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Abstract

In this study, frictionless contact problem for a functionally graded (FG) layer is considered. The FG layer
is subjected to load with a rigid stamp and the FG layer is bonded on a rigid foundation. The graded layer is
modeled as a non-homogenous medium with a constant Poisson’s ratio and exponentially varying shear
modules. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is
neglected. The problem is solved analytically using plane elasticity and integral transform techniques. The
problem is reduced to a singular integral equation using plane elasticity and integral transform techniques.
Obtained singular integral equation is solved numerically using Gauss-Jacobi integration formulation and
obtain the contact pressure and contact length. The contact length and contact pressures between the FG layer
and the rigid stamp are analyzed for various material properties and loading. Aim of the paper is to investigate
the effect of the non-homogeneity parameter of the graded layer on the contact pressures and lengths.
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1. Introduction of industries, with a big potential to be used in other
practices in the future. The current applications are
aerospace, automobile, biomedical, defense,
electrical/electronic, energy, marine mechanical

Materials with changing composition,
microstructure, or porosity across the volume of the
material are referred to as the functionally graded
material (FGM) [1]. Functionally graded materials [4]- ) ) )

are inhomogeneous materials, consisting of The axisymmetric problem of a functionally
different materials, performed to have a continually ~ 9raded half-space forced to a concentrated load
modify  spatial composition  profile  [2]. studied by Giannakopoulos and Suresh [5]. Guler
Functionally graded materials are modern and Er(_jogan investigated a series of analytical
engineering materials designed for a specific comparison results for the contact problem of two

performance or function in which a spatial deformable solids containing a graded coating with
gradation in structure [3]. The major property of the exponentially varying shear modulus [6]. Receding

FGM have made them to be advantageous in almost contact problem between a functionally graded
all the human areas of profession. Functionally coating and a homogeneous substrate is examined

graded materials are now being applied in a number by El-Borgi et al. [7]. Barik et al. concerned with
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the stationary plane contact of a functionally graded
heat conducting punch and a rigid insulated half-
space [8]. The two-dimensional frictionless contact
problem of a coating structure consisting of a
surface coating, a functionally graded layer and a
substrate under a rigid cylindrical punch is
investigated by Yang and Ke [9]. Rhimi et al.
investigated the effect of the material
nonhomogeneity parameter and the thickness of the
graded layer on the contact pressure and on the
length for the axisymmetric problem of a
frictionless receding contact between an elastic
functionally graded layer and a homogeneous half-
space [10]. The axisymmetric problem of a
frictionless double receding contact between a rigid
stamp of axisymmetric profile, an elastic
functionally graded layer and a homogeneous half
space is investigated by Rhimi et al. [11]. Chen and
Chen studied a rigid punch contacting with a graded
layer on a rigid substrate that heat generated by
contact friction is investigated with a constant
friction coefficient and inertia effects are neglected
[12]. Comez studied a contact problem for a
functionally graded layer loaded by means of a
rigid stamp and supported by a Winkler foundation
[13]. Comez also examined contact problem for a
functionally graded layer indented by a moving
punch [14]. The plane problem of a smooth double
receding contact between a functionally graded
layer and an elastic layer when they are pressed
together is investigated by Yan and Li [15]. EI-
Borgi and Comez studied the plane problem of a
receding frictional nonlinear contact between an
elastic graded layer and a homogeneous half-space
that pressed against each other by a rigid stamp
[16]. Giiler et al. developed and computational
methods for the plane frictional contact problem of
a cylindrical punch on a functionally graded
orthotropic medium [17]. Turan et. al. [18],
Adiyaman et al. [19-20] and Oner et. al. [21] and
studied the contact problem of a functionally
graded layer. The buckling analysis of FGM
circular truncated conical and cylindrical shells
subjected to combined axial extension loads and
hydrostatic pressure and resting on a Pasternak type
elastic foundation is examined by Sofiyev [22]. The

non-linear free vibration behavior of functionally
graded orthotropic cylindrical shell interacting with
the two-parameter elastic foundation is studied by
Sofiyev et. al. [23].

2. Formulation of the problem

As shown in Fig. 1, consider the symmetric plane
strain problem consists of an infinitely long
functionally graded (FG) layer which bonded to a
rigid support on its lower surface is investigated
according to the theory of elasticity. The thickness
of FG layer is h and a concentrated force P is to the
layer via a rigid cylindrical punch with radius R.
Poisson’s ratio v is taken as constant, the shear
modulus x depend on the y-coordinate only as

follows:
u(y) = ue” (0<y<h) (1)

where 4, are the shear modules of the graded layer
at y=0, B are the non-homogeneity parameter
controlling the variation of the shear modules in the
graded layer. It is assumed that the contact surfaces
are frictionless and x=0 is to be the plane of
symmetry with respect to external loads as well as
geometry, for simplicity. Clearly, it is sufficient to
consider one half (i.e., x> 0) of the medium only.
Assuming that the FG layer is isotropic at every
point, equilibrium equations, the strain-
displacement relationships and the linear elastic
stress-strain law, respectively, are given by:

99, Ty g 09 g @
ox oy ox oy
8xx:a_u1 gyy:av' gxy:l[a—u*'@} (3)
O oy 2(0y X
Oy = %[(14_ K)€y +(3— K)EW] (42)
o, = %[(3_/()% +(1+ K)é‘yy] (4b)
Txy = Zﬂ(y)gxy (40)
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Fig. 1. Geometry and loading of the contact problem

where u and v are the x and y components of the
displacement field, respectively; o,, o, and 7,

are the components of the stress field in the same
coordinate system; &,, &, and ¢, are the

X y

corresponding components of the strain field; x« is
a material property defined as x =3—4v for plane
strain problems. Combining Egs. (1)-(4), the
following two-dimensional Navier’s equations are
obtained:

ou 2u azv
(K+1)—+( -1)—
3)/ 5 5)/ (5a)
ou
0%V ov . dl
(x— 1)—+( +)—+2—
o o (5b)

+ﬂ(3—1c)&u+,3(1c+1)5:0

In case of graded layer solution, using
symmetry considerations and Fourier transforms,
the displacement components for FG layer may be
written:

(09) =2 [l sin(ex)e
o ©)
v, (% Y) == [w (&, y) cos(£x)d<

where ¢(&,y)and w(&,y) are the inverse Fourier

sine and Fourier cosine transforms of u and v with
respect to the x-coordinate and the y-coordinate,
respectively. Substituting Egs. (6) into Navier
equations (5), the following ordinary differential
equations are obtained:

(ke +)E (s )d¢ fd

+ﬂ(K—1){d—5—§l//}=
: ™

(kD&% + (x +1) d LA 2§d—¢
dy dy

+ﬂ[(3—x)§¢+(x+1)%—y;} =0

where

¢=ZAZA,-e”"y,
j=1

4
y=> Ame" (8)
j=1

The unknown functions A; (j=12,34) are

determined from the boundary conditions and
n,..,n, are the four complex roots of the

characteristic equation associated with Egs. (7),
which may be written:

nj +2/n] +(B° —2£°)n] —2&° pn,

©)
rEHE ) 0
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roots of which are:

nl=—3{ﬂ+J4§2+ﬁ2—4éﬁiJ‘°"—"],
2 K+1
1 2 2 . 83—«
n == ﬂ—J4§ O
n =1 ﬂ+\/4§2+p’2+4§ﬂi F’_—K
2 xK+1
n, == ﬁ—\/4§2+ﬂ2+45ﬂi,/3‘—"
2 xKk+1

The known function m; in 2" expression in Eq.

(10)

(8b) may be expressed as follows:

_(3p+2n, = Br)[ 0y (B+n,)(x+1) = & (x+3) ]
: [ag - p(x-3)(x+1)]

(11)

Substituting Egs. (6) and (8) into Egs. (4), stress
and displacement fields of interest for graded layer
are obtained:

o = 2t IZA.C.e(""y)cos(gx)dg (12a)

2 e(ﬁy) © 4 n .
Ty = !JZ:;A]Dje( Msin(éx)dg  (12b)
4
v, :EJ'ZAJmj el™) cos(&x)dé (12¢c)
o=
x4
u, _2 j > A sin(Ex)dé (12d)
5 =1

where C; and D; (j=1,2,34) are given by:

Cj :(3—K)§+(K+l)mjn
D = n, —gmj

]

a (13)

3. Solution of the problems

The boundary conditions of the contact problem for
the FG layer can be written as:

u(x,0)=0, (0<x<wm) (14a)

V(x,0)=0, (0<Xx<o0) (14b)

7,(x,h) =0, (0<x<ox) (14c)
_J-p(x) (0<x<a)

oy(x,h)_{o (0sx<oo)} (144d)

%[v(x, h]=f(x), (0<x<a) (15)

where p(x) is the unknown contact stress between
the rigid punch and the layer on the contact area
(—a, a) and f(x) is the derivative of the profile of the
rigid stamp; one may write

f(x) =% (16)

By making use of the boundary conditions given by
(14a-d), the following matrix equation is obtained
for the unknown constants A; (j = 1-4) appearing in
the stress and displacement expressions for the FG
layer in Egs. (12):

Dle(fhh) Dze(”zh) D3e(”eh) D4e(”“h) A 0
Cle(nlh) Cze(fhh) C3e(”1h) CAE(nlh) A, -P
m, m, m, m, || A 0
1 1 1 1 A 0
(17)

where P is defined as:
G _? _[ p(x) cos(£x)dx (18)

/loeﬁ 0

The unknown functions A; (j = 1-4) are obtained in
the form

Ay
A = m P (19)

where A, (j=1..,4) and AA are given in

Appendix.

Substituting Egs. (19) into the remaining
boundary condition (12) and using the symmetry
consideration, p(x) = p(—x), and after some routine
manipulations
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2 flx+1( 1 «
ﬂyoe’}hji 38 (X_JJFN(XJ)} p(t)dt:E (20)

where N(x,t) is given in Appendix. In the singular
integral equation (20), the contact area a is also
unknown, as well as the contact stress p(x). For a
complete solution of the problem, the contact stress
p(x) must satisfy the following equilibrium
condition:

j‘ p(t)dt = P (21)

4. The solution of the system of integral
equations

To simplify the numerical analysis of the integral
equation, the following dimensionless quantities
can be introduced.

t=ar (22a)
x=as (22b)
z=¢h (22c)
#r) = 5P (22d)

Using these dimensionless quantities, the integral
Egs. (20) and (21) can be written as

j["—”i+ k(s, r)}(r)dr

_ " a
2R/hP/hh

(23a)

%jl(p(r)dr -1 (23b)

where k(s,r) is given Appendix.
The solution of the integral equations can be
expressed as

$(r) = w(r)g(r) (242)

Since there are smooth contacts at the end
points, the index of the integral equation (23a) is —1
[24].

w(r)=(1-r)*(1+r)’, (@=05 g=05) (24b)

The solution of the integral equation can be
expressed as Using the Gauss-Jacobi integration
formulas, the integral Eq. (23a) and equilibrium
conditions (23b) become,

Zw ()] 1_r+%k(sk,n)}
ko (25a)
sh
_ZeT M AN N
2 P/hR/h "
a N
23 W (1)g(r) =1 (25b)
i=1

r;and s, are the roots of the related Jacobi
polynomials and W," is the weighting constant

given by
iz .
r cos(NJrlj (i ) (26a)
7 2k-1
—cos| ZEX2) (k=1,..N+1 26b
S, COS[2N+1J ( +1) (26b)
W = 18 (i=1..N) (26¢)
PN+ T

Note that there are N + 1 equations to determine the
N unknowns g(ri) in Eqg. (25a). Since the extra
equation is used to normalise the interval of
integration, it is sufficient to choose only N of the
N + 1 possible collocation points [25]. Thus, Egs.
(25a) and (25b) give N + 1 equations to determine
the N + 1 unknowns, which are g(r;) and a. The
system of equations is linear in terms of the g(ri)
but highly nonlinear in variable a. Therefore, an
iterative method is used to obtain the unknowns.

5. Numerical results

This section presents numerical results for contact
area and contact stress distribution of the FG layer
due to frictionless contact of a rigid cylindrical
punch. The values u and h should be considered
fixed, they are related to more than one
dimensionless quantity.

Table 1-2 and Figs. 2-3 show the variation of
the contact width with inhomogeneity parameter S.
ph > 0 indicates that the rigidity of the top surface
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Table 1. Comparison of the contact widths a/h under punch depending on load factor with 4 (-1,0.001,1) and x= 2

u R/h=10 R/h=100 R/h=1000

P/h 1 0.001 1 1 0.001 1 £ 0.001 1
100 03148 02152  0.1402 08203 06222 04574 19157 15453 1.2528
200 02304 01533  0.0977  0.6233 04589 03235 14960  1.1906  0.9459
400 01673 01088 00683 04680 0333 02262 11594 09083 0.7015
500  0.1507  0.0974 00609 04257 03002 02013 10677  0.8303 0.6344
800 01207 00771 00478 03473 02398 01575  0.8898  0.6839  0.5094
1000 01085  0.0690  0.0427 03148 02152  0.1402  0.8203 06222 0.4574

Table 2. Comparison of the contact widths a/h under punch depending on the radius with 5 (-1,0.001,1) and x= 2

R/h 11 (P/h) =100 w1/ (P/h) =1000
-1 0.001 1 =l 0.001 1

10 0.3148 0.2152 0.1402 0.1085 0.0690 0.0427
100 0.8203 0.6222 0.4574 0.3148 0.2152 0.1402
500 1.4960 1.1906 0.9459 0.6233 0.4589 0.3235
1000 1.9157 1.5453 1.2528 0.8203 0.6222 0.4574

pei RA=10 | B=1 R/=100 \ p=1 Rih=1000
,,,,,,,,, p=0.001 VDT Ej‘lom | giiom

M e00 800

Prh

1000 0 200 400

04
I I T I I

H 600 800 1000

P/h

1000 0 200 400

Fig. 2. Variation the contact area by depending on load factor (x = 2)

is higher than bottom surface of the layer. On the
contrary when fh <0, rigidity is the opposite of the
first case. When £ is getting increase, the contact
width a/h decrease. Tables 1 and 2 and Figs. 2 and
3 also show variation of the contact width by
depending on the load factor /(P/h) and radius of
punch R/h. Contact widths a/h increases with
increasing of radius of punch R/h. Since increasing
load factor x/(P/h) corresponds to decreasing the
applied concentrated load P, the contact widths a/h
decreases.

In Table 3 and Fig. 4 the contact width a/h are
analyzed for inhomogeneity parameter S by
depending on the various of value quantities of the
materials  constant x  With  increasing
inhomogeneity parameter S, the contact width a/h
decrease. In Table 3 and Fig. 4 are shown relation
a/h and R/h by depending on material constant «.
Contact width a/h increases with increasing
material constant k. Increasing of k corresponds to
decreasing of Poisson ratio v.
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Figs. 5-8 illustrates the effect of the effect of the
relative in inhomogeneity parameter on the contact
pressure distribution on the top of the FG layer.

Figs. 5-7 show P(x)/(P/h) the dimensionless
contact pressure distributions. The contact pressure
is maximum at x=0. In these figures, for R/h =10,
100 and 1000, the relation among £ and /(P/h) is
shown respectively. As load factor increases,
dimensionless contact pressure increases. Also,
with increasing contact stresses also increases when
inhomogeneity parameter S increases.

Fig. 8, shows P(x)/(P/h) the dimensionless
contact pressure distribution. In the figure, z/(P/h)
=100 and x= 2 are fixed and dimensionless contact
pressure distribution for R’/h =10, 100 and 1000, is
given. As R/h increases, size of the contact area
increases, so the applied load distributes a much
larger area. Therefore, contact pressure decreases.
With increasing inhomogeneity parameter S, the
contact stresses decreasing.

W/(P/h)=100 _

W/(P/h)=1000

400 R/h 600 800 1000

0 200 400 R/h s00 800 1000

Fig. 3. Variation of the contact area by depending on the radius (x = 2)

Table 3. Comparison of the contact widths a/h under punch depending on xwith £ (-1,0.001,1) and x/(P/h) = 100

R/h k=15 k=20 k=25
-1 0.001 1 -1 0.001 1 -1 0.001 1

10 0.2868 0.1965 0.1281 0.3148 0.2152 0.1402 0.3400 0.2323 0.1512
50 0.5665 0.4190 0.2962 0.6233 0.4589 0.3235 0.6731 0.4946 0.3482
100 0.7438 0.5676 0.4189 0.8203 0.6222 0.4574 0.8823 0.6702 0.4917
250 1.0459 0.8259 0.6416 1.1594 0.9083 0.7015 1.2534 0.9787 0.7534
500 1.3417 1.0779 0.8630 1.4960 1.1906 0.9459 1.6191 1.2839 1.0159
750 1.5461 1.2528 1.0148 1.7419 1.3882 1.1172 1.8699 1.4979 1.2012
1000 1.7125 1.3911 1.1369 1.9157 1.5453 1.2528 2.0781 1.6682 1.3471
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Fig. 4. Variation of the contact area by depending on xwith z/(P/h) = 100
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Fig. 6. The Contact pressure distribution with variation of load factor (R/h =100, x = 2)
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Fig. 8. The Contact pressure distribution with variation of radius (z/(P/h) = 100, k= 2)

6. Conclusion

In this paper, the contact problem of a functionally
graded (FG) layer resting on a rigid foundation is
considered. The top of the FG layer is subjected to
rigid cylindrical punch. The elasticity modulus is
assumed to be exponential function. The problem is
solved analytically using plane elasticity and
integral transform techniques. The material
inhomogeneity parameter has an important effect
on the contact width and the stress distribution. The
contact width a/h and the stress distribution
P(x)/(P/h) are investigated for various material
properties and loading, such as g/(P/h), R/h and .
The contact width a/h decreases with increasing
material inhomogeneity parameter 8. The contact
stress P(x)/(P/h) increases with increasing material
inhomogeneity parameter . In addition, the
greatest contact pressures occur at symmetry axis
and increases with increasing S. With increasing

load factor /(P/h) and radius of punch R/h and
material constant x;, the contact width a/h increases.
With increasing load factor z/(P/h), radius of punch
R/h and material constant x, the contact width a/h
increases. As it can be seen in the figures that
increasing load factor u/(P/h), contact pressure
increases, but on the contrary contact pressure
decreases with increasing radius of punch R/h.
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Appendix

A =—(P(D,me" —D,me" —D,me"" + D,me"" + D,me"™ —D,me"™))/A
A, =(P(D,me"" — Dm,e"" — D,me"™ + D,me"" + D,m,e"™ —D,me""))/ A
A =—(P(Dme"™ - D,me"= — D,m,e" + D,m,e""™ + D,me™ —D,me"™))/ A
A, =(P(Dme"™ —Dme" — D,me""™ + D,m,e"" + D,me"™ — D,m,e"™))/ A

(A1)

AA = (e""e"™ (C,D,m, - C,D,m, — C,D,m, +C,D,m,) +e""e"" (-C,D,m, + C,D,m, +C,D,m, —C,D,m,)
+e"e"™ (C,D,m, - C,D,m, - C,D,m, +C,Dm,) +e""=e"" (C,D,m, - C,D,m, —C,D,m, +C,D,m,) (A2)
+e"¢"™ (-C,D,m, +C,D,m, +C,D,m, - C,D,m,) +e"™e"" (C,D,m, — C,D,m —C,D,m, +C,D,m,))

N(x,t) = .[ gl 1) &= 1e™™)" (mm,D, —mm,D, +m,m,D, —m,m,D,)

+e(”1*"3) (mm,D, —mm,D, —m,m,D, +m,m,D,)

+e™™)" (-mm,D, + mm,D, +m,m,D, ~m,m,D,) A3)

(np+ng)h
+e"™"™" (-mm,D, +m,m,D, + mm,D, -m;m,D, )

(ng+ny)h
+e" """ (mm,D, -m,m,D, -mm,D, +m;m,D, )

+e™™)" (_mm,D, +m,m,D, + mm,D, —m,m,D, )+ %rl]}sin S(t—-x)ds

2 (e-1)

k(s,r) = jﬁ[e %1% (mm,D, —m,m,D, +m,m,D, —m,m,D, )

nl+n3

m;m, D, —m;m, D, —m,m;D, + m;m,D, )

n1+n4 )h

m,m,D, +mm,D, +m,m,D, —m;m,D, ) (A4)

nz+n4 )h

mm,D, —m,m;D, —-mm,D, +m;m,D, )

n3+n4 )h

(
(-
nz+n3 )h ( mm, D3 +m,m, D3 + mlmsDz — m3m4D2)
(
(-

mm,D, + m,m,D, + mm,D, — m2m4D3)+KT+1]}sin z(%—%)dz



