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Abstract 

In this study, frictionless contact problem for a functionally graded (FG) layer is considered. The FG layer 

is subjected to load with a rigid stamp and the FG layer is bonded on a rigid foundation. The graded layer is 

modeled as a non-homogenous medium with a constant Poisson’s ratio and exponentially varying shear 

modules. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is 

neglected. The problem is solved analytically using plane elasticity and integral transform techniques. The 

problem is reduced to a singular integral equation using plane elasticity and integral transform techniques. 

Obtained singular integral equation is solved numerically using Gauss-Jacobi integration formulation and 

obtain the contact pressure and contact length. The contact length and contact pressures between the FG layer 

and the rigid stamp are analyzed for various material properties and loading. Aim of the paper is to investigate 

the effect of the non-homogeneity parameter of the graded layer on the contact pressures and lengths.  
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1. Introduction 

Materials with changing composition, 

microstructure, or porosity across the volume of the 

material are referred to as the functionally graded 

material (FGM) [1]. Functionally graded materials 

are inhomogeneous materials, consisting of 

different materials, performed to have a continually 

modify spatial composition profile [2]. 

Functionally graded materials are modern 

engineering materials designed for a specific 

performance or function in which a spatial 

gradation in structure [3]. The major property of the 

FGM have made them to be advantageous in almost 

all the human areas of profession. Functionally 

graded materials are now being applied in a number 
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of industries, with a big potential to be used in other 

practices in the future. The current applications are 

aerospace, automobile, biomedical, defense, 

electrical/electronic, energy, marine mechanical 

[4].  

 The axisymmetric problem of a functionally 

graded half-space forced to a concentrated load 

studied by Giannakopoulos and Suresh [5]. Guler 

and Erdogan investigated a series of analytical 

comparison results for the contact problem of two 

deformable solids containing a graded coating with 

exponentially varying shear modulus [6]. Receding 

contact problem between a functionally graded 

coating and a homogeneous substrate is examined 

by El-Borgi et al. [7]. Barik et al. concerned with 
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the stationary plane contact of a functionally graded 

heat conducting punch and a rigid insulated half-

space [8]. The two-dimensional frictionless contact 

problem of a coating structure consisting of a 

surface coating, a functionally graded layer and a 

substrate under a rigid cylindrical punch is 

investigated by Yang and Ke [9]. Rhimi et al. 

investigated the effect of the material 

nonhomogeneity parameter and the thickness of the 

graded layer on the contact pressure and on the 

length for the axisymmetric problem of a 

frictionless receding contact between an elastic 

functionally graded layer and a homogeneous half-

space [10]. The axisymmetric problem of a 

frictionless double receding contact between a rigid 

stamp of axisymmetric profile, an elastic 

functionally graded layer and a homogeneous half 

space is investigated by Rhimi et al. [11]. Chen and 

Chen studied a rigid punch contacting with a graded 

layer on a rigid substrate that heat generated by 

contact friction is investigated with a constant 

friction coefficient and inertia effects are neglected 

[12]. Comez studied a contact problem for a 

functionally graded layer loaded by means of a 

rigid stamp and supported by a Winkler foundation 

[13]. Çömez also examined contact problem for a 

functionally graded layer indented by a moving 

punch [14]. The plane problem of a smooth double 

receding contact between a functionally graded 

layer and an elastic layer when they are pressed 

together is investigated by Yan and Li [15]. El- 

Borgi and Çömez studied the plane problem of a 

receding frictional nonlinear contact between an 

elastic graded layer and a homogeneous half-space 

that pressed against each other by a rigid stamp 

[16]. Güler et al. developed and computational 

methods for the plane frictional contact problem of 

a cylindrical punch on a functionally graded 

orthotropic medium [17]. Turan et. al. [18], 

Adiyaman et al. [19-20] and Oner et. al. [21] and 

studied the contact problem of a functionally 

graded layer.  The buckling analysis of FGM 

circular truncated conical and cylindrical shells 

subjected to combined axial extension loads and 

hydrostatic pressure and resting on a Pasternak type 

elastic foundation is examined by Sofiyev [22]. The 

non-linear free vibration behavior of functionally 

graded orthotropic cylindrical shell interacting with 

the two-parameter elastic foundation is studied by 

Sofiyev et. al. [23]. 

 

2. Formulation of the problem 

As shown in Fig. 1, consider the symmetric plane 

strain problem consists of an infinitely long 

functionally graded (FG) layer which bonded to a 

rigid support on its lower surface is investigated 

according to the theory of elasticity. The thickness  

of FG layer is h and a concentrated force P is to the 

layer via a rigid cylindrical punch with radius R. 

Poisson’s ratio   is taken as constant, the shear 

modulus   depend on the y-coordinate only as 

follows: 

0( ) (0 )yy e y h     (1) 

where 0  are the shear modules of the graded layer 

at 0y  ,   are the non-homogeneity  parameter 

controlling the variation of the shear modules in the 

graded layer. It is assumed that the contact surfaces 

are frictionless and 0x   is to be the plane of 

symmetry with respect to external loads as well as 

geometry, for simplicity. Clearly, it is sufficient to 

consider one half (i.e., 0x  ) of the medium only. 

 Assuming that the FG layer is isotropic at every 

point, equilibrium equations, the strain-

displacement relationships and the linear elastic 

stress-strain law, respectively, are given by: 

0, 0
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Fig. 1. Geometry and loading of the contact problem 

 

where u  and v  are the x and y components of the 

displacement field, respectively; x , y  and  xy  

are the components of the stress field in the same 

coordinate system; x , y  and xy  are the 

corresponding components of the strain field;   is 

a material property defined as 3 4    for  plane 

strain problems. Combining Eqs. (1)-(4), the 

following two-dimensional Navier’s equations are 

obtained: 

2 2 2

2 2
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u u v

x yx y

u v
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 (5b) 

 In case of graded layer solution, using 

symmetry considerations and Fourier transforms, 

the displacement components for FG layer may be 

written: 

 

 

0
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2
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 (6) 

where ( , )y  and ( , )y  are the inverse Fourier 

sine and Fourier cosine transforms of u  and v  with 

respect to the x-coordinate and the y-coordinate, 

respectively. Substituting Eqs. (6) into Navier 

equations (5), the following ordinary differential 

equations are obtained: 
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where 

4 4
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 The unknown functions jA  ( 1,2,3,4j  ) are 

determined from the boundary conditions and 

1 4,...,n n  are the four complex roots of the 

characteristic equation associated with Eqs. (7), 

which may be written: 
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roots of which are: 
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 The known function jm  in 2nd expression in Eq. 

(8b) may be expressed as follows: 
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 Substituting Eqs. (6) and (8) into Eqs. (4), stress 

and displacement fields of interest for graded layer 

are obtained: 
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where jC  and jD  ( 1,2,3,4)j   are given by: 
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3. Solution of the problems 

The boundary conditions of the contact problem for 

the FG layer can be written as: 

( ,0) 0, (0 )u x x      (14a) 

( ,0) 0, (0 )v x x     (14b) 

( , ) 0, (0 )xy x h x      (14c) 
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where p(x) is the unknown contact stress between 

the rigid punch and the layer on the contact area 

(−a, a) and f(x) is the derivative of the profile of the 

rigid stamp; one may write 

( )
x

f x
R

   (16) 

By making use of the boundary conditions given by 

(14a-d), the following matrix equation is obtained 

for the unknown constants Aj (j = 1-4) appearing in 

the stress and displacement expressions for the FG 

layer in Eqs. (12): 
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where P is defined as: 

1
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The unknown functions Aj (j = 1-4) are obtained in 

the form  

1j

j

A
A P

A



  (19) 

where 1jA  ( 1,...,4j  ) and A  are given in 

Appendix. 

 Substituting Eqs. (19) into the remaining 

boundary condition (12) and using the symmetry 

consideration, p(x) = p(−x), and after some routine 

manipulations 
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where N(x,t) is given in Appendix. In the singular 

integral equation (20), the contact area a is also 

unknown, as well as the contact stress p(x). For a 

complete solution of the problem, the contact stress 

p(x) must satisfy the following equilibrium 

condition: 

( )

a

a

p t dt P


  (21) 

4. The solution of the system of integral 

equations 

To simplify the numerical analysis of the integral 

equation, the following dimensionless quantities 

can be introduced. 
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Eqs. (20) and (21) can be written as 
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where k(s,r) is given Appendix. 

 The solution of the integral equations can be 

expressed as 

( ) ( ) ( )r w r g r   (24a) 

 Since there are smooth contacts at the end 

points, the index of the integral equation (23a) is −1 

[24]. 
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The solution of the integral equation can be 

expressed as Using the Gauss-Jacobi integration 

formulas, the integral Eq. (23a) and equilibrium 

conditions (23b) become, 
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𝑟𝑖and 𝑠𝑘 are the roots of the related Jacobi 

polynomials and 
N

iW  is the weighting constant 

given by 
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Note that there are N + 1 equations to determine the 

N unknowns g(ri) in Eq. (25a). Since the extra 

equation is used to normalise the interval of 

integration, it is sufficient to choose only N of the 

N + 1 possible collocation points [25]. Thus, Eqs. 

(25a) and (25b) give N + 1 equations to determine 

the N + 1 unknowns, which are g(ri) and a. The 

system of equations is linear in terms of the g(ri) 

but highly nonlinear in variable a. Therefore, an 

iterative method is used to obtain the unknowns. 

 

5. Numerical results 

This section presents numerical results for contact 

area and contact stress distribution of the FG layer 

due to frictionless contact of a rigid cylindrical 

punch. The values 𝜇 and h should be considered 

fixed, they are related to more than one 

dimensionless quantity. 

 Table 1-2 and Figs. 2-3 show the variation of 

the contact width with inhomogeneity parameter . 

h > 0 indicates that the rigidity of the top surface  
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Table 1. Comparison of the contact widths a/h under punch depending on load factor with  (-1,0.001,1) and  = 2 

P h


 

10R h   100R h   1000R h   

-1 0.001 1 -1 0.001 1 -1 0.001 1 

100 0.3148 0.2152 0.1402 0.8203 0.6222 0.4574 1.9157 1.5453 1.2528 

200 0.2304 0.1533 0.0977 0.6233 0.4589 0.3235 1.4960 1.1906 0.9459 

400 0.1673 0.1088 0.0683 0.4680 0.3336 0.2262 1.1594 0.9083 0.7015 

500 0.1507 0.0974 0.0609 0.4257 0.3002 0.2013 1.0677 0.8303 0.6344 

800 0.1207 0.0771 0.0478 0.3473 0.2398 0.1575 0.8898 0.6839 0.5094 

1000 0.1085 0.0690 0.0427 0.3148 0.2152 0.1402 0.8203 0.6222 0.4574 

 

 

Table 2. Comparison of the contact widths a/h under punch depending on the radius with  (-1,0.001,1) and  = 2 

R/h / ( ) 100P h   / ( ) 1000P h   

 -1 0.001 1 -1 0.001 1 

10 0.3148 0.2152 0.1402 0.1085 0.0690 0.0427 

100 0.8203 0.6222 0.4574 0.3148 0.2152 0.1402 

500 1.4960 1.1906 0.9459 0.6233 0.4589 0.3235 

1000 1.9157 1.5453 1.2528 0.8203 0.6222 0.4574 

 

 

   
 

Fig. 2. Variation the contact area by depending on load factor ( = 2) 

 

is higher than bottom surface of the layer. On the 

contrary when h < 0, rigidity is the opposite of the 

first case. When  is getting increase, the contact 

width a/h decrease. Tables 1 and 2 and Figs. 2 and 

3 also show variation of the contact width by 

depending on the load factor /(P/h) and radius of 

punch R/h. Contact widths a/h increases with 

increasing of radius of punch R/h. Since increasing 

load factor /(P/h) corresponds to decreasing the 

applied concentrated load P, the contact widths a/h 

decreases. 

 In Table 3 and Fig. 4 the contact width a/h are 

analyzed for inhomogeneity parameter  by 

depending on the various of value quantities of the 

materials constant . With increasing 

inhomogeneity parameter , the contact width a/h 

decrease. In Table 3 and Fig. 4 are shown relation 

a/h and R/h by depending on material constant . 

Contact width a/h increases with increasing 

material constant 𝜅. Increasing of 𝜅 corresponds to 

decreasing of Poisson ratio 𝜈. 
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 Figs. 5-8 illustrates the effect of the effect of the 

relative in inhomogeneity parameter on the contact 

pressure distribution on the top of the FG layer. 

 Figs. 5-7 show P(x)/(P/h) the dimensionless 

contact pressure distributions. The contact pressure 

is maximum at x=0. In these figures, for R/h =10, 

100 and 1000, the relation among  and /(P/h) is 

shown respectively. As load factor increases, 

dimensionless contact pressure increases. Also, 

with increasing contact stresses also increases when 

inhomogeneity parameter  increases. 

 Fig. 8, shows P(x)/(P/h) the dimensionless 

contact pressure distribution. In the figure, /(P/h) 

= 100 and  = 2 are fixed and dimensionless contact 

pressure distribution for R/h =10, 100 and 1000, is 

given. As R/h increases, size of the contact area 

increases, so the applied load distributes a much 

larger area. Therefore, contact pressure decreases. 

With increasing inhomogeneity parameter , the 

contact stresses decreasing. 
  

 

 

   
 

Fig. 3. Variation of the contact area by depending on the radius ( = 2) 

 

 

Table 3. Comparison of the contact widths a/h under punch depending on  with  (-1,0.001,1) and /(P/h) = 100 

R/h 1.5   2.0   2.5   

 -1 0.001 1 -1 0.001 1 -1 0.001 1 

10 0.2868 0.1965 0.1281 0.3148 0.2152 0.1402 0.3400 0.2323 0.1512 

50 0.5665 0.4190 0.2962 0.6233 0.4589 0.3235 0.6731 0.4946 0.3482 

100 0.7438 0.5676 0.4189 0.8203 0.6222 0.4574 0.8823 0.6702 0.4917 

250 1.0459 0.8259 0.6416 1.1594 0.9083 0.7015 1.2534 0.9787 0.7534 

500 1.3417 1.0779 0.8630 1.4960 1.1906 0.9459 1.6191 1.2839 1.0159 

750 1.5461 1.2528 1.0148 1.7419 1.3882 1.1172 1.8699 1.4979 1.2012 

1000 1.7125 1.3911 1.1369 1.9157 1.5453 1.2528 2.0781 1.6682 1.3471 
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Fig. 4. Variation of the contact area by depending on  with /(P/h) = 100 

 

 

   
 

 

Fig. 5. The Contact pressure distribution with variation of load factor (R/h =10,  = 2) 

 

   
 

Fig. 6. The Contact pressure distribution with variation of load factor (R/h =100,  = 2) 
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Fig. 7. The Contact pressure distribution with variation of load factor (R/h =100,  = 2) 

 

   
 

Fig. 8. The Contact pressure distribution with variation of radius (/(P/h) = 100,  = 2) 

 

6.  Conclusion 

In this paper, the contact problem of a functionally 

graded (FG) layer resting on a rigid foundation is 

considered. The top of the FG layer is subjected to 

rigid cylindrical punch. The elasticity modulus is 

assumed to be exponential function. The problem is 

solved analytically using plane elasticity and 

integral transform techniques. The material 

inhomogeneity parameter has an important effect 

on the contact width and the stress distribution. The 

contact width a/h and the stress distribution 

P(x)/(P/h) are investigated for various material 

properties and loading, such as /(P/h), R/h and . 

The contact width a/h decreases with increasing 

material inhomogeneity parameter . The contact 

stress P(x)/(P/h) increases with increasing material 

inhomogeneity parameter . In addition, the 

greatest contact pressures occur at symmetry axis 

and increases with increasing . With increasing 

load factor /(P/h) and radius of punch R/h and 

material constant , the contact width a/h increases. 

With increasing load factor /(P/h), radius of punch 

R/h and material constant , the contact width a/h 

increases. As it can be seen in the figures that 

increasing load factor /(P/h), contact pressure 

increases, but on the contrary contact pressure 

decreases with increasing radius of punch R/h. 
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