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Abstract 

In this study, ratcheting behavior of thick spherical vessels subjected to mechanical cyclic loads at elevated 

temperature, using the Chaboche unified viscoplastic model with combined kinematic and isotropic theory 

of plasticity, is investigated.  Since this model is rate dependent, loading rate plays a crucial role on the 

ratcheting responses. A precise and general numerical procedure, using the modified successive 

approximation iterative method of solution to solve the non-linear equations, is developed to obtain the cyclic 

inelastic creep and plastic strains. Effects of loading and unloading rate, inside pressure, thickness of vessel, 

creep time and environmental temperature on ratcheting responses, and stress amplitude of the vessel due to 

the inside pressure cyclic loading at elevated temperature are obtained. The ratcheting response is observed 

for the load-controlled conditions, as investigated in this paper. It is shown that increasing the loading and 

unloading rates and the thickness of pressure vessels, result into decrease in the ratcheting rate while 

increasing the inside pressure, creep time, and temperature distribution increase the ratcheting rate. Also, 

stress amplitude decreases with increasing the creep time and thickness of vessel. On the other hand, 

increasing the loading and unloading rate, inside pressure, and temperature distribution result into increasing 

the stress amplitude. The results obtained using the applied method in this study is verified with the 

experimental data given in the literature. By simplifying the constitutive model, numerical results are 

compared with the finite elements results. 
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1. Introduction 

Since many structures that are widely used in 

industry and power plants are subjected to cyclic 

loading, the study of these structures is crucial and 

important in the structural design problems. In 
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some applied cases, the load might be increased 

enough to bring the structure into plastic range. As 

a result, the accumulated strain plays an acute role 

in design problems. In special cases, the structures 

are used in high temperature environments by 

which the structure shows viscoplastic behavior. 
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Thus, the investigation of structural failure in order 

to predict lifetime of structure and allowable 

loading rate is significantly important. 

 Numerous constitutive models to estimate the 

ratcheting behavior of structures are proposed in 

literature. In order to evaluate the plastic responses 

of structures, the isotropic, kinematic, and 

combined hardening models are proposed. Hill [1] 

and Westergaard [2], respectively, published 

abstract of researchers’ works related to the 

isotropic hardening theory. Base on this method, the 

radius of yield surface is extended in the Haigh-

Westergaard stress plane. Inelastic analysis of 

circular rod based on the isotropic hardening model 

using the von Mises yield criterion is discussed by 

Neal [3]. 

 Due to the Baushinger effect, however, there is 

a deficiency in isotropic hardening model. 

According to the Baushinger effect, yield surface is 

transferred in the Haigh-Westergaard stress space, 

where this translation is not considered in the 

isotropic hardening model. The first kinematic 

hardening model capable to consider translation of 

the yield surface was proposed by Prager [4]. This 

model basically falls into the linear kinematic 

hardening theory. In order to precisely evaluate 

plastic responses, Armstrong and Frederick [5] 

proposed a nonlinear kinematic hardening model. 

The nonlinear term in this model makes the slope of 

strain-stress curve different in loading and 

unloading process and as a result cyclic ratcheting 

behavior is predict more accurately and correctly. A 

kinematic hardening model for cyclic plasticity was 

proposed by Chaboche [6], which uses a 

combination of three terms of the Armstrong-

Frederick model in order to coincide the 

experimental data and the predicted results more 

accurately. Plastic cyclic behavior of thick pressure 

vessels using the kinematic hardening criterion is 

studied by Mahbadi and Eslami [7]; the paper 

compares the Prager linear kinematic hardening 

with the Armstrong-Frederick nonlinear kinematic 

hardening model. It is concluded that the nonlinear 

theory of the later model can correctly predict 

ratcheting responses of structure. Also, Komijani et 

al. [8] and Ejtemajou et al. [9] have investigated 

cyclic behavior of thick spherical and cylindrical, 

respectively, vessels made of transversely isotropic 

materials using the anisotropic yield criterion and 

have concluded that the Armstrong-Frederick 

hardening model predicts ratcheting behavior under 

load controlled cyclic loading and reversed 

plasticity under strain controlled condition while 

Prager hardening model anticipates reversed 

plasticity for both strain and stress controlled 

condition. 

 A time independent constitutive theory for 

cyclic plasticity using combined isotropic and 

kinematic hardening model is proposed by 

Chaboche [10] to improve the evaluation of cyclic 

behavior of structures. According to this model, the 

radius of yield surface is either increased or 

transferred in the stress space spontaneously. In 

contrast to this rate independent hardening model, 

Chaboche [11, 12] proposed a time dependent 

unified viscoplastic model using viscoplastic 

potential which is capable to evaluate effects of 

loading rate and creep time. As like as Chaboche 

[10], this constitutive model is a combination of 

isotropic and kinematic hardening models. Also, 

another viscoplastic hardening models are proposed 

in order to estimate the inelastic responses of 

structures exposed to elevated temperatures such as 

Walker [13], Murakami and et al. [14], Moreno and 

Eric [15], Ohno [16] and Lee and Krempl [17]. The 

most significance of these viscoplastic constitutive 

theories is how to determine material constants 

which are used in these models. Multiple 

experimental tests, such as Mahnken and Stein [18], 

Schwertel and Schinke [19], Fossum [20, 21], Tong 

et al. [22], Zhan [23] and Gong et al. [24] are done 

in order to calculate these parameters. Plastic 

responses of beams under cyclic loading based on 

the time independent Chaboche hardening model 

has been investigated by Shojaei [25]. A modified 

constitutive model has been proposed based on the 

unified viscoplasticity theory considering time-

dependent kinematic hardening for relaxation by 

Wufan Chen et al. [26]. Dao-Hang Li et al. [27] 

have investigated a modified unified viscoplastic 

constitutive model in order evaluate axial torsional 

thermos mechanical cyclic loading. A series of 
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experiments has been conducted by Wufan Chen et 

al. [28] to determine creep and fatigue behavior of 

316 stainless steel and to revisit a unified 

viscoplastic model. Benaarbia et al. [29] developed 

a thermodynamically-based viscoelastic-

viscoplastic model for the high temperature cyclic 

behavior of 9-12% Cr steels considering isotropic 

and kinematic hardening. Rae et al. [30] studied 

experimental characterization and computational 

modelling of cyclic viscoplastic behavior of turbine 

steel and accumulated strain fields has been 

investigated under realistic thermos-mechanical 

fatigue loading. The rate-dependent ratcheting 

characteristics of 35CRMo alloy have been 

investigated under cyclic uniaxial tension 

considering different stress amplitudes at high 

temperature by Zheng [31]. There are also other 

papers deal with viscoplastic constitutive models 

such as those studied by Dong [32], Feng [33], 

Szmytka [34], Kyaw [35], Ahmed [36], Luk-Cyr 

[37] and XiaoAn [38]. 

 In this paper, the Chaboche unified viscoplastic 

model is used to evaluate the cyclic behavior of 

thick spherical pressure vessels due to the 

mechanical cyclic loading. This model is a rate 

dependent constitutive theory with combined 

isotropic and kinematic hardening models. The 

considered spherical vessel is made of 316 stainless 

steel under isothermal condition at temperature 500 

C. The material parameters are obtained from 

Gong [24]. The precise numerical method based on 

a modified successive approximation proposed by 

Mahbadi et al. [7-9, 25] is developed and used to 

estimate the viscoplastic cyclic loading of thick 

vessels. The feature of the present work that makes 

it unique in comparison with the published papers 

on cyclic loading of thick vessels is the time 

dependency of this viscoplastic model which makes 

it capable to indicate effects of loading rate and 

relaxation time. 

 

2. Mathematical Formulation 

Consider a thick spherical vessel made of isotropic 

materials with inside and outside radii 
1

R  and 
2

R

subjected to inside and outside pressures
1

P  and
2

P , 

respectively. In order to achieve convergence, the 

parameters are normalized. The dimensionless 

parameters are considered in Eq. (1). 
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 In Eq. (1), ij is the stress tensor and ij  is the 

strain tensor. The subscripts rr ,   and   

represent radial, tangential, and meridional 

directions, respectively. Here, vp  and Res  

superscripts indicate viscoplastic strain and residual 

strain, respectively. 
0

  is the initial yield stress and 

0
 is the initial yield strain. The dimensionless 

equilibrium, compatibility, and stress-strain 

relations of considered spherical vessel are, 

respectively, as  
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 In Eq. (4),  is Poisson's ratio. Due to the 

spherical symmetry,   =  and  = . 

 Substituting Eq. (4) into Eq. (3) and using 

equilibrium equation Eq. (2), a system of 

differential equations is found as 
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 By solving the above system of differential 

equations, radial and tangential stresses can be 

obtained as follow 
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 In Eq. (5), 
1

C  and 
2

C  are constants of 

integration and are defined using boundary 

conditions. Boundary conditions are shown in Eq. 

(6). 

1
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  (6) 

Using the boundary conditions of Eq. (6) and 

substituting into Eq. (5), constants 
1

C  and 
2

C  are 

determined as 
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3. Hardening Model 

In this paper, the unified viscoplastic hardening 

model proposed by Chaboche [11, 12] is considered 

to evaluate ratcheting behavior of thick pressure 

vessels at elevated temperatures. This model is a 

time dependent constitutive model which includes 

kinematic and isotropic kinematic hardening 

theories. The flow rule of this model using the von 

Mises yield criterion is shown in Eq. (8) 

3

2 ( )
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ij ij

S A

J A

−
=

−
  (8) 

 Where ijS  and ijA  are the deviatoric stress and 

back stress tensors, J  is a distance in the stress 

space, which is given in Eq. (9). 

3
( ) ( )( )

2
ij ij ij ij ij ijJ A S A S A  − = − −  (9) 

 The following relation is used as yield criterion 

in this hardening model 

0
( )
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f J A R = − − −   (10) 

 Rate of effective viscoplastic strain is defined as 
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n
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 The McCauley bracket .   is used here to ensure 

that when 0f  , the state of stress is inside the 

elastic domain. In Eqs. (10) and (11), n  and Z  are 

material constants, R  is associated parameter to the 

isotropic hardening of material and is recalled as 

drag stress. 

 In this viscoplastic model, the back stress 

tensor, which related to kinematic hardening 

theory, is described in Eq. (12). 
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 Where (1)

ij
A  and (2)

ij
A  are the non-linear 

kinematic hardening parameters which are obtained 

as 
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 The parameters 
1

C , 
2

C , 
1

a  and 
2

a  are material 

constants for the Chaboche kinematic hardening 

model and are obtained from the uniaxial test. Drag 

stress associated with increasing the yield surface is 

defined as 

( )
vp
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 The normalized quantities of hardening model 

are defined as 
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4. Numerical Solution 

In this section, the numerical solution procedure for 

viscoplastic analysis and ratcheting behavior of 

thick spherical vessels under inside pressure cyclic 

loading is described. Since the relations are 

nonlinear and the inelastic strains depend upon the 

loading path, a numerical iterative procedure is 

proposed in the present work to evaluate the cyclic 

behavior of thick sphere. The numerical method 

which is proposed by Mahbadi et al. [7-9, 25] is 

developed for viscoplastic constitutive relations. 

This method is applied to the extension of Picard's 

method of the successive approximation to non-

linear equations.  

 The procedure for viscoplastic solution is as 

follow: 

1. All the input quantities are normalized with the 

initial yield stress and elasticity modulus. 

2. Total time is divided into n steps and total load 

associated with the time division (Load = f (t)) 

is divided into m steps. Also, the cross section 

of thick sphere is divided into p parts. 

3. By increasing the time one step, the yield 

criterion is checked for all cross section parts 

and if that part is in elastic region the inelastic 

strain equals to zero. Otherwise, the inelastic 

strains must be obtained as follow.  

4. A value is considered as the first approximation 

of equivalent inelastic strain increment. 

5. Then, the components of inelastic strain 

increment is obtained using the flow rule by 

Eqs. (16) and added to the accumulation 

inelastic strain to obtain the total inelastic strain 

( )

3

2

ij ijvp vp

ij

vp vp acc vp

ij ij ij

A

J

 −
 =

= + 

  (16) 

It must be noted that since J , A , and   

parameters are dependent on inelastic strains, 

the values of previous time step are used in this 

step. 

6.  The back stress tensor related to kinematic 

hardening theory is obtained from Eq. (17). 
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7. Isotropic hardening parameter, using the 

approximated inelastic strains in step 5, is 

obtained as 

( )
vp

acc

R b Q R

R R R

 = − 

= + 
  (18) 

8. Calculate the new values of stresses from Eqs. 

(5). A trapezoidal numerical integration is used 

to obtain the existence integrations. 

9.  Using the calculated quantities in step 8, new 

inelastic strain increment can be obtained from 

Eq. (19). 

( ) 1
n

ij ijvp
J A R

t
Z

 − − −
 =   (19) 

10. The new value of inelastic strain increment must 

be compared with the initial guess and if the 

difference between these two values is small 

enough, repeat the method from steps 3 to 10, 

otherwise steps 5 to 10 must be repeated until 

the convergence occurs. The following relative 

error is considered to determine convergency: 

710

New Previous

vp vp

New

vp

−
 −




(20) 

For unloading response, two different 

coordinate axes, Fig. 1, are defined at the end of 

loading and unloading curves and instead of 

obtaining the residual strains, loading process is 

applied. At the end of unloading process, the 

stresses and strains are transferred to the origin 

coordinate system. This method is used to 

assign the correct sign to the equivalent stress 

and strain. The following steps must be 

followed for unloading procedure. 
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Fig. 1. Unloading and reloading coordinate systems 

 

11. Set the strains components and the stress 

components to zero and transfer kinematic 

hardening parameters to unloading coordinate 

using the following transmission law 

(2)acc

ij ij ijA A= −   (21) 

Where ijA  is the accumulated back stress tensor 

in the unloading coordinate system and 
(2)

ij  is 

the maximum stress tensor in the loading 

coordinate system. 

12.  Steps 2 through 10 is repeated in order to 

evaluate the unloading responses. All the 

calculated quantities in the unloading 

coordinate systems are transferred to the main 

coordinate using the following transmission 

relation 

1
( ) ( ) ( )

1 1

( )
m m

L k UL k UL m

ij ij ij ij

k k

S S S S
−

= =

= − −   (22) 

where ijS  is any tensor including stress, total 

strain, inelastic strain, and back stress. 

Superscripts ( )L k  indicate the final value of 

ijS  in th
k  cycle of loading. Also, ( )UL k  

indicates the final value of ijS  in th
i  cycle of 

unloading and m  shows the last cycle. 

13. A new coordinate system in the same direction 

of main coordinate is considered in order to 

obtain the reloading responses. As same as 

unloading process, the strains components and 

the stress components are set to zero and 

kinematic hardening parameters are transferred 

to the reloading coordinate using the following 

transmission law 

(1)acc

ij ij ijA A= −   (23) 

14. Similar to unloading, steps 2 through 10 are 

repeated in order to estimate the reloading 

responses. All the calculated quantities in the 

reloading coordinate systems are transferred to 

the main coordinate using the following 

transmission relation 

1 1
( ) ( ) ( )

1 1

( )
m m

L k UL k UL m

ij ij ij ij

k k

S S S S
− −

= =

= − +    (24) 

15. The procedures between steps 2 through 15 are 

repeated until the final cycle of load is achived. 

 The flow chart corresponding to the proposed 

numerical procedure is illustrated in Fig. 2. 

 

5. Results and Discussion 

In this section the effect of different parameters 

such as loading and unloading rate, creep time, 

inside pressure, thickness of vessel, and 

temperature on the ratcheting behavior and stress 

amplitude at critical point of vessel is discussed. 

Some responses from other papers and finite 

element software are used in order to verify the 

numerical procedure. For the following examples, a 

thick spherical vessel made of SS316 steel is 

considered. The radius ratio of the vessel is β = 1.5. 

The material properties based on the Chaboche 

viscoplastic constitutive model are given in Table 1 

[24]. 

5.1. Verification 

In Fig. 3, the numerical results obtained in present 

work are compared with experimental data for a 

beam made of 316 stainless steel [24] at uniform 

temperature 500 C.  
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Fig. 2. Flow chart of proposed numerical procedure 

 

Table 1. Material constant at multiple temperatures [24] 

Material property 
Temperature (C) 

300 500 550 600 

0 (MPa) 39 32.5 31 30 

E (MPa) 154.84 145.54 141.26 139.12 

b 39.46 33.35 31 28.6 

Q (MPa) 32.76 30.41 27.8 27.43 

a1 (MPa) 119.1 94.6 86.3 80.06 

C1 5964.1 6472.6 6939 7111.9 

a1 (MPa) 108.4 113.3 114.8 116 

C1 1001.6 979.91 957.69 928.7 

Z MPas1/n 179 175 173 170 

n 10 10 10 10 
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Fig. 3. Comparison of present work with the experimental data of beam [24] 

 

The beam is under strain-controlled condition 

where the axial strain is cycled between -0.3% and 

0.3%, and the strain rate which is used to evaluate 

the results is 0.015%/
x

s= . The stress-strain 

curve for the first cycle of loading is shown in Fig. 

3. As the figure shows, the numerical results are in 

close agreement with the experimental data and the 

percentage of error at the end of loading and 

unloading is approximately 3%. 

 In the next example, a thick spherical vessel 

made of CS1020 steel under inside pressure cyclic 

loading is cycled through 0
i

P =  to 300 MPa. In 

order to verify the numerical method with the cyclic 

plasticity responses of thick sphere based on the 

Armstrong-Frederick hardening model [5], the rate 

of inelastic strain is considered as zero, 0
vp
= . 

The material properties of the sphere are: elasticity 

modulus E = 173.2 GPa, yield stress 0 = 241 MPa, 

kinematic hardening parameters C1 = 280, C2 = 0, 

a1 = 197.5 MPa, a2 = 0, isotropic hardening 

parameters Q = 0, b = 0. Fig. 4 shows that the 

numerical results of Ref. [7] and the numerical data 

of current work are in close agreement and the 

maximum error between these two results is less 

than 1% . 

 In order to verify the proposed numerical 

algorithm with finite element method, a thick 

spherical vessel is modelled with ABAQUS 

software. The combined hardening model is 

considered in property module. This model is 

proposed by Chaboche and Lemaitre and the back 

stress due to this model is defined as 

( ) ( )

( )

1

( )
k p k p

ij k ij ij k ij

N
k

ij

k

dA C A d A d

A A

 

=

= − −

=
 (25) 

 In Figs. 5 and 6 a thick sphere with radius ratio 

β = 1.5 under inside pressure is cycled between 0 

and 300 MPa. The material properties of this vessel 

are considered as the same as previous instance. By 

substituting the above relations in the proposed 

numerical algorithm and considering 0
vp
= , the 

plastic responses of present work are compared 

with the ABAQUS results in Figs. 5 and 6. The 

effective stress versus effective strain is illustrated 

in Fig. 5. Fig. 6 shows the effective plastic strain in 

the different radius of spherical vessel. The 

percentage of error between proposed numerical 

algorithm and FEM results for effective plastic 

strain, radial, and tangential stresses at different 

radii are shown in Tables 2-4.
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Fig. 4. Comparison of present work with the numerical results of Mahbadi et al. [7] 

 

 
Fig. 5. Comparison of stress-strain curve with the FEM  

 

 
Fig. 6. Comparison of effective plastic strain versus radius ratio with the FEM  
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Table 2. Comparison of effective plastic strain, 
p

, with FEM results 

Radius Ratio,   Present Work FEM Error, %  

1  0.009479  0.009355  1.33  

1.125  0.005836  0.005764  1.24  

1.25  0.003642  0.003594  1.37  

1.375  0.002269  0.002234  1.57  

1.5  0.001370  0.001347  1.69  

 

Table 3. Comparison of radial stress, 
rr

 , with FEM results 

Radius Ratio,   Present Work FEM Error, %  

1  300.00−  299.48−  0.17  

1.125  202.93−  202.64−  0.15  

1.25  122.14−  121.86−  0.23  

1.375  55.40−  55.22−  0.34  

1.5     0     0  0  

 

Table 4. Comparison of tangential stress, 
 , with FEM results 

Radius Ratio,   Present Work FEM  Error, %  

1  124.41  124.46  0.05  

1.125  196.83  196.38  0.23  

1.25  244.96  244.28  0.28  

1.375  278.32  277.48  0.30  

1.5  303.79  302.78  0.33  

5.2. Effect of loading and unloading rate 

In Figs. 7 and 8, the inside pressure of spherical 

vessel with radius ratio β = 1.5 is cycled between 0  

and 250 MPa at uniform temperature distribution 

500 C. The relaxation time after loading and 

unloading are considered zero. The rate of 

ratcheting strain, which is defined as Eq. (26), is 

shown in Fig. 7 for different rates of loading in 10th 
cycle. As the figure shows, increasing the loading 

rate results into decreasing the rate of ratcheting. 

( 1)th th th

Ratcheting Peak Peak

n Cycle n Cycle n Cycle


−
= −   (26) 

5.3. Effect of inside pressure 

In Fig. 9, the inside pressure of spherical vessel with 

radius ratio β = 1.5 is cycled between 0 and 
T

P  at 

uniform temperature distribution 500 C. The 

loading and unloading times are 1 hour without 

creep time after loading and unloading. The rate of 

ratcheting strain is shown in Fig. 9 for various 

inside pressure in different cycles. As the figure 

shows, increasing the inside pressure, results into 

increase of the rate of ratcheting.
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Fig. 7. Effect of loading rate on the ratcheting strain 

 

 
Fig. 8. Effect of loading rate on the stress amplitude 

 

 
Fig. 9. Effect of insider pressure range on the ratcheting strain 
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5.4. Effect of creep time 

In Figs. 10 and 11, the inside pressure of spherical 

vessel with radius ratio β = 1.5 is cycled between 0 

and 250 MPa at uniform temperature distribution 

500 C. The rate of loading and unloading is 4.617 

MPamin-1. The creep time after loading is varied 

through 0 to 500 min, and the responses of 

ratcheting rate and stress amplitude are 

investigated. Although increasing the creep time 

results to increase of ratcheting strain, the stress 

amplitude is decreased. 

 In Figs. 12 and 13, the effects of different creep 

time conditions for constant loading and unloading 

rates, considering 100 hours creep time just after the 

1st half of cycle, 100 hours creep time after each 

half of cycle, and without creep time is discussed. 

As the figures show, by adding the creep time after 

loading the ratcheting strain is increased while the 

stress amplitude is decreased. Also, adding the 

creep time after unloading results to increase of the 

ratcheting strain and slightly decrease of the stress 

amplitude. 

5.5. Effect of temperature 

In Figs. 14 and 15, the inside pressure of spherical 

vessel with radius ratio β = 1.5 is cycled between 0 

and 250 MPa at uniform temperature distribution 

CT
 . The temperature is varied through 300 to 600 

C. The rate of loading and unloading is 4.167 

MPamin-1. The rate of ratcheting strain is shown in 

Fig. 14 for different temperatures in different 

cycles. As the figure shows, increasing the 

temperature distribution, results into increase of the 

rate of ratcheting. 

 Fig. 15 shows the stress amplitude versus 

temperature distribution in the 10th cycle. It is 

shown that the stress amplitude increases by 

increasing the temperature. 

5.6. Effect of thickness of vessel 

In Figs. 16 and 17, the inside pressure of spherical 

vessel with radius ratio β is cycled between 0 and 

250 MPa at uniform temperature distribution 500 

C. The rate of loading and unloading is 4.167 

MPamin-1. The rate of ratcheting strain is shown in 

Fig. 16 for different thicknesses of vessel in 

different cycles. As the figure shows, increasing the 

thickness, results into exponentially decrease of the 

rate of ratcheting. 

 Fig. 17 shows the stress amplitude versus radius 

ratio in the 10th cycle. It is shown that the stress 

amplitude is reduced by increasing the thickness of 

vessel. 

 

6. Conclusion 

A Chaboche unified viscoplastic constitutive model 

with combined isotropic and kinematic hardening 

theories is considered to estimate the ratcheting 

behavior of thick spherical pressure vessels under 

mechanical cyclic loading. Based on the mentioned 

hardening theory, the yield surface is transferred 

and the radius of yield surface is increased in the 

Haigh-Westergaard stress space. An accurate 

numerical procedure based on the modified 

successive approximation method is proposed to 

obtain cyclic responses of viscoplastic materials. 

The vessel is subjected to inside pressure cyclic 

loading at elevated uniform temperature 

distribution. The proposed method is applied to the 

governing equations in order to obtain inelastic 

strains and stresses. The novelty of present study, in 

comparison with the published papers reported on 

cyclic loading, is application of a time dependent 

constitutive model to evaluate the effects of rate on 

the ratcheting behavior of structures. The effects of 

different parameters on the ratcheting strain, 

accumulations strain, and the stress amplitude are 

investigated in this paper. The summarized results 

of cyclic loading analysis for a thick sphere at 

elevated temperatures are discussed as follows: 

• Under load controlled cyclic loading, the vessel 

ratchets. This conclusion is reached with simple 

kinematic hardening models, reported in the 

previous researches, up to the more 

sophisticated models, as reported in this paper. 

• Increasing the loading and unloading rates 

decreases the ratcheting strain, while the 

effective stress amplitude is increased. 

• The rate of strain accumulation is increased 

exponentially due to increasing creep time, 

while the magnitude of stress amplitude is 

diminished. 
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Fig. 10. Effect of creep time on the ratcheting strain 

 

 
Fig. 11. Effect of creep time on the stress amplitude 

 

 
Fig. 12. Effect of different creep time conditions on the ratcheting strain 
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Fig. 13. Effect of different creep time conditions on the stress amplitude 

 

 
Fig. 14. Effect of temperature distribution on the ratcheting strain 

 

 
Fig. 15. Effect of temperature distribution on the stress amplitude 
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Fig. 16. Effect of thickness of vessel on the ratcheting strain 

 

 
Fig. 17. Effect of thickness of vessel on the stress amplitude 

 

• Considering relaxation time at the unloading 

process may raise the ratcheting strain. 

• The represented data for different temperature 

shows that increasing this parameter increases 

either the ratcheting strain or the stress 

amplitude. 
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