
ratcheting behavior of structures are proposed in
literature. In order to evaluate the plastic responses
of structures, the isotropic, kinematic, and
combined hardening models are proposed. Hill [1]
and Westergaard [2], respectively, published
abstract of researchers’ works related to the
isotropic hardening theory. Base on this method, the
radius of yield surface is extended in the Haigh-
Westergaard stress plane. Inelastic analysis of
circular rod based on the isotropic hardening model
using the von Mises yield criterion is discussed by
Neal [3].

Due to the Baushinger effect, however, there is
a deficiency in isotropic hardening model.
According to the Baushinger effect, yield surface is
transferred in the Haigh-Westergaard stress space,
where this translation is not considered in the
isotropic hardening model. The first kinematic
hardening model capable to consider translation of
the yield surface was proposed by Prager [4]. This
model basically falls into the linear kinematic
hardening theory. In order to precisely evaluate
plastic responses, Armstrong and Frederick [5]
proposed a nonlinear kinematic hardening model.
The nonlinear term in this model makes the slope of
strain-stress curve different in loading and
unloading process and as a result cyclic ratcheting
behavior is predict more accurately and correctly. A
kinematic hardening model for cyclic plasticity was
proposed by Chaboche [6], which uses a
combination of three terms of the Armstrong-
Frederick model in order to coincide the
experimental data and the predicted results more
accurately. Plastic cyclic behavior of thick pressure
vessels using the kinematic hardening criterion is
studied by Mahbadi and Eslami [7]; the paper
compares the Prager linear kinematic hardening
with the Armstrong-Frederick nonlinear kinematic
hardening model. It is concluded that the nonlinear
theory of the later model can correctly predict
ratcheting responses of structure. Also, Komijani et
al. [8] and Ejtemajou et al. [9] have investigated

cyclic behavior of thick spherical and cylindrical,
respectively, vessels made of transversely isotropic
materials using the anisotropic yield criterion and
have concluded that the Armstrong-Frederick
hardening model predicts ratcheting behavior under
load controlled cyclic loading and reversed
plasticity under strain controlled condition while
Prager hardening model anticipates reversed
plasticity for both strain and stress controlled
condition.

A time independent constitutive theory for
cyclic plasticity using combined isotropic and
kinematic hardening model is proposed by
Chaboche [10] to improve the evaluation of cyclic
behavior of structures. According to this model, the
radius of vyield surface is either increased or
transferred in the stress space spontaneously. In
contrast to this rate independent hardening model,
Chaboche [11, 12] proposed a time dependent
unified viscoplastic model using viscoplastic
potential which is capable to evaluate effects of
loading rate and creep time. As like as Chaboche
[10], this constitutive model is a combination of
isotropic and kinematic hardening models. Also,
another viscoplastic hardening models are proposed
in order to estimate the inelastic responses of
structures exposed to elevated temperatures such as
Walker [13], Murakami and et al. [14], Moreno and
Eric [15], Ohno [16] and Lee and Krempl [17]. The
most significance of these viscoplastic constitutive
theories is how to determine material constants
which are used in these models. Multiple
experimental tests, such as Mahnken and Stein [18],
Schwertel and Schinke [19], Fossum [20, 21], Tong
et al. [22], Zhan [23] and Gong et al. [24] are done
in order to calculate these parameters. Plastic
responses of beams under cyclic loading based on
the time independent Chaboche hardening model
has been investigated by Shojaei [25]. A modified
constitutive model has been proposed based on the
unified viscoplasticity theory considering time-
dependent kinematic hardening for relaxation by
Wufan Chen et al. [26]. Dao-Hang Li et al. [27]
have investigated a modified unified viscoplastic
constitutive model in order evaluate axial torsional
thermos mechanical cyclic loading. A series of
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experiments has been conducted by Wufan Chen et
al. [28] to determine creep and fatigue behavior of
316 stainless steel and to revisit a unified
viscoplastic model. Benaarbia et al. [29] developed
a thermodynamically-based viscoelastic-
viscoplastic model for the high temperature cyclic
behavior of 9-12% Cr steels considering isotropic
and kinematic hardening. Rae et al. [30] studied
experimental characterization and computational
modelling of cyclic viscoplastic behavior of turbine
steel and accumulated strain fields has been
investigated under realistic thermos-mechanical
fatigue loading. The rate-dependent ratcheting
characteristics of 35CRMo alloy have been
investigated under cyclic uniaxial tension
considering different stress amplitudes at high
temperature by Zheng [31]. There are also other
papers deal with viscoplastic constitutive models
such as those studied by Dong [32], Feng [33],
Szmytka [34], Kyaw [35], Ahmed [36], Luk-Cyr
[37] and XiaoAn [38].

In this paper, the Chaboche unified viscoplastic
model is used to evaluate the cyclic behavior of
thick spherical pressure vessels due to the
mechanical cyclic loading. This model is a rate
dependent constitutive theory with combined
isotropic and kinematic hardening models. The
considered spherical vessel is made of 316 stainless
steel under isothermal condition at temperature 500
°C. The material parameters are obtained from
Gong [24]. The precise numerical method based on
a modified successive approximation proposed by
Mahbadi et al. [7-9, 25] is developed and used to
estimate the viscoplastic cyclic loading of thick
vessels. The feature of the present work that makes
it unique in comparison with the published papers
on cyclic loading of thick vessels is the time
dependency of this viscoplastic model which makes
it capable to indicate effects of loading rate and
relaxation time.

2. Mathematical Formulation

Consider a thick spherical vessel made of isotropic
materials with inside and outside radii R, and R,

subjected to inside and outside pressures P, and P,

respectively. In order to achieve convergence, the
parameters are normalized. The dimensionless
parameters are considered in Eq. (1).
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In Eq. (1), oy is the stress tensor and ¢; is the

strain tensor. The subscripts rr, 66 and ¢¢

and meridional
vp and Res

represent radial, tangential,

directions, respectively. Here,
superscripts indicate viscoplastic strain and residual
strain, respectively. o, is the initial yield stress and
¢, Is the initial yield strain. The dimensionless

equilibrium,  compatibility, and stress-strain
relations of considered spherical vessel are,
respectively, as
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In Eq. (4), vis Poisson's ratio. Due to the
spherical symmetry, 6, =&,, and €, =¢€,.

Substituting Eq. (4) into Eq. (3) and using
equilibrium equation Eqg. (2), a system of
differential equations is found as
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By solving the above system of differential
equations, radial and tangential stresses can be
obtained as follow

O, =——
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In Eq. (5), C, and C, are constants of

integration and are defined using boundary
conditions. Boundary conditions are shown in Eqg.

(6).

5. (1)=-P,
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Using the boundary conditions of Eq. (6) and
substituting into Eq. (5), constants C, and C, are

determined as
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3. Hardening Model

In this paper, the unified viscoplastic hardening
model proposed by Chaboche [11, 12] is considered
to evaluate ratcheting behavior of thick pressure
vessels at elevated temperatures. This model is a
time dependent constitutive model which includes
kinematic and isotropic kinematic hardening
theories. The flow rule of this model using the von
Mises yield criterion is shown in Eq. (8)

wp _ 3. Si- A;

i EE ] (O'ij _ AJ) (8)

Where S; and A are the deviatoric stress and

back stress tensors, J is a distance in the stress
space, which is given in Eq. (9).

30y~ A) =6, - A)(S; - &) ©

The following relation is used as yield criterion
in this hardening model

f=3(0,-A)-R-0, (10)

Rate of effective viscoplastic strain is defined as

évp:<‘J(o-ij_A1j)_R_o-0> (11)

z

The McCauley bracket (.) isused here to ensure
that when f <0, the state of stress is inside the
elastic domain. In Egs. (10) and (11), n and Z are

material constants, R is associated parameter to the
isotropic hardening of material and is recalled as
drag stress.

In this viscoplastic model, the back stress
tensor, which related to kinematic hardening
theory, is described in Eq. (12).

A AD 4 A@
A =ATHA (12)
Where A" and AP are the non-linear

kinematic hardening parameters which are obtained
as

Agl) — C1 (aléi\j/p _ A?) évp)
AD =C, (@, ~ APe?)

The parameters C,, C,, a, and a, are material

(13)

constants for the Chaboche kinematic hardening
model and are obtained from the uniaxial test. Drag
stress associated with increasing the yield surface is
defined as

R=b(Q-R)e" (14)

The normalized quantities of hardening model
are defined as

fot c-% a-2 g-A
o, E o, o,
1n (15)
R-R 729 5.9 f_bo
o, o, o, E
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4. Numerical Solution

In this section, the numerical solution procedure for
viscoplastic analysis and ratcheting behavior of
thick spherical vessels under inside pressure cyclic
loading is described. Since the relations are
nonlinear and the inelastic strains depend upon the
loading path, a numerical iterative procedure is
proposed in the present work to evaluate the cyclic
behavior of thick sphere. The numerical method
which is proposed by Mahbadi et al. [7-9, 25] is
developed for viscoplastic constitutive relations.
This method is applied to the extension of Picard's
method of the successive approximation to non-
linear equations.

The procedure for viscoplastic solution is as
follow:

1. All the input quantities are normalized with the
initial yield stress and elasticity modulus.

2. Total time is divided into n steps and total load
associated with the time division (Load = f (t))
is divided into m steps. Also, the cross section
of thick sphere is divided into p parts.

3. By increasing the time one step, the yield
criterion is checked for all cross section parts
and if that part is in elastic region the inelastic
strain equals to zero. Otherwise, the inelastic
strains must be obtained as follow.

4. A value is considered as the first approximation
of equivalent inelastic strain increment.

5. Then, the components of inelastic strain
increment is obtained using the flow rule by
Egs. (16) and added to the accumulation
inelastic strain to obtain the total inelastic strain

vp 5ii B AJ'
J (16)

—vp __ —vp(acc) —Vvp
& =€ + Aeij

Ae_ij"p = EE

It must be noted that since J, A, and &
parameters are dependent on inelastic strains,
the values of previous time step are used in this
step.

6. The back stress tensor related to kinematic
hardening theory is obtained from Eq. (17).

10.
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AR =C, (a,A" - AVAE")
AR, = ZAR}”’ (17)
A= A+ AN
Isotropic hardening parameter, using the

approximated inelastic strains in step 5, is
obtained as

D _h(A_DYAZV
AR=bQ-R)AT (18)
R =R* +AR
Calculate the new values of stresses from Eqgs.
(5). A trapezoidal numerical integration is used
to obtain the existence integrations.
Using the calculated quantities in step 8, new
inelastic strain increment can be obtained from
Eg. (19).

AE" =<J(5” _AE)_R_1> At

7 (19)

The new value of inelastic strain increment must
be compared with the initial guess and if the
difference between these two values is small
enough, repeat the method from steps 3 to 10,
otherwise steps 5 to 10 must be repeated until
the convergence occurs. The following relative
error is considered to determine convergency:

|A€—vNew _Ae—Previous

i P <107 (20
| AE—V:)\lew | ( )
For unloading response, two different

coordinate axes, Fig. 1, are defined at the end of
loading and unloading curves and instead of
obtaining the residual strains, loading process is
applied. At the end of unloading process, the
stresses and strains are transferred to the origin
coordinate system. This method is used to
assign the correct sign to the equivalent stress
and strain. The following steps must be
followed for unloading procedure.
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Unboading Coordinate System

Reloading Coordinnte System

L
Main Coordinate System §

Fig. 1. Unloading and reloading coordinate systems

11.Set the strains components and the stress
components to zero and transfer kinematic
hardening parameters to unloading coordinate
using the following transmission law

A acc —(2) N
A" =0 - A (21)
Where Rj is the accumulated back stress tensor

in the unloading coordinate system and 0(2) is

the maximum stress tensor in the loading
coordinate system.

12. Steps 2 through 10 is repeated in order to
evaluate the unloading responses. All the
calculated quantities in the unloading
coordinate systems are transferred to the main
coordinate using the following transmission
relation

S — (Z S L(k) Z SUL(k) UL(m) (22)

where S; is any tensor including stress, total

strain, inelastic strain, and back stress.

Superscripts L(k) indicate the final value of
S; in k™ cycle of loading. Also, UL(k)

th

indicates the final value of S; in i" cycle of

unloading and m shows the last cycle.

13. A new coordinate system in the same direction
of main coordinate is considered in order to
obtain the reloading responses. As same as
unloading process, the strains components and
the stress components are set to zero and
kinematic hardening parameters are transferred
to the reloading coordinate using the following
transmission law

acc — O_(l) A” (23)

14.Similar to unloading, steps 2 through 10 are
repeated in order to estimate the reloading
responses. All the calculated quantities in the
reloading coordinate systems are transferred to
the main coordinate using the following
transmission relation

S — (ZsL(k) ZsUL(k))+SUL(m) (24)

15. The procedures between steps 2 through 15 are
repeated until the final cycle of load is achived.
The flow chart corresponding to the proposed

numerical procedure is illustrated in Fig. 2.

5. Results and Discussion

In this section the effect of different parameters
such as loading and unloading rate, creep time,
inside pressure, thickness of vessel, and
temperature on the ratcheting behavior and stress
amplitude at critical point of vessel is discussed.
Some responses from other papers and finite
element software are used in order to verify the
numerical procedure. For the following examples, a
thick spherical vessel made of SS316 steel is
considered. The radius ratio of the vessel is = 1.5.
The material properties based on the Chaboche
viscoplastic constitutive model are given in Table 1
[24].

5.1. Verification

In Fig. 3, the numerical results obtained in present
work are compared with experimental data for a
beam made of 316 stainless steel [24] at uniform
temperature 500 °C.
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i
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Fig. 2. Flow chart of proposed numerical procedure

Table 1. Material constant at multiple temperatures [24]

Material property

Temperature (°C)

300 500 550 600
oo (MPa) 39 325 31 30
E (MPa) 154.84 145,54 141.26 139.12
b 39.46 33.35 31 28.6
Q (MPa) 32.76 30.41 2738 27.43
a1 (MPa) 119.1 94.6 86.3 80.06
C1 5964.1 6472.6 6939 7111.9
a1 (MPa) 108.4 113.3 114.8 116
C1 1001.6 979.91 957.69 928.7
Z MPa-stn 179 175 173 170
n 10 10 10 10
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3007

Uniaxial Strain Controlled
55316 at 500°C

Axial Strain: (-0.3 to 0.3) %
200+ Axial Rate: 0.015 %/s
‘Without Creep Time

1007

Axial Stress, MPa

-100+

-200 |

-0.4 -0.3 -0.2 -0.1

Present Work
o Experimental Data, REF. [24]
1 L

0 0.1 0.2 0.3 0.4

Axial Strain, %

Fig. 3. Comparison of present work with the experimental data of beam [24]

The beam is under strain-controlled condition
where the axial strain is cycled between -0.3% and

0.3%, and the strain rate which is used to evaluate
the results is ¢ =0.015%/s. The stress-strain

curve for the first cycle of loading is shown in Fig.
3. As the figure shows, the numerical results are in
close agreement with the experimental data and the
percentage of error at the end of loading and
unloading is approximately 3%.

In the next example, a thick spherical vessel
made of CS1020 steel under inside pressure cyclic
loading is cycled through P =0 to 300 MPa. In

order to verify the numerical method with the cyclic
plasticity responses of thick sphere based on the
Armstrong-Frederick hardening maodel [5], the rate
of inelastic strain is considered as zero, ¢® =0.
The material properties of the sphere are: elasticity
modulus E = 173.2 GPa, yield stress op = 241 MPa,
kinematic hardening parameters C; = 280, C, = 0,
ar = 1975 MPa, a, = 0, isotropic hardening
parameters Q = 0, b = 0. Fig. 4 shows that the
numerical results of Ref. [7] and the numerical data
of current work are in close agreement and the
maximum error between these two results is less
than 1%.

In order to verify the proposed numerical
algorithm with finite element method, a thick
spherical vessel is modelled with ABAQUS
software. The combined hardening model is
considered in property module. This model is
proposed by Chaboche and Lemaitre and the back
stress due to this model is defined as

dpﬁgk) =C (o — Aj)dep _7kA§k)d6p
N

A3
k=1

In Figs. 5 and 6 a thick sphere with radius ratio
£ = 1.5 under inside pressure is cycled between 0
and 300 MPa. The material properties of this vessel
are considered as the same as previous instance. By
substituting the above relations in the proposed
numerical algorithm and considering ¢ =0, the
plastic responses of present work are compared
with the ABAQUS results in Figs. 5 and 6. The
effective stress versus effective strain is illustrated
in Fig. 5. Fig. 6 shows the effective plastic strain in
the different radius of spherical vessel. The
percentage of error between proposed numerical
algorithm and FEM results for effective plastic
strain, radial, and tangential stresses at different
radii are shown in Tables 2-4.

(25)
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Fig. 4. Comparison of present work with the numerical results of Mahbadi et al. [7]
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Table 2. Comparison of effective plastic strain, €” , with FEM results

Radius Ratio, 8 Present Work FEM Error, %
1 0.009479 0.009355 1.33
1.125 0.005836 0.005764 1.24
1.25 0.003642 0.003594 1.37
1.375 0.002269 0.002234 1.57
15 0.001370 0.001347 1.69
Table 3. Comparison of radial stress, o, , with FEM results
Radius Ratio, 8 Present Work FEM Error, %
1 —300.00 —299.48 0.17
1.125 —202.93 —202.64 0.15
1.25 -122.14 —121.86 0.23
1.375 —55.40 —55.22 0.34
15 0 0 0
Table 4. Comparison of tangential stress, o, , with FEM results

Radius Ratio, # Present Work FEM Error, %
1 124.41 124.46 0.05
1.125 196.83 196.38 0.23
1.25 244.96 244.28 0.28
1.375 278.32 277.48 0.30
15 303.79 302.78 0.33

5.2. Effect of loading and unloading rate

In Figs. 7 and 8, the inside pressure of spherical
vessel with radius ratio S = 1.5 is cycled between 0
and 250 MPa at uniform temperature distribution
500 °C. The relaxation time after loading and
unloading are considered zero. The rate of
ratcheting strain, which is defined as Eq. (26), is
shown in Fig. 7 for different rates of loading in 10™
cycle. As the figure shows, increasing the loading
rate results into decreasing the rate of ratcheting.

Ratcheting Peak Peak
€ =€ —€ 2
o n"Cycle n"Cycle (n-1)"Cycle ( 6)

5.3. Effect of inside pressure

In Fig. 9, the inside pressure of spherical vessel with
radius ratio f = 1.5 is cycled between 0 and R at

uniform temperature distribution 500 °C. The
loading and unloading times are 1 hour without
creep time after loading and unloading. The rate of
ratcheting strain is shown in Fig. 9 for various
inside pressure in different cycles. As the figure
shows, increasing the inside pressure, results into
increase of the rate of ratcheting.
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5.4. Effect of creep time

In Figs. 10 and 11, the inside pressure of spherical
vessel with radius ratio g = 1.5 is cycled between 0
and 250 MPa at uniform temperature distribution
500 °C. The rate of loading and unloading is 4.617
MPa-mint. The creep time after loading is varied
through O to 500 min, and the responses of
ratcheting rate and stress amplitude are
investigated. Although increasing the creep time
results to increase of ratcheting strain, the stress
amplitude is decreased.

In Figs. 12 and 13, the effects of different creep
time conditions for constant loading and unloading
rates, considering 100 hours creep time just after the
1st half of cycle, 100 hours creep time after each
half of cycle, and without creep time is discussed.
As the figures show, by adding the creep time after
loading the ratcheting strain is increased while the
stress amplitude is decreased. Also, adding the
creep time after unloading results to increase of the
ratcheting strain and slightly decrease of the stress
amplitude.

5.5. Effect of temperature

In Figs. 14 and 15, the inside pressure of spherical
vessel with radius ratio = 1.5 is cycled between 0
and 250 MPa at uniform temperature distribution
T°C . The temperature is varied through 300 to 600
°C. The rate of loading and unloading is 4.167
MPa-mint. The rate of ratcheting strain is shown in
Fig. 14 for different temperatures in different
cycles. As the figure shows, increasing the
temperature distribution, results into increase of the
rate of ratcheting.

Fig. 15 shows the stress amplitude versus
temperature distribution in the 10" cycle. It is
shown that the stress amplitude increases by
increasing the temperature.

5.6. Effect of thickness of vessel

In Figs. 16 and 17, the inside pressure of spherical
vessel with radius ratio g is cycled between 0 and
250 MPa at uniform temperature distribution 500
°C. The rate of loading and unloading is 4.167
MPa-mint. The rate of ratcheting strain is shown in
Fig. 16 for different thicknesses of vessel in
different cycles. As the figure shows, increasing the

thickness, results into exponentially decrease of the
rate of ratcheting.
Fig. 17 shows the stress amplitude versus radius

ratio in the 10" cycle. It is shown that the stress
amplitude is reduced by increasing the thickness of
vessel.

6. Conclusion

A Chaboche unified viscoplastic constitutive model
with combined isotropic and kinematic hardening
theories is considered to estimate the ratcheting
behavior of thick spherical pressure vessels under
mechanical cyclic loading. Based on the mentioned
hardening theory, the yield surface is transferred
and the radius of yield surface is increased in the
Haigh-Westergaard stress space. An accurate
numerical procedure based on the modified
successive approximation method is proposed to
obtain cyclic responses of viscoplastic materials.
The vessel is subjected to inside pressure cyclic
loading at elevated uniform temperature
distribution. The proposed method is applied to the
governing equations in order to obtain inelastic
strains and stresses. The novelty of present study, in
comparison with the published papers reported on
cyclic loading, is application of a time dependent
constitutive model to evaluate the effects of rate on
the ratcheting behavior of structures. The effects of
different parameters on the ratcheting strain,
accumulations strain, and the stress amplitude are
investigated in this paper. The summarized results
of cyclic loading analysis for a thick sphere at
elevated temperatures are discussed as follows:

e Under load controlled cyclic loading, the vessel
ratchets. This conclusion is reached with simple
kinematic hardening models, reported in the
previous researches, up to the more
sophisticated models, as reported in this paper.

e Increasing the loading and unloading rates
decreases the ratcheting strain, while the
effective stress amplitude is increased.

e The rate of strain accumulation is increased
exponentially due to increasing creep time,
while the magnitude of stress amplitude is
diminished.
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Fig. 12. Effect of different creep time conditions on the ratcheting strain
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e Considering relaxation time at the unloading
process may raise the ratcheting strain.

e The represented data for different temperature
shows that increasing this parameter increases
either the ratcheting strain or the stress
amplitude.
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