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Abstract

The purpose of this paper is to study parametric earthquake analysis of thick plates resting on Winkler
foundation using Mindlin’s theory, to determine the effects of the thickness/span ratio, the aspect ratio and
the boundary conditions on the linear responses of thick plates subjected to earthquake excitations. In the
analysis, finite element method is used for spatial integration and the Newmark-3 method is used for the time
integration. Finite element formulation of the equations of the thick plate theory is derived by second order
displacement shape functions. A computer program using finite element method is coded in C++ to analyze
the plates simply supported and clamped along all four edges. In the analysis, 8-noded finite element is used.
Graphs are presented that should help engineers in the design of thick plates subjected to earthquake
excitations. It is concluded that 8-noded finite element can be effectively used in the earthquake analysis of
thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective
on the maximum responses considered in this study than the changes in the aspect ratio.
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1. Introduction account the effects of shear interaction among

The plates resting on elastic foundation is one of the ~ 10ining points in the foundation [3]. Vlasov and

most popular topics for the last decade in many
engineering  applications.  Winkler ~ model,
Pasternak model, Hetenyi model, Vlasov and
Leont’ev model are the models used by the
researchers to calculate the soil effects on the plate.

Winkler model is used as a set of uncorrelated
elastic springs attached to each node of the plate
[1]. In this method, the deflections are only related
with the load on the plate. The deflection of
neighbouring points of the foundation is
independent of each other. Hetenyi [2] proposed a
two-parameter model, Pasternak model takes in to
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Leont’ev [4] related the solution with a y parameter
which is calculated with soil material and thickness
of the soil. Winkler model is the simplest model for
elastic foundations so the author used in this study
this model.

The dynamic behavior of thick elastic plates has
been investigated by many researchers [5-7].
Omurtag and Kadioglu [8] are studied free
vibration analysis of orthotropic plates resting on
Pasternak foundation by mixed finite element
formulation, Ayvaz and Oguzhan [9] are analysis
free vibration of thick plates resting on Vlasov
elastic foundation.
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The purpose of this paper is to study parametric
earthquake analysis of thick plates resting on
Winkler foundation, to determine the effects of the
thickness/span ratio, the aspect ratio and boundary
condition on the linear responses of the thick plates
subjected to earthquake excitations. A computer
program using finite element method is coded in
C++ to analyses the plates simply supported and
clamped along all four edges. In the program, the
finite element method is used for spatial integration
and the Newmark-f method is used for the time
integration. Finite element formulation of the
equations of the thick plate theory is derived by
using second order displacement shape functions.
In the analysis, 8-noded finite element is used to
construct the stiffness and mass matrices.

2. Mathematical model

The governing equation for a flexural plate (Fig. 1)
subjected to an earthquake excitation without
damping can be given as [10]

A 5 3
2 |

oy oX OX

2 15)4

oy

A

+51(—¢x+@ wﬂj En,(—w@ ¢y+@jdA
OX ’

[MI{w}+[K]{w} =[F]=—[M]{d, } (1)

where [K] and [M] are the stiffness matrix and the
mass matrix of the plate, respectively, wand W are
the lateral displacement and the second derivative
of the lateral displacement of the plate with respect
to time, respectively, G, is the earthquake

acceleration.

In order to do forced vibration analysis of a
plate, the stiffness, [K], mass matrices, [M], and
equivalent nodal loads vector, [F], of the plate
should be constructed. The evaluation of these
matrices is given in the following sections.

The total strain energy of plate-soil-structure
system (see Fig. 1) can be written as;

=11, +1I1 +V (2)

where I is the strain energy in the plate as
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Fig. 1. The sample plate used in this study
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and IT; is the strain energy stored in the soil as

1
I =EJI _[Uijgij 4
and V is the potential energy of the earthquake
loading
V=- quwdA (5)
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In this equation, the first and second part gives the
conventional element stiffness matrix of the plate,

k;, differentiation of the third integral with respect

to the nodal parameters yields a matrix k; , which

accounts for the axial strain effect in the soil. Thus
the total energy of the plate-soil system can be
written as;

=5 tw " ([ [k ) w g
where
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In this equation, E_ and E, are the elasticity

matrices that will be given in Eq. (14), @ shows
earthquake loading.

2.1. Evaluation of the stiffness matrix

The total strain energy of the plate-soil system
according to Eq. (2) is

oy axj A
1 T
dA+EI(Wx,y) K(wxyy)dA

A

(6)

Assuming that, in the plate of Fig. 1, u and v are
proportional to z and w is the independent of z [11],
one can write the plate displacement at an arbitrary
X, ¥, Z in terms of the two slopes and a displacement
as follows:

{w,v,u} = {WO(X, y.t). 20, (% y.t),~zo, (X, y,t)}
9)
where wg is average displacement of the plate, and
@, and ¢, are the bending slopes in the y- and x-
directions, respectively.
The nodal displacements for 8-noded

quadrilateral serendipity element (MT8) (see Fig.
2) can be written as follows:

Fig. 2. 8-noded quadrilateral finite element used in this study [12]
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The displacement function chosen for this element
is;
W=C, +C,I +C,S+C,I* +C,IS+C,S8” +C,r’s +C,rs

(11)

From this assumption, it is possible to derive the
displacement shape function to be;

h:[hl!hZ!h3lh4vh5!h61h7’hs] (12)

Then, the strain-displacement matrix [B] for this
element can be written as follows Cook et al. [13]:

0 0 a—h'
OX
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wherei=1,2,...,8.

The stiffness matrix for MT8 element can be
obtained by the following equation [13] as

E 0 || zB]
_ T _ T T k k
k, =| B EBdV —\'/[[ZBK By]{ 0 EJ[ ByT }dv (14)

Integration of Eq. (14) through the thickness yields

k, = [(BIE.B,+B/E B, )dA (15)
A

where the first term concerns with the bending and

the second term concerns with the shear effects of

the thick plate. Thus,

(, = [5"EBdA= [ | 5" EB|a|drds (16)
A
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which must be evaluated numerically [12].

2.2. Foundation formulation

As explained before, Winkler model is the simplest
model for the plates resting on elastic foundation.
In this model, all the deflections on the plate are due
to the load on it. The foundation is represented with
a set of uncorrelated elastic springs. So, in the
analysis, the stiffness of these springs is calculated
and is added to the element stiffness matrix. The
stiffness matrices for the Winkler foundation can be
derived by;

11

k, =K [ [[n] [h]|9]drds (17)
-1-1

where k is the elastic foundation modulus.

After calculating all element stiffness matrices,
global stiffness matrix can be assembled as;

[K]=i([kp]+[kw]) (18)
where p, is the node number.

2.3. Evaluation of the mass matrix

The formula for the consistent mass matrix of the
plate may be written as

M = [H] uH,dQ (19)
Q

In this equation, £ is the mass density matrix of the
form [10]

m 0 O
u=/0 m, O (20)
0 0 m

where m =pt, my=m, =pt*/12, and p, is
the mass densities of the plate and H; can be
written as follows

H, =[dh/dx dh/dy h] i=12..8 (21)
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It should be noted that the rotation inertia terms are
not taken into account. By assembling the element
mass matrices obtained, the system mass matrix is
obtained.

2.4. Evaluation of equivalent nodal loads vector

Equivalent nodal loads, [F], can be obtained by the
following equation.

F = [H'gdQ (22)

In this equation, H, can be obtained by Eq. (21),
and J denotes

q=-MKu,} (23)

It should be noted that, in this study, the program,
MATLAB® [14], is used for the eigenvalue
solution of Eqg. (1). It should also be noted that, the
Newmark-£ method is used for the time integration
of Eq. (2) by using the average acceleration
method.

3. Numerical examples

In the light of the results given in the references
[15,16], the aspect ratios, b/a, of the plate are taken
to be 1, 2.0, and 3.0. The thickness/span ratios, t/a,
are taken as 0.05, 0.1, 0.2, and 0.3 for each aspect
ratio. The shorter span length of the plate is kept
constant to be 3m. The mass density, Poisson’s
ratio, and the modulus of elasticity of the plate are
taken to be 2.5kNs?/m?, 0.2, and 2.7x107kN/m?,
Shear factor k is taken to be 5/6. The subgrade
reaction modulus of the Winkler-type foundation is
taken to be 5000kN/m?.

In the time history analysis to obtain the
response of each plate the first 10s of Vertical
component of the January 17, 1995 Kobe
earthquake in Japan is used. Duration of this
earthquake is 20s, but the peak value of the record
occurred in the first 10s of the earthquake (Fig. 3).
For the sake of accuracy in the results, rather than
starting with a set of a finite element mesh size and
time increment, the mesh size and time increment
required to obtain the desired accuracy were

determined before presenting any results This
analysis was performed separately for the mesh size
and time increment. It was concluded that the
results have acceptable error when equally spaced
8x8 mesh sizes are used for a 3x3m plate even if it
is a thin plate, if the 0.01s time increment is used.
Length of the elements in the x and y directions are
kept constant for different aspect ratios as in the
case of square plate.

One of the purposes of this paper was to
determine the time histories of the displacements
and the bending moments at different points of the
thick plates subjected to earthquake excitations, but
presentation of all of the time histories would take
up excessive space. Hence, only the absolute
maximum displacements and bending moments for
different thickness/span ratio and aspect ratio are
presented after two time histories are given. This
simplification of presenting only the maximum
responses is supported by the fact that the
maximum values of these quantities are the most
important ones for design. These results are
presented in graphical rather than in tabular form.

The absolute maximum displacements of the
thick plates for different aspect ratios, and
thickness/span ratios are given in Fig. 4 for the
thick plates simply supported along all four edges.

As seen from Fig. 4, the absolute maximum
displacements of the thick plates increase with
increasing aspect ratio for a constant t/a ratio. The
same displacements decrease with increasing t/a
ratio for a constant b/a ratio. As also seen from
these figures, the decrease in the absolute
maximum displacement for a constant b/a ratio
increases with increasing b/a ratio. The curves for
a constant value of the aspect ratio, b/a are fairly
getting closer to each other as the value of t/a
increases. This shows that the curves of the
absolute maximum displacements will almost
coincide with each other when the value of the
thickness/span ratio, t/a, increases more. In other
words, the increase in the thickness/span ratio will
not affect the absolute maximum displacements
after a determined value of t/a.
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Fig. 3. Vertical component of the January 17, 1995 Kobe earthquake in Japan
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Fig. 4. Absolute maximum displacement of the reinforced concrete thick simply supported plates resting on Winkler
foundation for different aspect ratios and thickness/span ratios.
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Fig. 5. Absolute maximum displacement of the reinforced concrete thick clamped plates resting on Winkler foundation
for different aspect ratios and thickness/span ratios.

The absolute maximum displacements of the As seen from Fig. 5, the absolute maximum
thick plates for different aspect ratios, and displacements of the thick plates increase with
thickness/span ratios are given in Fig. 5 for the increasing aspect ratio for a constant t/a ratio. The

thick plates clamped along all four edges. same displacements decrease with increasing t/a
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ratio for a constant b/a ratio. As also seen from
these figures, the decrease in the absolute
maximum displacement for a constant b/a ratio
increases with increasing b/a ratio. The curves for
a constant value of the aspect ratio, b/a are fairly
getting closer to each other as the value of t/a
increases. This shows that the curves of the
absolute maximum displacements will almost
coincide with each other when the value of the
thickness/span ratio, t/a, increases more. In other
words, the increase in the thickness/span ratio will
not affect the absolute maximum displacements
after a determined value of t/a.

The absolute maximum bending moments My at
the center of the thick plates for different aspect
ratios and thickness/span ratios are given in Fig. 6
for the thick simply supported plates. As seen from
Fig. 6, the absolute maximum bending moment, My,
at the center of the thick simply supported plates
increases with increasing aspect ratio and
thickness/span ratio. The increases in the absolute
maximum bending moment, My, increase with
increasing aspect and thickness/span ratios. This is
understandable that increasing the aspect ratio
makes the plate stiffer in the short span, the x axis,
direction. As also seen from this figure, in general,
the effects of the changes in the aspect ratios on the
absolute maximum bending moment, My, are larger
than the changes in the thickness/span ratios.

The absolute maximum bending moments My at
the center of the thick plates for different aspect
ratios and thickness/span ratios are given in Fig. 7
for the thick clamped plates.

As seen from Fig. 7, the absolute maximum
bending moment, My, at the center of the thick
clamped plates, as in the case of the absolute
maximum bending moment, My, at the center of the
thick and thin simply supported plates, increases
with increasing aspect ratio and thickness/span
ratio. The increases in the absolute maximum
bending moment, M, increase with increasing
aspect and thickness/span ratios. This is also
understandable that increasing the aspect ratio
makes the plate stiffer in the short span, the x-axis,
direction. As also seen from this figure, in general,
the effects of the changes in the aspect ratios on the

absolute maximum bending moment, My, are larger
than the changes in the thickness/span ratios.

The absolute maximum bending moments My at
the center of the thick plates for different aspect
ratios and thickness/span ratios are given in Fig. 8
for the thick simply supported plates.

As seen from Fig. 8, the absolute maximum
bending moment, My, at the center of the thick
simply supported plates decreases with increasing
aspect ratio and increases with increasing
thickness/span ratio. The decrease in the absolute
maximum bending moment, My, increase with
increasing aspect ratio. The increase in the absolute
maximum bending moment, My, increases with
increasing  thickness/span  ratios.  This s
understandable that increasing the aspect ratio
makes the thick plates more flexible in the long
span, the y axis, direction. As also seen from this
figure, in general, the effects of the changes in the
thickness/span ratios on the absolute maximum
bending moment, My, are larger than the changes in
the aspect ratios.

The absolute maximum bending moments My at
the center of the thick plates for different aspect
ratios and thickness/span ratios are given in Fig. 9
for the thick clamped plates.

As seen from Fig. 9, the absolute maximum
bending moment, My, at the center of the thick
clamped plates, as in the case of the absolute
maximum bending moment, My, at the center of the
thick simply supported plates, decreases with
increasing aspect ratio and increases with
increasing thickness/span ratio. The decrease in the
absolute maximum bending moment, My, increase
with increasing aspect ratio. The increase in the
absolute maximum bending moment, My, increases
with increasing thickness/span ratios. This is also
understandable that increasing the aspect ratio
makes the thick plates more flexible in the long
span, the y-axis, direction. As also seen from this
figure, in general, the effects of the changes in the
thickness/span ratios on the absolute maximum
bending moment, My, are larger than the changes in
the aspect ratios.
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Fig. 6. Absolute maximum bending moment My at the center of the reinforced concrete thick simply supported plates
resting on Winkler foundation for different aspect ratios and thickness/span ratios.

5 5000

z O tiz=0035 $-ta=D2

g:, E 4000 Bt & ve03

EZ

s

25 3000

ER . .

E s 2000 - *},zf”fffﬂ +

B=

é; 1000 E;;;J;;;EF____,_;E

e G}—_—_—__G 3

Eﬁ 0 T I T
bla

Fig. 7. Absolute maximum bending moment Mx at the center of the reinforced concrete thick clamped plates resting on
Winkler foundation for different aspect ratios and thickness/span ratios.
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Fig. 8. Absolute maximum bending moment My at the center of the reinforced concrete thick simply supported plates
resting on Winkler foundation for different aspect ratios and thickness/span ratios.
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Fig. 9. Absolute maximum bending moment My at the center of the reinforced concrete thick clamped plates resting on
Winkler foundation for different aspect ratios and thickness/span ratios.

4, Conclusions

The purpose of this paper is to study shear locking-
free parametric earthquake analysis of thick plates
resting on Winkler foundation, to determine the
effects of the thickness/span ratio, the aspect ratio
and boundary condition on the linear responses of
the thick plates resting on Winkler foundation
subjected to earthquake excitations. It is concluded
that 8-noded finite element can be effectively used
in the earthquake analysis of thick plates resting on
elastic foundation. The coded program can be
effectively used in the earthquake analyses of any
thick plates resting on elastic foundation. It is also
concluded that, in general, the changes in the
thickness/span ratio are more effective on the
maximum responses considered in this study than
the changes in the aspect ratio.

In order to generalize the results obtained in this
study, the responses of the different thick plates
resting on Winkler foundation subjected to
different earthquake excitations should be
evaluated all together. Therefore, the curves
presented herein can help the designer to anticipate
the effects of the thickness/span ratio, the aspect
ratio, and boundary condition on the earthquake
response of a thick plate resting on Winkler
foundation.

The following conclusions can also be drawn
from the results obtained in this study.

The absolute maximum displacements of
the thick plates increase as the aspect ratio
increases for a constant t/a ratio. The same
displacements decrease as the t/a ratio
increases for a constant b/a ratio.

The changes in the aspect ratios are
generally less effective on the absolute
maximum displacement than the changes in
the thickness/span ratios.

The absolute maximum bending moment,
My, at the center of the thick simply
supported plates resting on Winkler
foundation increases as the aspect ratio and
thickness/span ratio increase.

The changes in the aspect ratios are
generally more effective on the absolute
maximum bending moment, My, of the thick
simply supported plates than the changes in
the thickness/span ratios.

The absolute maximum bending moment,
My, at the center of the thick clamped plates
resting on Winkler foundation increases
with  increasing aspect ratio and
thickness/span ratio.

The changes in the aspect ratios are
generally more effective on the absolute
maximum bending moment, My, of the thick
clamped plates resting on Winkler
foundation than the changes in the
thickness/span ratios.



61

Ozdemir

The absolute maximum bending moment,
My, at the center of the thick simply
supported plates resting on Winkler
foundation decreases as the aspect ratio
increases and  increases as  the
thickness/span ratio increases.

The changes in the thickness/span ratios are
generally more effective on the absolute
maximum bending moment, My, of the thick
simply supported plates resting on Winkler
foundation larger than the changes in the
aspect ratios.

The absolute maximum bending moment,
My, at the center of the thick clamped plates
resting on Winkler foundation decreases
with increasing aspect ratio and increases
with increasing thickness/span ratio.

The changes in the thickness/span ratios are
generally more effective on the absolute
maximum bending moment, My, of the thick
clamped plates resting on Winkler
foundation than the changes in the aspect
ratios.

In general, degrees of decreases and
increases depend on the changes in the
aspect and thickness/span ratios, and the
changes in the thickness/span ratio are more
effective on the maximum responses
considered in this study than the changes in
the aspect ratio.
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