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Abstract 

The purpose of this paper is to study parametric earthquake analysis of thick plates resting on Winkler 

foundation using Mindlin’s theory, to determine the effects of the thickness/span ratio, the aspect ratio and 

the boundary conditions on the linear responses of thick plates subjected to earthquake excitations. In the 

analysis, finite element method is used for spatial integration and the Newmark-β method is used for the time 

integration. Finite element formulation of the equations of the thick plate theory is derived by second order 

displacement shape functions. A computer program using finite element method is coded in C++ to analyze 

the plates simply supported and clamped along all four edges. In the analysis, 8-noded finite element is used. 

Graphs are presented that should help engineers in the design of thick plates subjected to earthquake 

excitations. It is concluded that 8-noded finite element can be effectively used in the earthquake analysis of 

thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective 

on the maximum responses considered in this study than the changes in the aspect ratio.  
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1. Introduction 

The plates resting on elastic foundation is one of the 

most popular topics for the last decade in many 

engineering applications. Winkler model, 

Pasternak model, Hetenyi model, Vlasov and 

Leont’ev model are the models used by the 

researchers to calculate the soil effects on the plate.  

 Winkler model is used as a set of uncorrelated 

elastic springs attached to each node of the plate 

[1]. In this method, the deflections are only related 

with the load on the plate. The deflection of 

neighbouring points of the foundation is 

independent of each other. Hetenyi [2] proposed a 

two-parameter model, Pasternak model takes in to 
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account the effects of shear interaction among 

joining points in the foundation [3]. Vlasov and 

Leont’ev [4] related the solution with a γ parameter 

which is calculated with soil material and thickness 

of the soil. Winkler model is the simplest model for 

elastic foundations so the author used in this study 

this model. 

 The dynamic behavior of thick elastic plates has 

been investigated by many researchers [5-7]. 

Omurtag and Kadıoğlu [8] are studied free 

vibration analysis of orthotropic plates resting on 

Pasternak foundation by mixed finite element 

formulation, Ayvaz and Oğuzhan [9] are analysis 

free vibration of thick plates resting on Vlasov 

elastic foundation.  
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 The purpose of this paper is to study parametric 

earthquake analysis of thick plates resting on 

Winkler foundation, to determine the effects of the 

thickness/span ratio, the aspect ratio and boundary 

condition on the linear responses of the thick plates 

subjected to earthquake excitations. A computer 

program using finite element method is coded in 

C++ to analyses the plates simply supported and 

clamped along all four edges. In the program, the 

finite element method is used for spatial integration 

and the Newmark-β method is used for the time 

integration. Finite element formulation of the 

equations of the thick plate theory is derived by 

using second order displacement shape functions. 

In the analysis, 8-noded finite element is used to 

construct the stiffness and mass matrices. 

 

2. Mathematical model 

The governing equation for a flexural plate (Fig. 1) 

subjected to an earthquake excitation without 

damping can be given as [10] 

          gM w K w F M u     (1) 

where [K] and [M] are the stiffness matrix and the 

mass matrix of the plate, respectively, w and w  are 

the lateral displacement and the second derivative 

of the lateral displacement of the plate with respect 

to time, respectively, 
gu  is the earthquake 

acceleration. 

 In order to do forced vibration analysis of a 

plate, the stiffness, [K], mass matrices, [M], and 

equivalent nodal loads vector, [F], of the plate 

should be constructed. The evaluation of these 

matrices is given in the following sections. 

 The total strain energy of plate-soil-structure 

system (see Fig. 1) can be written as; 

p s V    (2) 

where p  is the strain energy in the plate as 
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Fig. 1. The sample plate used in this study 
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and Пs is the strain energy stored in the soil as 

0

1

2

H

s ij ij 
 

 

      (4) 

and V is the potential energy of the earthquake 

loading 

A
A

V qwd   (5) 

In this equation, E  and E
are the elasticity 

matrices that will be given in Eq. (14), q  shows 

earthquake loading. 

2.1. Evaluation of the stiffness matrix 

The total strain energy of the plate-soil system 

according to Eq. (2) is 
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  (6) 

 

In this equation, the first and second part gives the 

conventional element stiffness matrix of the plate, 
e

pk , differentiation of the third integral with respect 

to the nodal parameters yields a matrix 
e

wk , which 

accounts for the axial strain effect in the soil. Thus 

the total energy of the plate-soil system can be 

written as; 

    
1

2

T e e

e p w e Aw k k w d          (7) 

where 

1 1 1{ } ...
T

e y x n yn xnw w w        (8) 

 Assuming that, in the plate of Fig. 1, u and v are 

proportional to z and w is the independent of z [11], 

one can write the plate displacement at an arbitrary 

x, y, z in terms of the two slopes and a displacement 

as follows: 

        0, , , , , , , , , ,y xw v u w x y t z x y t z x y t    

   (9) 

where w0 is average displacement of the plate, and 

x  and y  are the bending slopes in the y- and x- 

directions, respectively. 

 The nodal displacements for 8-noded 

quadrilateral serendipity element (MT8) (see Fig. 

2) can be written as follows: 

 

 
Fig. 2. 8-noded quadrilateral finite element used in this study [12] 
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The displacement function chosen for this element 

is; 

2 2 2 2
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  (11) 

From this assumption, it is possible to derive the 

displacement shape function to be; 

1 2 3 4 5 6 7 8[ , , , , , , , ]h h h h h h h h h  (12) 

Then, the strain-displacement matrix [B] for this 

element can be written as follows Cook et al. [13]: 
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where i = 1,2,…,8. 

The stiffness matrix for MT8 element can be 

obtained by the following equation [13] as 
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Integration of Eq. (14) through the thickness yields 

 T T

p k k k

A

k B E B B E B dA     (15) 

where the first term concerns with the bending and 

the second term concerns with the shear effects of 

the thick plate. Thus, 

1 1

1 1

T T

p

A

k B EBdA B EB J drds
 

     (16)
 

which must be evaluated numerically [12]. 

2.2. Foundation formulation 

As explained before, Winkler model is the simplest 

model for the plates resting on elastic foundation. 

In this model, all the deflections on the plate are due 

to the load on it. The foundation is represented with 

a set of uncorrelated elastic springs. So, in the 

analysis, the stiffness of these springs is calculated 

and is added to the element stiffness matrix. The 

stiffness matrices for the Winkler foundation can be 

derived by; 

   
1 1

1 1

T

wk k h h J drds
 

    (17) 

where k is the elastic foundation modulus. 

After calculating all element stiffness matrices, 

global stiffness matrix can be assembled as; 

  
1

[ ]
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i

K k k
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where ep  is the node number. 

2.3. Evaluation of the mass matrix 

The formula for the consistent mass matrix of the 

plate may be written as 

T

i iM H H d


   (19) 

In this equation,  is the mass density matrix of the 

form [10] 
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where 1 pm t , 
3

2 3 /12pm m t  , and p  is 

the mass densities of the plate and iH  can be 

written as follows  

 / / 1,2, ..., 8i i i iH dh dx dh dy h i   (21) 
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It should be noted that the rotation inertia terms are 

not taken into account. By assembling the element 

mass matrices obtained, the system mass matrix is 

obtained. 

2.4. Evaluation of equivalent nodal loads vector 

Equivalent nodal loads, [F], can be obtained by the 

following equation. 

ΩT

iF H qd  (22) 

In this equation, iH  can be obtained by Eq. (21), 

and q  denotes 

[ ]{ }gq M u   (23) 

It should be noted that, in this study, the program, 

MATLAB® [14], is used for the eigenvalue 

solution of Eq. (1). It should also be noted that, the 

Newmark-β method is used for the time integration 

of Eq. (2) by using the average acceleration 

method. 

 

3. Numerical examples 

In the light of the results given in the references 

[15,16], the aspect ratios, b/a, of the plate are taken 

to be 1, 2.0, and 3.0. The thickness/span ratios, t/a, 

are taken as 0.05, 0.1, 0.2, and 0.3 for each aspect 

ratio. The shorter span length of the plate is kept 

constant to be 3m. The mass density, Poisson’s 

ratio, and the modulus of elasticity of the plate are 

taken to be 2.5kNs2/m2, 0.2, and 2.7107kN/m2. 

Shear factor k is taken to be 5/6. The subgrade 

reaction modulus of the Winkler-type foundation is 

taken to be 5000kN/m3. 

 In the time history analysis to obtain the 

response of each plate the first 10s of Vertical 

component of the January 17, 1995 Kobe 

earthquake in Japan is used. Duration of this 

earthquake is 20s, but the peak value of the record 

occurred in the first 10s of the earthquake (Fig. 3). 
For the sake of accuracy in the results, rather than 

starting with a set of a finite element mesh size and 

time increment, the mesh size and time increment 

required to obtain the desired accuracy were 

determined before presenting any results This 

analysis was performed separately for the mesh size 

and time increment. It was concluded that the 

results have acceptable error when equally spaced 

88 mesh sizes are used for a 33m plate even if it 

is a thin plate, if the 0.01s time increment is used. 

Length of the elements in the x and y directions are 

kept constant for different aspect ratios as in the 

case of square plate. 

 One of the purposes of this paper was to 

determine the time histories of the displacements 

and the bending moments at different points of the 

thick plates subjected to earthquake excitations, but 

presentation of all of the time histories would take 

up excessive space. Hence, only the absolute 

maximum displacements and bending moments for 

different thickness/span ratio and aspect ratio are 

presented after two time histories are given. This 

simplification of presenting only the maximum 

responses is supported by the fact that the 

maximum values of these quantities are the most 

important ones for design. These results are 

presented in graphical rather than in tabular form. 

 The absolute maximum displacements of the 

thick plates for different aspect ratios, and 

thickness/span ratios are given in Fig. 4 for the 

thick plates simply supported along all four edges. 

 As seen from Fig. 4, the absolute maximum 

displacements of the thick plates increase with 

increasing aspect ratio for a constant t/a ratio. The 

same displacements decrease with increasing t/a 

ratio for a constant b/a ratio. As also seen from 

these figures, the decrease in the absolute 

maximum displacement for a constant b/a ratio 

increases with increasing b/a ratio. The curves for 

a constant value of the aspect ratio, b/a are fairly 

getting closer to each other as the value of t/a 

increases. This shows that the curves of the 

absolute maximum displacements will almost 

coincide with each other when the value of the 

thickness/span ratio, t/a, increases more. In other 

words, the increase in the thickness/span ratio will 

not affect the absolute maximum displacements 

after a determined value of t/a. 
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Fig. 3. Vertical component of the January 17, 1995 Kobe earthquake in Japan 

 

 
Fig. 4. Absolute maximum displacement of the reinforced concrete thick simply supported plates resting on Winkler 

foundation for different aspect ratios and thickness/span ratios. 

 

 
Fig. 5. Absolute maximum displacement of the reinforced concrete thick clamped plates resting on Winkler foundation 

for different aspect ratios and thickness/span ratios. 

 

 The absolute maximum displacements of the 

thick plates for different aspect ratios, and 

thickness/span ratios are given in Fig. 5 for the 

thick plates clamped along all four edges. 

 As seen from Fig. 5, the absolute maximum 

displacements of the thick plates increase with 

increasing aspect ratio for a constant t/a ratio. The 

same displacements decrease with increasing t/a 
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ratio for a constant b/a ratio. As also seen from 

these figures, the decrease in the absolute 

maximum displacement for a constant b/a ratio 

increases with increasing b/a ratio. The curves for 

a constant value of the aspect ratio, b/a are fairly 

getting closer to each other as the value of t/a 

increases. This shows that the curves of the 

absolute maximum displacements will almost 

coincide with each other when the value of the 

thickness/span ratio, t/a, increases more. In other 

words, the increase in the thickness/span ratio will 

not affect the absolute maximum displacements 

after a determined value of t/a. 

 The absolute maximum bending moments Mx at 

the center of the thick plates for different aspect 

ratios and thickness/span ratios are given in Fig. 6 

for the thick simply supported plates. As seen from 

Fig. 6, the absolute maximum bending moment, Mx, 

at the center of the thick simply supported plates 

increases with increasing aspect ratio and 

thickness/span ratio. The increases in the absolute 

maximum bending moment, Mx, increase with 

increasing aspect and thickness/span ratios. This is 

understandable that increasing the aspect ratio 

makes the plate stiffer in the short span, the x axis, 

direction. As also seen from this figure, in general, 

the effects of the changes in the aspect ratios on the 

absolute maximum bending moment, Mx, are larger 

than the changes in the thickness/span ratios. 

 The absolute maximum bending moments Mx at 

the center of the thick plates for different aspect 

ratios and thickness/span ratios are given in Fig. 7 

for the thick clamped plates. 

 As seen from Fig. 7, the absolute maximum 

bending moment, Mx, at the center of the thick 

clamped plates, as in the case of the absolute 

maximum bending moment, Mx, at the center of the 

thick and thin simply supported plates, increases 

with increasing aspect ratio and thickness/span 

ratio. The increases in the absolute maximum 

bending moment, Mx, increase with increasing 

aspect and thickness/span ratios. This is also 

understandable that increasing the aspect ratio 

makes the plate stiffer in the short span, the x-axis, 

direction. As also seen from this figure, in general, 

the effects of the changes in the aspect ratios on the 

absolute maximum bending moment, Mx, are larger 

than the changes in the thickness/span ratios. 

 The absolute maximum bending moments My at 

the center of the thick plates for different aspect 

ratios and thickness/span ratios are given in Fig. 8 

for the thick simply supported plates. 

 As seen from Fig. 8, the absolute maximum 

bending moment, My, at the center of the thick 

simply supported plates decreases with increasing 

aspect ratio and increases with increasing 

thickness/span ratio. The decrease in the absolute 

maximum bending moment, My, increase with 

increasing aspect ratio. The increase in the absolute 

maximum bending moment, My, increases with 

increasing thickness/span ratios. This is 

understandable that increasing the aspect ratio 

makes the thick plates more flexible in the long 

span, the y axis, direction. As also seen from this 

figure, in general, the effects of the changes in the 

thickness/span ratios on the absolute maximum 

bending moment, My, are larger than the changes in 

the aspect ratios. 

 The absolute maximum bending moments My at 

the center of the thick plates for different aspect 

ratios and thickness/span ratios are given in Fig. 9 

for the thick clamped plates. 

 As seen from Fig. 9, the absolute maximum 

bending moment, My, at the center of the thick 

clamped plates, as in the case of the absolute 

maximum bending moment, My, at the center of the 

thick simply supported plates, decreases with 

increasing aspect ratio and increases with 

increasing thickness/span ratio. The decrease in the 

absolute maximum bending moment, My, increase 

with increasing aspect ratio. The increase in the 

absolute maximum bending moment, My, increases 

with increasing thickness/span ratios. This is also 

understandable that increasing the aspect ratio 

makes the thick plates more flexible in the long 

span, the y-axis, direction. As also seen from this 

figure, in general, the effects of the changes in the 

thickness/span ratios on the absolute maximum 

bending moment, My, are larger than the changes in 

the aspect ratios. 
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Fig. 6. Absolute maximum bending moment Mx at the center of the reinforced concrete thick simply supported plates 

resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 

 
 

Fig. 7. Absolute maximum bending moment Mx at the center of the reinforced concrete thick clamped plates resting on 

Winkler foundation for different aspect ratios and thickness/span ratios. 

 

 
 

Fig. 8. Absolute maximum bending moment My at the center of the reinforced concrete thick simply supported plates 

resting on Winkler foundation for different aspect ratios and thickness/span ratios. 

 



Earthquake analysis of thick plates resting on elastic foundation with second order finite element 60 

 

 
 

Fig. 9. Absolute maximum bending moment My at the center of the reinforced concrete thick clamped plates resting on 

Winkler foundation for different aspect ratios and thickness/span ratios. 

 

4. Conclusions 

The purpose of this paper is to study shear locking-

free parametric earthquake analysis of thick plates 

resting on Winkler foundation, to determine the 

effects of the thickness/span ratio, the aspect ratio 

and boundary condition on the linear responses of 

the thick plates resting on Winkler foundation 

subjected to earthquake excitations. It is concluded 

that 8-noded finite element can be effectively used 

in the earthquake analysis of thick plates resting on 

elastic foundation. The coded program can be 

effectively used in the earthquake analyses of any 

thick plates resting on elastic foundation. It is also 

concluded that, in general, the changes in the 

thickness/span ratio are more effective on the 

maximum responses considered in this study than 

the changes in the aspect ratio. 

 In order to generalize the results obtained in this 

study, the responses of the different thick plates 

resting on Winkler foundation subjected to 

different earthquake excitations should be 

evaluated all together. Therefore, the curves 

presented herein can help the designer to anticipate 

the effects of the thickness/span ratio, the aspect 

ratio, and boundary condition on the earthquake 

response of a thick plate resting on Winkler 

foundation. 

 The following conclusions can also be drawn 

from the results obtained in this study. 

 The absolute maximum displacements of 

the thick plates increase as the aspect ratio 

increases for a constant t/a ratio. The same 

displacements decrease as the t/a ratio 

increases for a constant b/a ratio. 

 The changes in the aspect ratios are 

generally less effective on the absolute 

maximum displacement than the changes in 

the thickness/span ratios. 

 The absolute maximum bending moment, 

Mx, at the center of the thick simply 

supported plates resting on Winkler 

foundation increases as the aspect ratio and 

thickness/span ratio increase.  

 The changes in the aspect ratios are 

generally more effective on the absolute 

maximum bending moment, Mx, of the thick 

simply supported plates than the changes in 

the thickness/span ratios. 

 The absolute maximum bending moment, 

Mx, at the center of the thick clamped plates 

resting on Winkler foundation increases 

with increasing aspect ratio and 

thickness/span ratio.  

 The changes in the aspect ratios are 

generally more effective on the absolute 

maximum bending moment, Mx, of the thick 

clamped plates resting on Winkler 

foundation than the changes in the 

thickness/span ratios. 
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 The absolute maximum bending moment, 

My, at the center of the thick simply 

supported plates resting on Winkler 

foundation decreases as the aspect ratio 

increases and increases as the 

thickness/span ratio increases.  

 The changes in the thickness/span ratios are 

generally more effective on the absolute 

maximum bending moment, My, of the thick 

simply supported plates resting on Winkler 

foundation larger than the changes in the 

aspect ratios. 

 The absolute maximum bending moment, 

My, at the center of the thick clamped plates 

resting on Winkler foundation decreases 

with increasing aspect ratio and increases 

with increasing thickness/span ratio.  

 The changes in the thickness/span ratios are 

generally more effective on the absolute 

maximum bending moment, My, of the thick 

clamped plates resting on Winkler 

foundation than the changes in the aspect 

ratios. 

 In general, degrees of decreases and 

increases depend on the changes in the 

aspect and thickness/span ratios, and the 

changes in the thickness/span ratio are more 

effective on the maximum responses 

considered in this study than the changes in 

the aspect ratio. 
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