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Abstract 

A graded harmonic solid ring finite element model (FEM) is developed from the three-dimensional theory 

of elasticity using Fourier series expansion in circumferential direction to investigate free vibration 

characteristics of functionally graded (FG) thin and thick-walled cylinders parametrically. The mechanical 

properties of the finite length FG cylinders composed of metal (stainless steel) and ceramic (silicon nitride) 

are assumed to vary in radial direction according to a power law variation as a function of the volume 

fractions of the constituents. The frequency characteristics of the FG cylinders depending on various 

parameters such as circumferential harmonic number, power law exponent, thickness to radius ratio, length 

to radius ratio, and constituent material configuration are investigated through numerical simulations. When 

the graded harmonic model is compared with the previous models in the literature the agreements are found 

to be excellent. Also, a reduction in computational effort is provided using a smaller number of graded 

elements required for a fair estimation of vibrational behavior of such axisymmetric structures. As far as the 

numerical results are considered it is observed that thin and thick-walled cylinders behave in a different way 

for increasing circumferential harmonic number. The influence of the power law exponent on the frequency 

depends on the constituent material position and it does not affect the circumferential harmonic number at 

which the fundamental natural frequency occurs. As a conclusion, it can be stated that the free vibration 

behavior of FG cylinders can be regulated arbitrarily by altering material configuration and power law 

function as well as geometrical parameters. 
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1. Introduction 

Classical layered composite materials, thanks to a 

combination of superior properties of different 

materials such as metals and ceramics, have been 

widely used for various engineering applications. 

However, in classical layered composite, there may 

exist sort of stress concentrations at the interface 

where two different material layers meet, which can 

produce undesired results. To overcome such 
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defects studies on the development of new layered 

composites, functionally gradient material (FGM), 

have been intensively progressed since late 1980’s. 

FGM has a material composition varying 

continuously (without any discontinuity) through 

the thickness. These kinds of materials are 

anisotropic and inhomogeneous with continuous 

variation in mechanical properties. A cylindrical 

structure made up of such a composite material, 
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FGM, is one of the basic structural configurations 

because of its simple geometrical shape [1]. Studies 

on vibration of cylinders are extensive. While 

Ludwig and Krieg [2], Chung [3], Bhimaraddi [4] 

concentrated on the vibration of thin-walled 

cylinders, Wong and Williams [5], Loy and Lam 

[6], and Singhal et al. [7] studied the vibration of 

thick-walled cylinders. But they are all limited to 

isotropic cylinders.  

 Several studies on FGM cylindrical structures 

have also been carried out. Loy et al. [8] obtained 

the natural frequencies of simply supported FGM 

cylindrical shells by using Love’s shell theory and 

the Rayleigh-Ritz method.In a similar work, 

Pradhan et al. [9] studied the natural frequencies of 

FGM cylindrical shells under various boundary 

conditions. Kadali and Ganesan [10] simulated 

thermal buckling and free vibration of FGM 

cylinders using first order shear deformation theory 

and Fourier series expansion of displacement field 

in circumferential direction. Iqbal et al. [11] applied 

wave propagation approach to analyze vibration of 

circular cylindrical shells with functionally graded 

material.  

 Arshad et al. [12] performed an associative 

study for natural frequencies of two-layered 

cylindrical shells that was presented with one layer 

made up of functionally graded material and the 

other layer of isotropic material. Shah et al. [13] 

presented an analysis on the vibrations of FG 

cylindrical shells founded on the Winkler and 

Pasternak foundations. Naeem et al. [14] studied the 

vibration frequency characteristics of FG 

cylindrical shells using the generalized differential 

quadrature method. Ansari et al. [15] presented an 

analytical solution for free vibrations of FGM 

cylinders using first order shear deformation theory. 

The free vibration characteristics of functionally 

graded material elliptical cylindrical shells using 

finite element procedure are studied using higher 

order displacement model including variable 

transverse displacement through the thickness by 

Patel et al. [16]. Haddadpour et al. [17] analyzed 

free vibrations of simply supported FGM cylinders 

with thermal dependent material properties by the 

Galerkin method. All of these studies focused on 

functionally graded thin walled cylinders. The 

study of free vibrations of thick functionally graded 

hollow circular cylinder using three dimensional 

theory of elasticity is relatively scarce in the 

literature compare to the study of thin functionally 

graded cylindrical shells using shell theories. For 

the analysis of functionally graded thick hollow 

cylinders conventional finite element formulations 

assign a single set of material properties to each 

element such that the property field is constant 

within an individual element. To model a 

continuously nonhomogeneous material one must 

discretize the material property functions at the size 

scale of the element mesh, producing a step-wise 

constant approximation to the property field. This 

step-wise constant approximation to continuous 

material properties has been widely used in the 

literature involving numerical simulations of 

functionally graded materials [18, 19]. 

Additionally, a graded finite element formulation 

can be used to analyze such thick FG cylinders. For 

the conventional finite element formulation, the 

modulus of elasticity at each element centroid was 

used as the element stiffness. For the graded 

formulation, the local modulus at each integration 

point was used. Santare et al. [20], Kim and Paulino 

[21] showed that graded finite elements have the 

potential to provide improved accuracy without 

increasing the number of degrees of freedom for a 

given model. Taghvaeipour et al. [22] developed a 

new cylindrical element with graded finite element 

formulation to analyze FGM hollow cylinders. 

 The purpose of the current work is to develop a 

harmonic finite element model for the free vibration 

analysis of functionally graded thin and thick 

hollow cylinders with varying structural properties 

in the radial direction on the basis of three-

dimensional theory of elasticity. In this paper the 

graded harmonic quadrilateral ring element with 

nine nodes and three displacement degrees of 

freedom per node is developed and the procedure of 

extracting the element stiffness and mass matrices 

is completely illustrated. Several functionally 

graded cylinders with different power law 

exponents, constituent material configurations and 

geometrical dimensions are investigated for 
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frequency characteristics using these graded 

matrices. The resulted natural frequencies are 

compared against previous studies in the literature 

and presented in tabular and graphical formats. 

 

2. Material properties in FGM cylinders 

The functionally graded material (FGM) composes 

of two different materials usually ceramic and metal 

alloy, the mixing ratio of which is varied spatially 

continuously and gradually. For a composite 

material consists of two phases, the effective value 

of a material property (P) of the composite is 

computed based on the rule of mixtures by 

Darabseh [23]: 

m m c cP P V PV= +   (1) 

where Vm and Vc are the volume fractions of the 

metal and ceramic, respectively. The volume 

fractions satisfy the relation 1m cV V+ = . The 

volume fraction of the metal Vm using the power law 

is defined as 

( ), , ,

S

i

m m i m o m i

o i

r r
V V V V

r r

 −
= + −  

− 
 (2) 

where ri is the inner radius of the cylinder, ro is the 

outer radius of the cylinder, Vm,i and Vm,o are the 

volume fractions of the metal constituent on the 

inner and outer surfaces, respectively, and S is the 

power law exponent that represents the graded 

distribution along the radial direction. The cylinder 

has a linear variation for S=1. As the parameter S 

increases, the cylinder becomes rich in ceramic 

when Vm,i=0 and becomes rich in metal when 

Vm,i=1. Conversely, as S decreases, the cylinder 

becomes rich in metal when Vm,i=0 and becomes 

rich in ceramic when Vm,i=1.  

 The properties of FGM are calculated by 

substituting the volume fractions of the material 

constituents into the rule of mixtures. Some of 

properties are expressed as follows (Darabseh 

2011). 
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where E(r), v(r), and (r) are radially varying 

Young’s modulus, Poisson’s ratio and mass 

density, respectively. The change of Young’s 

modulus throughout the wall thickness when the 

volume fractions of the metal constituent on the 

inner and outer surfaces are 0 and 1, respectively, is 

shown in Fig. 1. 

 The rate of decrease of modulus of elasticity for 

S<1 is high compared to S>1 at radius closer to the 

inner surface and the rate of decrease of modulus of 

elasticity for S>1 is much higher than for S<1 at 

radius closer to the outer surface. 

 

3. Harmonic finite element model 

For the harmonic model, the three-dimensional 

elasticity theory is used and the equations of motion 

are obtained by expanding the displacement field in 

the Fourier series in terms of the circumferential 

coordinate θ as: 
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   (6) 

where m is the circumferential mode (harmonic) 

number and symbols 
ru , u  and 

zu  indicate the 

radial, circumferential and axial displacement 

components, respectively, see Fig. 2. All barred 

quantities in Eq. (6) are amplitudes approximated 

using the finite element method, which are 

functions of r, z but not of  . This leads to a 

harmonic finite element in the (r, z) plane. 
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Fig. 1. Distribution of modulus of elasticity throughout radius 

 

 
 

Fig. 2. (a) Displacement components in cylindrical reference system (b) a solid ring finite element 

 

Single barred amplitudes represent symmetric 

displacement components (displacements which 

have 0 =  as a plane of symmetry), while double 

barred amplitudes represent anti-symmetric 

displacement terms. The amplitudes of the 

displacement components in Eq. (6) can be 

interpolated from the corresponding nodal 

amplitudes using the shape functions for a finite 

element. 

 Therefore, the vector of displacement field 

within the element for the Fourier term m can be 

described in the following form [24]: 
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 Strains and stresses in an element can also be 

stated in terms of the Fourier series. For a Fourier 

term m, the strain vector in cylindrical coordinates 

can be written as,  

{ }

1
( )

1

1

rm rm

m m

zm zm

m

rzm rzm

r m r m

zm zm

rm

m

rm

zm

zm rm

rm m m

m zm

u

r

u
u

r

u

z

u u

r z

u u u

r r r

u u

z r

 

 

 



 



 

 

 


 

 

 







  
  
  
     

= +   
   
   
   
      

 
 
 

 
+

 
 

 
 

=  
  +

  
 

 
 + −
  
  
 +

  

   ( )m mm mB d B d



  = +
    

 (10) 

 

where  and m mB B  
    

 are the matrices which 

relate the symmetric and anti-symmetric nodal 

displacement amplitudes with corresponding 

strains. The strain-nodal displacement matrix for ith 

node and symmetric Fourier terms is obtained as:  

,
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 Similarly, imB 
  

 can be obtained from that of 

imB 
 

 by simply substituting -sin m with cos m 

and cos m  with sin m.  

 The constitutive equation for FGM is written for 

mth harmonic as: 

{ } [ ( )]{ }m mD r =   (12) 

where the coefficients of elasticity matrix D(r) is 

calculated as given by Bhatti [25] for a three-

dimensional isotropic material by substituting 

E=E(r) for Young’s modulus and ν=ν(r) for 

Poisson’s ratio both depending on radial coordinate 

as given in Eqs. (3) and (4), respectively. 

Traditionally, the components of D(r) matrix are 

taken to have constant material properties for each 

finite element. However, there is no fundamental 

reason that these elastic properties cannot be 

spatially variable functions within an element. 

Therefore, the components of the elasticity matrix 

are calculated at each Gauss point in the element for 

the graded harmonic finite element model.
 

 

4. Graded harmonic finite element matrices 

4.1. Formulation of the element stiffness matrix 

The stiffness matrix of a linear system is calculated 

from the derivation of the strain energy of the 
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element as explained by Bhatti [25]. So, two 

stiffness matrices mk 
 

 and mk 
  

 defined for both 

single and double barred terms in Fourier series 

expansion are expressed as: 
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 It can be observed that each term in the products 
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circumferential direction θ can be carried out 

explicitly using the orthogonality property of 

trigonometric functions and so: 
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 The integration results in a factor   that 

multiplies each term for each Fourier series 

harmonics except for zeroth (m = 0) harmonic. It 

should also be mentioned that, due to choice of 

negative sign in the second expression in Eq. (6), 

the stiffness matrix for double barred terms is 

identical to that of single barred terms, that is 

 m m mk k k   = =
    

 for m > 0. Additionally, 0k 
 

 

and 0k 
  

 can be used for special cases of plane 

axisymmetric and plane axi-antisymmetric cases 

respectively. So, for the mth harmonic the graded 

element stiffness matrices are obtained from the 

following expressions as: 
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 Gauss quadrature is used for numerical 

integration by taking 3 points in each direction. 

4.2. Formulation of the element mass matrix 

For a functionally graded elastic material, the mass 

density will in general be a function of position as 

well as the modulus of elasticity. Therefore, in the 

most general graded element, the mass density 

distribution should be incorporated in the same 

manner as the modulus of elasticity and Poisson’s 

ratio. The consistent mass matrix of an element is 

calculated from the derivation of the kinetic energy 

as explained by Bhatti [25]. The graded element 

mass matrices are obtained as the followings as in 

the case of stiffness matrix expressions 

 0

1 0 0

2 ( ) 0 0 0 [ ]

0 0 1e

T

A

m r N N rdrdz 

 
   =

   
  

 if m=0 

   (26) 

 0

0 0 0

2 ( ) 0 1 0 [ ]

0 0 0e

T

A

m r N N rdrdz 

 
   =
   
  

 if m=0 

   (27) 

[ ] ( )[ ] [ ]

e

T

m

A

m r N N rdrdz =   if m>0 (28) 

where ρ(r) is density distribution as given in Eq. (5). 

The result is a fully populated mass matrix that 

incorporates the nonhomogeneous density 

distribution. Three-point Gauss quadrature is used 

for the numerical integration. 

 

5. Free vibration analysis 

The equation of motion for free and undamped 

multi-degree of freedom system vibrations is of the 

form [25]: 

[ ]{ } [ ]{ } 0M u K u+ =   (29) 

where {u} is the global degree of freedom vector 

and [M] and [K] are the mass and stiffness matrices, 

respectively. When vibrating in one of the mode 

shapes all points in the system undergo simple 

harmonic motion with the corresponding natural 

frequency
i , which can be stated as 

sin( ) i iu t =   (30) 

in which φi is the nodal amplitude vector (or mode 

shape) with each component corresponding to the 

specific degree of freedom. Substituting Eq. (30) 

into Eq. (29) allows cancelation of the sine term 

which leaves 

2( ) 0i iK M − =   (31) 

 This is the basic statement of the free vibration 

problem. The determinant of the coefficient matrix 

(K- ωi
2M) should vanish to avoid a nontrivial 

solution 

2det([ ] [ ]) 0K M− =   (32)
 

 Solving Eq. (32) leads the square of natural 

angular frequencies as the eigenvalues of the 

generalized problem. 
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6. Numerical examples 

The natural frequencies of a simply-simply 

supported (S-S) thin walled functionally graded 

cylinder are obtained first to compare the results of 

the graded harmonic quadrilateral ring finite 

element model with the ones obtained by Loy et al. 

[8] for various circumferential harmonic numbers m 

and power law exponents S. The results obtained in 

the study are presented in Table 1 along with 

geometric and material properties of the problem. 

The first axial mode is considered only, and very 

good agreement is obtained with the results given 

in the literature as can be seen in Table 1. 

 Similarly, for the verification of the present 

model for thick-walled cylinders the natural 

frequency for the first bending mode and torsional 

mode of clamped-clamped functionally graded 

cylinders with varying H/R ratios are compared 

with the results obtained by Taghvaeipour et al. 

[22] using conventional brick elements in ANSYS 

and the new cylindrical superelements. The 

conventional finite element results are gained with 

sufficient number of brick elements to assure a 

mesh-independent result by Taghvaeipour et al. 

[22]. The natural frequencies are presented in Table 

2 for each model. As far as the present graded 

harmonic model and the superelement model is 

compared with respect to the brick element model 

it can be concluded that the harmonic model 

requires very few elements to provide a good 

accuracy. Also, it should be noted that the number 

of harmonic elements needs to be increased 

considerably for acceptable results due to the 

nonlinear shape of the bending mode. 

 After the verification of the proposed graded 

harmonic model, a number of various thin and thick 

functionally graded cylinders are analyzed to 

investigate frequency characteristics. The FGM 

cylinders considered in this paper are made of 

silicon nitride (Si3N4) and stainless steel (SUS304). 

The mechanical properties of these materials at 

room temperature are given in Table 3. 

 According to constituent material configuration 

two different simply-simply supported cylinder 

models are considered. The model with Vm,i=0 and 

Vm,o=1 is called as “Model 1” and the model with 

Vm,i=1 and Vm,o=0 is called as “Model 2”. In other 

words, the inner material of the Model 1 is silicon 

nitride and the outer material is stainless steel while 

the inner material of the Model 2 is stainless steel 

and the outer material is silicon nitride. The 

frequency results of Model ü1 are presented in 

tabular format whereas those of Model 2 are 

presented in graphical format. 

 

Table 1. Comparison of natural frequencies (Hz) for S-S thin walled FG cylinder (H=0.002m. H/R=0.002, L/R=20, 

Eo=2.07788x1011 N/m2, vo=0.317756, ρo=8166 kg/m3, Ei=2.05098x1011 N/m2, vi=0.31, ρi=8900 kg/m3) 

m 

S=0.7 S=2.0 S=30 

Loy et al. 

(1999) 
Present Diff.(%) 

Loy et al. 

(1999) 
Present Diff.(%) 

Loy et al. 

(1999) 
Present Diff.(%) 

1 13.269 13.283 -0.11 13.103 13.117 -0.11 12.914 12.927 -0.10 

2 4.4994 4.5039 -0.10 4.4435 4.4474 -0.09 4.3765 4.3799 -0.08 

3 4.1749 4.1697 0.12 4.1235 4.1186 0.12 4.0576 4.0525 0.13 

4 7.0691 7.0554 0.19 6.9820 6.9684 0.19 6.8726 6.8591 0.20 

5 11.290 11.267 0.20 11.151 11.128 0.21 10.978 10.956 0.20 

6 16.527 16.494 0.20 16.323 16.289 0.21 16.071 16.038 0.21 

7 22.735 22.688 0.21 22.454 22.408 0.20 22.108 22.062 0.21 

8 29.903 29.841 0.21 29.533 29.472 0.21 29.078 29.018 0.21 

9 38.028 37.950 0.21 37.559 37.481 0.21 36.981 36.904 0.21 

10 47.111 47.014 0.21 46.529 46.432 0.21 45.813 45.718 0.21 
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Table 2. Comparison of natural frequencies (Hz) for clamped-clamped functionally graded thick cylinders (R=0.2 m, 

L=2 m, S=3, Eo=400 GPa, vo=0.28, ρo=19300 kg/m3, Ei=110 GPa, vi=0.34, ρi=8960 kg/m3) 

H/R 

First bending mode (m=1, n=1) Torsion mode (m=0, n=1) 

Taghvaeipour 

et al. (2012) 

(30a-744b) 

Present  

 (6-117) 

ANSYS      

(3000-3410) 
 

Taghvaeipour 

et al. (2012) 

 (30-744) 

Present  

 (3-63) 

ANSYS 

(3000-3410) 

0.2 369 357 357  639 624 622 

0.4 391 381 379  646 631 629 

0.6 413 401 400  652 636 634 

0.8 434 420 418  656 641 639 

1 453 437 436  660 644 642 

1.2 470 453 452  662 647 645 

1.4 486 467 462  665 649 647 

1.6 500 479 477  667 651 649 

1.8 513 490 487  668 652 650 

2 525 500 497  670 654 652 
a number of elements    b number of degrees of freedom 

 

Table 3. Mechanical properties of silicon nitride and stainless steel 

Material 
Properties 

E(N/m2) ν ρ (kg/m3) 

Silicon nitride (Si3N4) 322.27 x 109 0.24 2370 

Stainless steel (SUS304) 207.78 x 109 0.3177 8166 

 A sample convergence study is provided for a 

cylinder with small and large H/R ratios in Table 4. 

5 radial and 10 axial harmonic elements for the thin-

walled cylinders seem to be sufficient to achieve a 

good accuracy whereas 10 radial 10 axial harmonic 

elements are required for thick-walled cylinders. 

The number of elements is doubled for satisfactory 

results for the FGM cylinder of the largest length to 

radius ratio considered in the study. 

 The effects of constituent volume fraction and 

circumferential harmonic number on the natural 

frequencies of FGM cylinders are studied by 

varying the value of power law exponent, S, 

between 0.01 and 50 for each circumferential 

harmonic number from 1 to 10. Tables 5 and 6 show 

the variations of the natural frequencies of a thin-

walled Model1 and a thick-walled Model1 cylinder, 

respectively. The natural frequencies of the thin-

walled Model2 cylinder decrease with increasing 

circumferential harmonic number, m until a 

minimum is reached whereupon they increase as 

seen in Fig. 3. It seems to be a very typical behavior 

for isotropic thin cylindrical shells. On the other 

hand, the thick-walled cylinder behaves in a 

different way such that the natural frequencies 

increase almost linearly with increasing 

circumferential harmonic number as shown in Fig. 

4. The natural frequencies approach to those of 

isotropic cylinder made of stainless steel when the 

value of power law exponent of Model 1 comes 

closer to zero. It can be easily concluded that 

frequency characteristics of functionally graded 

cylinders are similar to those of isotropic cylinders 

when the natural frequencies of isotropic stainless-

steel cylinders (S=0) are investigated.  
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Table 4. Convergence study for the natural frequencies of thin and thick FG cylinders (m=1, R=0.2 m, L/R=10, S=10, 

Model 1) 

 H/R=0.001 H/R=2.0 

Mesh 1a 5 10 15 1a 5 10 15 

 2b 529.57 525.53 525.52 525.52 892.43 875.44 875.41 875.41 

4 517.51 516.75 513.55 513.54 882.21 865.48 865.45 865.45 

6 516.88 512.93 512.92 512.92 881.58 864.87 864.84 864.84 

8 516.78 512.83 512.83 512.83 881.47 864.76 864.74 864.74 

10 516.75 512.80 512.80 512.80 881.44 864.74 864.71 864.71 

12 516.75 512.80 512.80 512.80 881.43 864.73 864.70 864.70 
a Radial mesh size   b Axial mesh size 

 

Table 5. Variation of natural frequencies (Hz) with circumferential harmonic number m and power law exponent S 

(H/R=0.005, L/R=10, H=0.005 m, Model 1) 

m S=0 S=0.01 S=0.1 S=0.5 S=1 S=10 S=25 S=50 

1 49.807 50.117 52.760 62.062 70.127 102.70 109.64 112.60 

2 17.590 17.702 18.653 21.977 24.830 36.207 38.619 39.650 

3 12.466 12.551 13.263 15.617 17.543 25.203 26.941 27.706 

4 18.431 18.557 19.597 22.932 25.602 36.611 39.296 40.504 

5 28.891 29.087 30.697 35.836 39.953 57.176 61.441 63.366 

6 42.143 42.427 44.762 52.215 58.194 83.326 89.574 92.396 

7 57.906 58.294 61.496 71.712 79.912 114.46 123.06 126.94 

8 76.121 76.631 80.834 94.249 105.02 150.44 161.75 166.86 

9 96.772 97.420 102.76 119.80 133.49 191.25 205.63 212.13 

10 119.85 120.66 127.27 148.37 165.32 236.85 254.67 262.73 

 

Table 6. Variation of natural frequencies (Hz) with circumferential harmonic number m and power law exponent S 

(H/R=1.0, L/R=10, H=0.2 m, Model 1) 

m S=0 S=0.01 S=0.1 S=0.5 S=1 S=10 S=25 S=50 

1 352.82 354.51 368.96 421.12 468.71 700.19 762.28 789.85 

2 1277.0 1285.9 1360.4 1602.9 1800.2 2585.1 2762.6 2837.9 

3 2917.7 2937.9 3106.2 3664.0 4124.1 5948.8 6363.5 6539.8 

4 4633.2 4663.4 4915.9 5756.7 6456.0 9387.1 10112 10426 

5 6304.6 6341.8 6652.3 7681.6 8548.1 12560 13684 14185 

6 7876.9 7917.2 8251.6 9361.6 10321 15313 16912 17655 

7 9329.1 9369.1 9700.6 10824 11835 17661 19755 20777 

8 10674 10712 11029 12145 13194 19725 22290 23597 

9 11942 11978 12283 13390 14469 21620 24625 26213 

10 13166 13200 13495 14599 15703 23416 26844 28706 
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Table 7. Variation of fundamental natural frequencies (Hz) with L/R ratios and power law exponent S (H/R=0.005, 

H=0.005 m, Model 1) 

L/R S=0 S=0.01 S=0.1 S=0.5 S=1 S=10 S=25 S=50 m 

0.2 693.08 697.80 737.30 868.48 975.97 1402.9 1499.3 1541.7 13 

0.5 275.70 277.57 293.26 345.57 388.54 558.96 597.18 613.94 11 

1 138.02 138.95 146.78 173.06 194.80 280.22 299.80 308.10 8 

2 67.790 68.248 72.099 84.991 95.627 137.73 147.09 151.18 6 

5 26.094 26.271 27.756 32.708 36.779 52.921 56.537 58.121 4 

10 12.465 12.550 13.261 15.616 17.541 25.200 26.938 27.703 3 

20 5.4951 5.5318 5.8422 6.8894 7.7589 11.1965 11.953 12.282 2 

50 2.2344 2.2483 2.3659 2.7816 3.1412 4.5957 4.9057 5.0378 1 

100 0.5615 0.5641 0.5940 0.6980 0.7873 1.1532 1.2321 1.2651 1 

 
Fig. 3. Variation of natural frequencies (Hz) with circumferential harmonic number m and power law exponent  

S (n=1, H/R=0.005, L/R=10, H=0.005 m, Model 2) 

 
Fig. 4. Variation of natural frequencies (kHz) with circumferential harmonic number m and power law exponent  

S (n=1, H/R=1.0, L/R=10, H=0.2 m, Model2) 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

N
at

u
ra

l 
fr

eq
u
en

cy
 (

H
z)

Circumferential harmonic number, m 

S=0

S=0.01

S=0.1

S=0.5

S=1

S=10

S=25

S=50

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

N
at

u
ra

l 
fr

eq
u
en

cy
 (

k
H

z)

Circumferential harmonic number m

S=0

S=0.01

S=0.1

S=0.5

S=1

S=10

S=25

S=50



201   Karakas and Daloglu  

 

Also, the natural frequencies of Model 1 increase as 

S increases as it can be seen from Tables 5 and 6. 

The influence of S on the natural frequencies of 

Model2 is the opposite of Model 1 as seen in Figs. 

3 and 4. Unlike Model 1 cylinder where the natural 

frequencies increase with increasing S, the natural 

frequencies for Model 2 decrease with increasing S. 

Additionally, the natural frequencies of Model2 are 

higher than those of Model 1 for S<1 whereas for 

S>1 the frequencies of Model 1 are higher than 

those of Model 2 for both thin and thick walled 

functionally graded cylinders. 

 The percent of differences between natural 

frequencies obtained at minimum value of S=0.01 

and maximum value of S=50 with various 

circumferential harmonic numbers for the thin and 

thick walled Model1 cylinders are plotted in Fig. 5. 

 The value of the power law exponent S does not 

affect the circumferential harmonic number at 

which the fundamental natural frequency occurs. In 

other words, for each L/R ratio corresponding to all 

power law exponents the fundamental natural 

frequencies occur at the same circumferential 

harmonic number m, as given in Tables 7 and 8. 

Table 7 indicates that the circumferential harmonic 

number at which the fundamental natural frequency 

takes place decreases as the thin walled cylinder 

becomes longer and it becomes one after a 

particular L/R ratio. On the other hand, Table 8 

shows that the fundamental natural frequencies 

occur at the same circumferential harmonic number 

m=1 for all L/R ratios of thick-walled cylinder with 

H/R=1.0.

 
Fig. 5. Differences in natural frequencies of S=0.01 and S=50 for thin (H/R=0.005) and thick (H/R=1.0) walled Model1 

cylinders 

 

Table 8. Variation of fundamental natural frequencies (Hz) with L/R ratios and power law exponent S (H/R=1.0, H=0.2 

m, Model1) 

L/R S=0 S=0.01 S=0.1 S=0.5 S=1 S=10 S=25 S=50 m 

0.2 36492 36538 36894 40639 42483 55673 66229 74717 1 

0.5 14038 14112 14647 16067 17293 25573 29219 31184 1 

1 6489.9 6530.1 6865.5 7960.3 8849.1 12948 14092 14624 1 

2 1674.8 1685.3 1773.8 2074.2 2327.9 3447.4 6465.3 3862.7 1 

5 996.15 1001.3 1045.1 1199.0 1335.4 1985.3 2160.5 2241.6 1 

10 352.81 354.49 368.94 421.10 468.69 700.17 762.25 790.90 1 

20 103.24 103.71 107.79 122.72 136.54 204.41 222.49 230.79 1 

50 17.505 17.583 18.263 20.769 23.105 34.621 37.679 39.079 1 

100 4.4162 4.4360 4.6071 5.2383 5.8272 8.7328 9.5039 9.8569 1 
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Table 9. Variation of fundamental natural frequencies (Hz) with H/R ratios and power law exponents S (L/R=10, R=0.2 

m, Model 1) 

H/R S=0 S=0.01 S=0.1 S=0.5 S=1 S=10 S=25 S=50 m 

0.001 29.806 30.040 31.732 37.428 42.103 60.790 64.870 66.652 4 

0.003 49.945 50.278 53.092 62.620 70.560 101.92 108.78 111.75 3 

0.005 62.332 62.757 66.313 78.086 87.713 126.01 134.70 138.53 3 

0.02 108.99 109.73 115.91 136.67 153.90 222.09 237.04 243.16 2 

0.04 155.87 156.95 165.93 195.14 218.81 313.69 335.53 344.61 2 

0.06 209.07 210.53 222.58 261.30 292.41 418.32 447.98 460.40 2 

0.08 256.52 258.08 271.34 318.01 358.73 526.78 563.44 578.33 1 

0.1 258.55 260.11 273.37 320.11 360.94 530.38 567.60 582.75 1 

0.14 262.64 264.19 277.47 324.34 365.42 537.66 576.00 591.66 1 

0.18 266.76 268.32 281.61 328.63 369.98 545.02 584.47 600.65 1 

0.3 279.30 280.87 294.25 341.81 383.98 567.49 610.30 628.04 1 

0.5 300.53 302.12 315.73 364.42 408.06 605.68 654.06 674.42 1 

0.7 321.74 323.36 337.29 387.28 432.49 643.97 697.85 720.81 1 

0.9 342.60 344.27 358.55 409.97 456.75 681.69 740.94 766.47 1 

1.2 372.73 374.47 389.36 442.98 492.10 736.22 803.21 832.46 1 

1.6 410.08 411.92 427.63 484.17 536.24 803.78 880.38 914.31 1 

2 443.82 445.75 462.25 521.51 576.29 864.71 950.06 988.30 1 

 

 The natural frequencies of thin and thick walled 

Model2 cylinders with small L/R ratios are higher 

than those of with large L/R ratios as shown in Figs. 

6 and 7. Also, it can be seen from these figures that 

the natural frequencies of the thick walled cylinder 

(H/R=1.0) are higher than those of the thin-walled 

cylinder (H/R=0.005). Moreover, the fundamental 

natural frequencies increase with increasing S for 

Model1 and decrease with increasing S for Model2 

thin and thick cylinders. The fundamental natural 

frequencies for Model1 and Model2 cylinders occur 

at the same circumferential harmonic number. 

 Table 9 shows the variations in the fundamental 

natural frequencies with thickness to radius ratios 

H/R and power law exponent S for Model1. The 

fundamental natural frequencies increase with 

increasing S and H/R. The circumferential harmonic 

number m at which the fundamental frequency 

occurs is observed to decrease until a particular H/R 

ratio. This means that when H/R is beyond a certain 

value, which is H/R=0.08 in our case, the 

fundamental natural frequencies would occur at the 

circumferential harmonic number m=1. The 

variation of the circumferential harmonic number at 

which the fundamental natural frequency occurs 

with different H/R ratios can be observed as the 

slope change in Figs. 8 and 9. The changes in the 

slope in Fig. 8 indicate that the circumferential 

harmonic number at which the fundamental 

frequency occurs changes until H/R=0.08. Since 

there is no slope change for the ratios greater than 

this ratio as shown in Fig. 9 it is obvious that the 

fundamental frequencies occur at the same 

circumferential harmonic number for these ratios. 

Unlike Model 1, Figs. 8 and 9 show that the 

fundamental natural frequencies decrease with 

increasing S for Model 2. 
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Fig. 6. Variation of fundamental natural frequencies (Hz) with L/R ratios and power law exponent S (n=1, H/R=0.005, 

H=0.005 m, Model2) 
 

 
Fig. 7. Variation of fundamental natural frequencies (kHz) with L/R ratios and power law exponents S (n=1, H/R=1.0, 

H=0.2 m, Model2) 
 

 
Fig. 8. Variation of fundamental natural frequencies (Hz) with H/R ratios and power law exponents S (n=1. L/R=10. 

R=0.2 m, Model2) 
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Fig. 9. Variation of fundamental natural frequencies (Hz) with H/R ratios and power law exponents S (n=1. L/R=10. 

R=0.2m, Model2) 

 

7. Conclusions 

In the present study, a graded harmonic solid ring 

finite element is developed for free vibration 

analysis of functionally graded hollow thin and 

thick-walled cylinders. In the element formulation 

Fourier series expansion is used in the 

circumferential direction θ, and the three-

dimensional theory of elasticity is used for the 

model rather than a shell theory. Detailed 

parametric studies are carried out to show the 

influences of the power law exponent S, the 

constituent material position, the thickness to 

radius ratio H/R, and the length to radius ratio L/R 

on the free vibration frequencies. The natural 

frequencies of simply-simply supported thin-

walled and clamped-clamped supported thick-

walled FG cylinders are compared with those 

available in the literature for verification. The 

results that were extracted by the graded harmonic 

ring finite elements indicate high accuracy and 

good agreement with those obtained in the previous 

studies. As far as numerical results are considered 

the following conclusions can be drawn:  

❖ The frequencies of the thin-walled FGM 

cylinders decrease with increasing 

circumferential number until a minimum is 

reached whereupon they increase while those of 

the thick-walled cylinders increase almost 

linearly.  

❖ The influence of the power law exponent on the 

frequency depends on the constituent material 

position. Depending on the material position it 

may lead to an increase or decrease in the 

frequency.  

❖ The power law exponent does not affect the 

circumferential harmonic number at which the 

fundamental natural frequency occurs.  

❖ The circumferential harmonic number at which 

the fundamental natural frequency takes place 

decreases as the thin-walled cylinder becomes 

longer and it becomes m=1 after a particular L/R 

ratio. On the other hand, the fundamental 

natural frequencies occur at the same 

circumferential harmonic number m=1 for all 

L/R ratios of thick-walled cylinder with 

H/R=1.0.  

❖ The fundamental natural frequencies increase 

with increasing H/R ratio.  

❖ The circumferential harmonic number at which 

the fundamental frequency occurs is observed 

to decrease until a particular H/R ratio and 

beyond this ratio it becomes m=1. 
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