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The time-cost trade-off problem (TCTP) presents a significant challenge in construction
management, requiring a balance between project duration and associated costs for
successful completion. This study evaluates the performance of an arithmetic
optimization algorithm (AOA) for solving the TCTP. AOA integrates non-dominated
sorting (NDS) to generate Pareto-optimal solutions that address both time and cost
objectives. The methodology involves testing the AOA on three case studies representing
small- and medium-scale construction projects with 18, 29, and 63 activities.
Comparative analyses with traditional metaheuristic algorithms, such as ant colony
optimization, genetic algorithms, and particle optimization algorithms, reveal that NDS-
AOA delivers competitive results, particularly in smaller projects, that achieve lower costs
and faster computation times. However, its effectiveness decreases in medium-scale
projects, indicating scalability limitations. Numerical tests suggest that while AOA is well-
suited for small to medium projects, it requires further enhancements, such as
hybridization with other techniques, to effectively handle larger-scale problems.
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1. Introduction

Today, construction projects aim at the efficient use
of resources to meet predefined objectives. Time
and cost are critical parameters that significantly
influence a project's overall efficiency [1].
Construction management entails the supervision
of planning, execution, and completion of
construction projects within specified timeframes,
budgets, and resource limitations [2]. This field
involves coordinating various elements of the
construction process, including task scheduling,
cost control, and resource allocation, such as
labour, materials, and equipment [3].

In construction project planning, time-cost
trade-off analysis plays a vital role in optimizing

schedules by striking a balance between duration
and cost. Time-cost trade-off analysis optimizes
schedules by balancing project duration and cost
and determining the most effective resource
distribution to minimize both [4]. The critical path
method (CPM) is widely used in construction
projects and is primarily designed to identify the
critical path of a project, which is the sequence of
activities that determines the shortest possible
completion time [5]. However, the presence of
multiple time and cost options for each activity
introduces complexity, leading to the recognition of
the multi-objective Time-Cost Trade-Off Problem
(TCTP). As the number of activities and options
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increases, decision makers face a more complicated
search space for optimal solutions.

Extensive research has been conducted to
address TCTP, employing various metaheuristic
algorithms. For instance, Sonmez and Bettemir [6]
formulated a hybrid strategy that integrates a
genetic algorithm (GA), simulated annealing, and
quantum simulated annealing techniques to address
TCTP. Aminbakhsh and Sénmez [7] presented a
particle swarm optimization (PSO)-based method
to solve large-scale discrete TCTP, demonstrating
superior solution quality and computation time,
particularly for medium- and large-scale problems.
Ng and Zhang [8] introduced an evolutionary
algorithm with a novel ant colony optimization
(ACO) algorithm inspired by ant behavior to
simultaneously optimize time and cost and achieve
superior performance compared to previous
methods, and Afshar et al. [9] applied multi-colony
ant optimization to resolve 7- and 18-activity TCTP
in construction project management scenarios.

In another approach, Eirgash et al. [10]
conducted a comparative study involving a Non-
Dominated Sorting (NDS)-based Teaching-
Learning Optimization (TLBO) algorithm for
TCTP, outperforming other existing algorithms.
Togan et al. [11] introduced novel variations of the
New Modified Adaptive Weight Approach
(nMAWA), an optimization technique that adjusts
weights dynamically to improve solution
performance. They applied nMAWA using
algorithms such as TLBO, Jaya, and Genetic
Algorithm (GA), which showed better performance
compared to the original Modified Adaptive
Weight Approach (MAWA). Furthermore, Togan
et al. [12] evaluated the efficiency of TLBO and its
variants, eTLBO and mTLBO, in optimizing TCTP
in highway development projects, and showed
considerable variations in both project duration and
cost across algorithms. Yilmaz and Dede [13]
incorporated the NDS approach into the RAO-1 and
RAO-2 algorithms to solve TCTPs, yielding better
results than several other optimization methods.
Moreover, multi-objective approaches that consider
additional factors, such as quality, environment,

and resources, along with time and cost, have been
examined in numerous studies [14-20].

Pham et al. [21] introduced a hybrid
optimization model combining the Multi-Verse
Optimizer (MVO) with the Sine Cosine Algorithm
(SCA), aimed at solving discrete TCTP in
construction project management. The model was
tested on four discrete TCTP benchmark problems,
including two medium-scale (63 activities) and two
large-scale (630 activities) instances, revealing that
the model outperformed the existing algorithms in
optimizing TCTPs for large, complex construction
projects. Bettemir and Birgonul [22] proposed a
hybrid heuristic meta-heuristic algorithm that
integrates a minimum-cost slope-based heuristic
network analysis with Differential Evolution, and
successfully addressed large-scale discrete TCTPs.

Albayrak [16] introduced a new hybrid
algorithm that combines PSO and GA to solve the
TCTP, yielding shorter project durations and more
cost-effective solutions compared to standard PSO.
Patil et al. [23] developed a new TCTP optimization
model tailored to retrofitting projects in densely
populated regions such as India. This model
accounts for several project components, including
electrical and structural requirements, and uses
Multi-Objective Genetic Algorithms (MOGAs) to
identify solutions that balance project duration and
cost while meeting the necessary requirements.

While widely used algorithms such as GA,
ACO, PSO, and TLBO have been applied to solve
TCTP, research on the development of novel
metaheuristic algorithms continues to advance. To
validate the effectiveness of these algorithms, they
are increasingly being tested on real-world
construction problems rather than relying solely on
benchmark datasets. Abualigah et al. [24] recently
introduced the AOA, demonstrating its superior
performance compared to eleven other widely
recognized optimization algorithms in addressing
complex optimization challenges. The AOA has
been successfully implemented in
engineering applications, including the design of
welded beams, tension/compression  springs,

various

pressure vessels, 3-bar trusses, and speed reducers,
highlighting its versatility and effectiveness.
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Optimization  techniques are frequently
enhanced by integrating methods, such as the
Modified Adaptive Weight Approach (MAWA)
and Non-Dominated Sorting (NDS). MAWA
consolidates multiple objectives into a single one by
allocating weights; however, it often becomes
trapped in local optima and yields only one
solution. To address this limitation, more efficient
and reliable NDS approaches have gained attention,
as discussed by Deb et al. [25]. NDS ranks solutions
using Pareto dominance and is widely employed in
TCTP because of its ability to produce multiple
optimal solutions. This approach enables decision
makers to select optimal solutions based on their
expertise, thereby addressing the limitations of
MAWA.

This study extends the AOA by incorporating
the NDS method to generate effective Pareto-
optimal solutions for TCTP in construction
management. The primary goal is to enhance the
efficiency and performance of an AOA-based
multi-objective optimization framework.

This paper outlines time-cost optimization
formulations, details the NDS approach and
attributes of the AOA-based optimizer for solving
TCTP in construction projects, and tests the
performance of the NDS-AOA on benchmark
problems to demonstrate its potential in real-world
applications.

2. Mathematical Formulation for TCTP

TCTP is framed as a multi-objective optimization
challenge, aiming to simultaneously minimize both
time and cost by selecting optimal alternatives for
each activity. The mathematical representation of
the time calculation follows Egs. (1)-(4).

ES, =0 (1
max )

ES; = jep, {(EF;} j=1,..n+1 2)
m

EF; = ES; +zti(") % 3)
k=1

i=0,..,n+1

T = EFn+1 (4)

where T denotes the total project duration; ES; and
EF; are the earliest start and finish times of activity
J, respectively; p; refers to the immediate

predecessor(s) of activity j; #* is the duration of
activity i for the k-th option; and xi®¥ is the binary
decision variable for activity i, where x;¥ = 1 if the
k-th option is selected, and x;¥ = 0 otherwise. The
two dummy activities represent the start (activity 0)
and finish (activity n + 1).

The objective of the equations outlined above is
to calculate project completion time by determining
the longest path within the activity network, also
known as the critical path. In parallel, the total cost
calculation for the project includes both the direct
and indirect costs. Direct costs are associated with
individual activities, whereas indirect costs are
calculated based on the total project duration, as
expressed in Eqgs. (5)-(7).

n+1
DC = ) dg® x® 5)
i=0
IC=T xICR ©)
C=DC+ IC )

Here, DC refers to the total direct costs and IC
represents the total direct and indirect costs of the
project. C denotes the overall project cost, which
combines the direct and indirect costs. The term
dci® x® captures the direct cost for the k-th option
of activity i, whereas /CR denotes the indirect cost
rate associated with the project.

This mathematical formulation allows project
managers to calculate the total project duration and
costs and explore various TCTPs to select the
appropriate activity options. The capability of the
model to optimize the trade-offs between time and
cost is critical in project planning, resource
allocation, and minimizing project overruns [10].

3. Multi Objective Optimization

Multi-objective optimization considers multiple
competing objectives to determine the optimal
solution for a given problem [26]. Unlike single-
objective optimization, which focuses on one goal,
multi-objective optimization aims to identify
Pareto-optimal solutions that represent the best
trade-offs between conflicting objectives [27]. This
approach is crucial for decision-makers who must
balance competing goals in real-world projects,
making it an essential tool for informed decision-
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making. Its applications span various fields and
require comprehensive understanding of multiple
objectives [28]. The methodologies used range
from classical ~mathematical programming
techniques to advanced metaheuristic algorithms,
facilitating the exploration of solution spaces to find
NDS that offer optimal compromises [25].

3.1. NDS for multi-objective optimization

NDS is a prominent method for solving multi-
objective optimization problems. In a two-objective
scenario, solution A is said to dominate solution B
if it performs no worse on any objective and better
on at least one objective [27]. Solutions that are not
dominated by any other form the first Pareto front,
which is assigned a rank of one. Subsequently, the
populations were ranked sequentially (i.e., 2, 3, and
4). NDS plays a crucial role in metaheuristic
optimization algorithms such as NSGA and its
variants [27]. These algorithms use NDS to guide
the search process, ensuring that the population of
solutions evolves toward Pareto-optimal solutions
in subsequent iterations [29, 30]. Within each
Pareto front, solutions are further differentiated
using a CD metric, which measures the diversity of
solutions by calculating the distance between
neighboring solutions on the front. The crowding
distance was calculated using Eq. (8) Yilmaz and
Dede [13].

i "
fm]+1 _ fm]—1 g
Dl}n = Dl;'n + fmmax _ fmmin ( )

here I; denotes the solution index of the j-th

population in the sorted population for objective m,
m

m

while f;{ *tand f,:lj “*represent the function values of
the next and previous solutions, respectively. The
maximum and minimum function values for each
objective were also considered when calculating
CD, ensuring that the solutions were well
distributed across the Pareto front. The CD values
were calculated separately for the members in each
rank, with the largest and smallest values of each
objective in each rank treated as infinite numbers.

4. Arithmetic Optimization Algorithm
(ACA)

AOA is a stochastic optimization algorithm
developed by Abualigah et al. [24] that utilizes
classical arithmetic operators such as addition,
subtraction, division, and multiplication to
determine the optimal solution for a given problem.
By employing these operators within a population-
based framework, the AOA initiates the
optimization process by randomly generating a set
of potential solutions evaluated using a specific
objective function. These initial solutions are then
iteratively refined through a set of rules based on
optimization techniques to discover the optimal
solution stochastically. This process is categorized
into the exploitation and exploration phases.

4.1. Motivation

Arithmetic is a fundamental component of number
theory and is integral to modern mathematics,
alongside geometry, algebra, and analysis.
Arithmetic operators, multiplication, division,
subtraction, and addition are traditional tools used
to study numbers and are employed in mathematical
optimization to select the best element from a set of
candidate alternatives, as demonstrated by
Abualigah et al. [24]. Optimization problems are
pervasive across quantitative disciplines, including
science,

engineering, economics,

operations research, and industry. Continuous

computer

enhancement of solution techniques has been a
long-standing focus in mathematics.

4.2. Initialization phase

According to Abualigah et al. [24], the optimization
process begins with a set of candidate solutions, as
shown in matrix X (Eq. 9), which is generated
randomly. Thus far, the best candidate solution in
each iteration has been considered the best or nearly
optimal solution.

X =
X1,1 X1,2 X1,d-1 X1,d
X2.1 X2,2 X2,d-1 X2,d
: : : : ©)
Xn-11 Xn-1,2 Xn-1,d-1 Xn-1,d-1
xn,l xn,Z xn,d—l xn,d
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The search process of the AOA consists of two
phases: exploration and exploitation. These phases
are executed after defining the math optimizer
accelerator (MOA) value for the current iteration,
as expressed in Eq. (10).

MOA (Citer) =

Max — Min
Min + Gy x (M) 1)

M

here MOA (Citer) denote;tilrle function value at the
t-th iteration, Cj.., denotes the current iteration
(ranging from 1 to the maximum number of
iterations, Mjs,,). Min and Max denote the
minimum and maximum values of the accelerated
function, respectively.

When r1 > MOA, we initiate the exploration
phase by implementing either M or D. The position
updating equation utilized during the exploration
phase is presented in Eq.(11), and 1 is a random
number in the range (0, 1).

4.3. Exploration phase

In the exploration phase, solutions are searched
randomly using division and multiplication
operators and are updated using Eq. (11).

Xi,j(CIter +1)=
( if r2<0.5

best(x;) + (MOP + &) x ((UB; — LB;) x u+ LB;) (11)
otherwise

best(x;) x MOP x ((UB; — LB;) X u+ LB))
where X;(Cjter + 1) denotes the i-th solution in
the next iteration, X;;(Cjer) denotes the j-th
position of the i-th solution at the current iteration,
and best (x; ) is the j-th position in the best-obtained
solution so far. ¢ is a small integer number, and UB;
and LB; denote the upper and lower bound values of
the j-th position, respectively. p is a control
parameter to adjust the search process, fixed at 0.5
in [24]. r2 is a random number in the arange (0, 1).
Math optimizer probability (MOP) is a

coefficient calculated using Eq. (12).
1

MOP (Cror) = 1- 12" (12
Mltera

where MOP (Cjser) denotes the function value at

the i-th iteration, Cj, indicates the current

iteration, and M., denotes the maximum number

of iterations. « is a sensitive parameter that defines

the exploitation accuracy over the iterations, fixed
at 5 in the source paper [24].

4.4. Exploitation phase

During the exploitation phase, the solutions are
further refined using subtraction and addition
operators and are updated using Eq. (13).

Xij(Clrer + 1) =

if 3 <05

jbest(xj)—MOP x ((UB; - LB)) x pu+ LB;) (13)
other wise

lbest(xj)+ MOP x ((UB; — LB;) X pu+ LB))

In this equation, all notations are consistent with the
previous definitions, and 73 is a random number in
the range (0, 1).

A flowchart of the AOA based on the phases
explained above is presented in Fig. 1 [24].

5. Numerical Examples

To demonstrate the effectiveness of the NDS-AOA
model in obtaining Pareto front solutions for the
TCTP, this study examines small- and medium-
scale problems from existing technical literature.
The objective is to evaluate the performance of the
proposed model in solving real-world TCTP
examples, highlighting its applicability and
efficiency. The implemented algorithm was coded
in Python and executed on a personal computer
with an Intel® Core™ i3-3110M CPU (2.40 GHz)
and 4GB of RAM. To ensure reliability, 10
consecutive experimental trials were conducted for
each instance. The effectiveness of the developed
NDS-AOA was evaluated and compared with
existing methods in the literature. Assessing an
algorithm's performance using the Average Percent
Deviation (APD%) from the optimal solution and
the Number of Function Evaluations (NFE)
provides a comprehensive
highlights efficiency by showing convergence
speed, while APD% emphasizes accuracy by
indicating proximity to the optimal solution.
Considering both metrics allows the evaluation of
the trade-offs between computational cost and

evaluation. NFE

solution quality, aiding the identification of the
most suitable algorithm for specific applications.
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Fig. 1. The flowchart of AOA
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5.1. Case study of 18-activity project

This 18-activity example was originally introduced
by Feng et al. [31] and incorporates the time-cost
alternatives specified by Hegazy [32]. The project
includes various construction modes (options) for
its activities, with relationships detailed in Table 1
alongside corresponding construction time and cost
values. An indirect cost rate of $1,500 per day was
adopted. The project comprises one activity with
two modes, eleven activities with three modes, two
activities with four modes, and five activities with
five modes, resulting in a total of 5.90x10° possible

schedules.

Table 2 summarizes the results obtained from

the AOA alongside the performance of six previous

metaheuristic algorithms for the

18-activity

problem. For a duration of 110 days, the ACS-TCO
of Ng and Zhang [8] and ACS of Zhang and Ng [ 18]
provided solutions with higher costs compared to

Table 1. Options for 18-activities project with five modes

the proposed AOA results. The Pareto front
solutions reported for NA-ACO by Afshar et al. [9],
PSO by Aminbakhsh and Sénmez [7], TLBO by
Eirgash et al. [10], and RAO-2 by Y1lmaz and Dede
[13] are identical to those obtained by the NDS-
AOA method. Notably, the proposed algorithm
explores only a small fraction (3,220/5.90x10°
=0.0000005%) of the solution space, demonstrating
a remarkable reduction in the Number of Function
Evaluations (NFE) compared to N-ACO by Afshar
et al. [9], Aminbakhsh and Sénmez [7], TLBO by
Eirgash et al. [10], and RAO-2 by Y1lmaz and Dede
[13]. This indicates the proposed algorithm's
success. Comparing AOA with contemporary
methods reveals that NDS-AOA is among the most
effective algorithms for Pareto front optimization of
complex small-scale TCTPs. Table 3 illustrates the
Pareto front along with the selected durations for
the corresponding 18 activities, and Fig. 2 shows
the Pareto optimal front solution.

Description Option 1 Option 2 Option 3 Option 4 Option 5
Tasks ngiifi:?;m gllallrys) Cost $ Dur Cost Dur Cost Dur Cost Dur  Cost
1 - 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200
2 - 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000
3 - 15 4,500 22 4,000 33 3,200 - - - -

4 - 12 45,000 16 35,000 20 30,000 - - - -

5 1 22 20,000 24 17,500 28 15,000 30 10,000 - -

6 1 14 40,000 18 32,000 24 18,000 - - - -

7 5 9 30,000 15 24,000 18 22,000 - - - -

8 6 14 220 15 215 16 200 21 208 24 120
9 6 15 300 18 240 20 180 23 150 25 100
10 2,6 15 450 22 400 33 320 - - - -

11 7,8 12 450 16 350 20 300 - - - -

12 5,9, 10 22 2,000 24 1,750 28 1,500 30 1,000 - -

13 3 14 4,000 18 3,200 24 1,800 - - - -

14 4,10 9 3,000 15 2,400 18 2,200 - - - -

15 12 12 4,500 16 3,500 - - - - - -

16 13,14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000
17 11,14, 15 14 4,000 18 3,200 24 1,800 - - - -

18 16,17 9 3,000 15 2,400 18 2,200 - - - -
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Table 2. Comparison between different algorithms for 18-activity projects

Dur (days) TCO[8]  ACO[9]  ACS[18] PSO[7] TLBO[10] RAO-2[13] This study
100 283,320 283,320 285,400 283,320 283,320 283,320 283,320
101 279,820 279,820 282,508 279,820 279,820 279,820 279,820
104 276,320 276,320 277,200 276,320 276,320 276,320 276,320
110 271,320 271,270 273,165 271,270 271,270 271,270 271,270
Pop. Size 10 50 10 80 40 60 20
Number of iterations 200 300 200 100 100 100 80
NFE 2,000 15,000 2,000 8,000 8,040 6,060 3,220
No of runs 1 1 1 10 10 10 10
APD % 0.018 0.000 0.018 0.000 0.000 0.000 0.000
Table 3. Selected options and solutions generated for 18-activity TCTP problems
PF  Time
Cost 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Sol (day) %P
1 100 283320 1 5 3 3 3 1 3 5 1 1 2 1 3 3 1 5 1 1
2 101 279820 1 5 3 3 4 1 3 5 1 1 2 1 3 3 1 5 1 1
3 104 276,320 1 5 3 3 4 2 3 5 1 1 2 1 3 3 1 5 1 1
4 110 271,270 15 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1
284.000
282.000 §
280.000 ¥
@ 278.000 +
b7
3 276.000 +
274.000 ¥
272.000 ¥
270.000 [ 2 2 2 2 : 2 2 2 2 : 2 2 2 2 : 2 2 2 2 : 2 2 2 2 : 2 2 2 2 : 2 2 2 2
98 100 102 104 106 108 110 112

Duration (day)

Fig. 2. Pareto fronts optimal solutions of 18-activity problem

5.2. Case study of 29 activity projects

The problem under consideration was originally
proposed by Sakellaropoulos and Chassiakos [33]
and involves optimizing a highway development
project consisting of 29 activities with generalized
activity relationships. The project includes six

activities with a single option, six with two options,
and seventeen with three options, resulting in
8.3x10° possible combinations and making the
problem highly complex. Togan et al. [12]
addressed this problem using TLBO and its two
variants, eTLBO and mTLBO, to account for
finish-to-start relationships. In this study, we
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followed a similar approach to Togan et al. [12],
presenting the logical precedence relationships
among activities in Table 4. An indirect cost of
$150 per day aligns with prior research
assumptions.

As shown in Table 5, we compared the
performance of NDS-AOA with TLBO, ¢TLBO,

Table 4. Options for 29-activities project with three modes

and mTLBO. The NDS-AOA demonstrated
remarkable efficiency by producing a global
optimal solution in just one second across 10
generations, using a population size of 20 and 30
iterations.

Description Option 1 Option 2 Option 3
Act.  Activity description I:Crteii/ei?y 211;;5) (C$(;st ](?121;/5) Cost (3) ](?121;/5) (C$(;st
1 Road excavation - 5 2,030 4 2,300 - -
2 Embankment construction 1 8 1,020 7 1,280 6 1,510
3 Subbase and base layers 1,2 8 1,700 7 1,850 6 2,090
4 Asphalt layer 3 4 590 3 730 - -
5 Temporary marking and signing 4 2 90 - - -
6 Earth and semi-rock excavation 1 4 910 3 1,100 - -
7 Embankment construction 2,6 2 250 - - - -
8 Subbase and base layers 7,3 7 1,490 6 1,650 5 1,830
9 Asphalt layer 4,8 4 520 3 750 - -
10 Temporary marking and signing 5,9 2 90 -- - - -
11 Traffic diversion 5,10 1 50 - - - -
12 Rock excavation 11 8 3,260 7 3,580 6 3,710
Main Road, Earth, and semi rock
13 excavation - existing pavement 12 5 1,140 4 1,400 3 1,720
removal
Main Road, Subgrade
14 stabilization, retaining 13 4 300 3 450 - -
wall/culvert construction
15 Embankment construction 12, 14 8 1,020 6 1,300 1,430
16 Drainage layer 15 9 790 900 6 1,180
17 Drainage pipe construction 15 13 3,340 12 3,750 11 4,060
18 Electrical ins. at roadway verges 15 470 650 830
19 Planting at roadway verges 15 460 600 810
20 Ditches 17 1,280 1,430 - -
21 Subbase layer 20 14 1,090 12 1,320 10 1,560
22 Base layer 21 14 900 11 1,140 9 1,400
23 Median Island (New Jersey) 22 14 2,220 12 2,510 11 2,690
24 Electrical ins. at median island 23 3 230 - - - -
25 Asphalt layer No. 1 23 6 1,590 5 1,790 4 1,990
26 Asphalt layer No. 2 25 10 2,630 9 2930 8 3240
27 Friction course overlay 26 8 2,060 7 2450 6 2660
28 Final marking and signing 27 10 320 9 440 8 610
29 Traffic restoration 28 1 50 - - - -
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Table 5. Analysis results of 29-activity TCTP problems (daily indirect cost of $150)

Togan et al. [12]

This study (AOA)
TLBO eTLBO mTLBO
Dur (days) Cost ($) Dur (days) Cost ($) Dur (days) Cost ($) Dur (days) Cost ($)
135 57,270 132 57,640 133 55,070 133 54,530
144 56,990 143 56,700 138 54,910 138 54,290
145 56,530 145 56,460 141 54,840 139 54,260
148 56,300 149 55,650 143 54,280
Pop. Size 40 20
Num. of iterations 50 30
NFE 4,040 1,220

In contrast, the TLBO model by Togan et al. [12]
utilized larger population sizes of 40 and 50
iterations, resulting in longer computational times.
Based on this comparison, NDS-AOA proved to be
more efficient and potentially more -effective,
achieving lower project costs with project durations
comparable to those obtained by Togan et al. [12].
Notably, the NFE in AOA was significantly lower
than those reported in previous studies, indicating

superior performance in terms of both duration and
cost. This reduction in function evaluations implies
that AOA iterations  and
computational resources to reach optimal solutions.

requires fewer
The Pareto fronts optimal solutions generated by
AOA for this case study are presented in Table 6,
while Fig. 3 illustrates the Pareto optimal front
solutions.

Table 6. Selected options and solutions generated for 29-activity TCTP problem

PF Sol  Dur(days) Cost($)  Obtained solution vector
1 133 54,530 21131113211112311112333111131
2 138 54,290 r1131111r111112311111333111131
3 139 54,260 r1131111111112311111332111131
4 143 54,280 r1131111r1111r11311112331111111
58.000
57.500 +
L 2
57.000 + L 4
N ¢ TLBO
/_\56.500 T
2 . eTLBO
*%‘ 56.000 + mTLBO
O
55.500 + AOA
55.000 +
54.500 +
54.000 t t }
130 135 140 145 150

Duration (day)

Fig. 3. Pareto optimal solutions of 29-activity problems
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5.3. Case study of 63 activity project

A medium-scale construction project comprising
63 activities with five options, proposed by
Bettemir [34], was evaluated using the AOA. The
time-cost alternatives for this problem are detailed
in Table 7. The project includes two activities with
three modes, fifteen activities with four modes, and
forty-six activities with five modes, resulting in an
astonishing ~ 1.4x10*  possible  time-cost
alternatives. Two scenarios were tested: case (63a)
with an indirect cost of $2,300 per day, and case
(63b) with an indirect cost of $3,500 per day.
Bettemir [34] identified the optimal solutions for
these scenarios using integer programming, finding
that the optimal time and cost for case (63a) were
630 days and $5,421,120, respectively, while for
case (63b), the optimal time and cost were 621 days
and $6,176,170.

Previous studies have addressed this problem
using various metaheuristic approaches. Bettemir
[34] applied eight different metaheuristic
algorithms, five of which were hybrid models.
Aminbakhsh and Sénmez [7] reported Pareto front
solutions using the PSO method. Eirgash et al. [10]
employed an NDS-based TLBO algorithm to solve
the problem, and Yilmaz and Dede [13] utilized
RAO algorithms. In this study, we applied the

Table 7. Options for 63- activities project with five modes

NDS-AOA to both cases (63a) and (63b) and
compared the results with those from previous
studies using GA, PSO, ACO, TLBO, and RAO-2
algorithms. Each algorithm was tested with ten
different runs to ensure a robust comparison. The
comparisons for cases (63a) and (63b) are presented
in Tables 8 and 9, respectively.

The NDS-AOA approach tested in this study
was designed to efficiently explore a limited portion
of the solution space. Specifically, AOA searched
65,250 possible different schedules
(65,250=250%x130%2+250), representing only a
minuscule fraction of the total solution space
(65,250/1.4x10%?). The population size and number
of iterations were set to 250 and 130, respectively.
The number of function evaluations was limited to
65,250, significantly fewer than in previous studies,
resulting in APD values of 0.39% and 0.60% for
cases (63a) and (63b), respectively.

As shown in Table 8, the AOA outperformed
previous optimization methods, including GA,
ACO, PSO [34], TLBO [10], and RAO-2 [13], in
terms of the Number of Function Evaluations
(NFE). However, the APD values for AOA were
slightly higher than those achieved by PSO, TLBO,
and RAO-2, indicating that while AOA's solution
accuracy remains competitive, it was not the
highest for this medium-scale project.

Description  Option 1 Option 2 Option 3 Option 4 Option 5
No  Precedent gllallrys) Cost($) Dur Cost($) Dur Cost($) Dur Cost($) Dur Cost($)
1 - 14 3,700 12 4,250 10 5,400 9 6,250 - -
2 - 21 11,250 18 14,800 17 16,200 15 19,650 - -
3 - 24 22,450 22 24,900 19 27,950 17 31,650 - -
4 - 19 17,800 17 19,400 15 21,600 - - - -
5 - 28 31,180 26 34200 23 38,250 21 41,400 - -
6 1 44 54,260 42 58,450 38 63,225 35 68,150 - -
7 1 39 47,600 36 50,750 33 54,800 30 59,750 - -
8 2 52 62,140 47 69,700 44 72,600 39 81,750 - -
9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500
10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450
11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400
12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 965,500
13 7 40 34,250 37 38,500 33 43950 31 48,750 - -
14 8 33 52,750 30 58,450 27 63,400 25 66,250 - -
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15 9 47 38,140 40 41,500 35 47,650 32 54,100 - -
16 9,10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850
17 10 60 78,450 55 84,500 49 91,250 47 94,640 - -
18 10,11 81 127,150 73 143,250 66 154,600 47 161,900 - -
19 11 36 82,500 34 94,800 30 101,700 - - - -
20 12 41 48,350 37 53,250 34 59,450 32 66,800 - -
21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750
22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400
23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450
24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400
25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800
26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500
27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750
28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500
29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600
30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200
31 19,25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100
32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450
33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500
34 28,30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250
35 24,27,29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500
36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250
37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600
38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400
39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800
40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200
41 35 37 17,500 31 21,200 27 26,850 23 32,300 - -
42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250
43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200
44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000
45 39 59 847,500 55 91,400 51 101,300 47 126,500 43 142,750
46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000
47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 9,400
48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950
49  38,41,44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750
50 45 101 47,800 74 61,300 63 76,800 49 91,500 - -
51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200
52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200
53 43,48 39 31,500 36 34250 33 37,800 29 41,250 26 44,600
54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300
55 52,53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500
56 50,53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450
57 51,54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400
58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450
59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750
60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800
61 56,57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500
62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100
63 61 27 9,500 26 9,700 25 10,100 24 10,800 22 12,700
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Table 8. Analysis results of 63a-activity project (daily indirect cost of $2,300)

Iiro Bettemir [34] Eirgash et al [10] Yilmaz and Dede [13] This study

GA ACO PSO TLBO RAO-2 AOA

(T;:;]e) Cost ($) 2:;3 Cost ($) g;li:}l; Cost ($) g;li:}l; Cost ($) 2:;3 Cost ($) g;li:}l; Cost ($)
1 641 5,704,200 635 5,490,120 637 5,421,620 630 5,428,870 633 5,425,370 629 5,445,770
2 661 5,712,485 653 5,494,410 644 5,428,920 630 5,428,120 630 5,426,210 638 5,445,020
3 650 5,722,260 638 5,491,180 651 5,439,620 630 5,427,770 629 5,424,570 648 5,440,170
4 653 5,713,450 657 5,491,620 634 5,422,920 630 5,428,120 633 5,423,020 632 5,443,370
5 645 5,699,650 644 5,494,920 651 5,440,570 630 5,428,920 629 5,423,370 637 5,450,870
6 639 5,684,295 626 5,486,630 633 5,421,320 637 5,428,220 630 5,426,520 652 5,444,660
7 640 5,695,655 664 5,495,080 633 5,421,320 633 5,428,870 630 5,427,020 643 5,437,370
8 621 5,707,600 661 5,490,350 633 5,421,620 628 5,428,170 633 5,422,620 666 5,446,720
9 641 5,693,015 643 5,490,680 633 5,421,320 633 5,428 470 630 5,423,720 658 5,455,720
10 623 5,690,790 635 5,492,210 633 5,421,320 633 5,428,720 632 5,427,730 639 5,418,320
Pop Size 500 500 500 180 200 250
ﬁ:;:u‘(’; 500 500 500 450 700 130
NFE 250,000 250,000 250,000 162, 180 140,200 65,250
APD (%) 5.18 1.2 0.09 0.13 0.07 0.39
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Table 9. Analysis results of 63b-activity project (daily indirect cost of $3,500)

;ro Bettemir [34] Eirgash et al [10] Yilmaz and Dede [13] This study

GA ACO PSO TLBO RAO-2 AOA

(Tc;:;e) Cost ($) (Tc;:;e) Cost ($) (Tc;:;e) Cost ($) 2;11;1}13 Cost ($) (Tc;:;e) Cost ($) 2;11;1}13 Cost ($)
1 617 6,462,580 631 6,219,220 644 6,201,720 612 6,192,140 602 6,185,520 611 6,224,390
2 651 6,411,540 632 6,205,850 629 6,217,470 617 6,184,820 591 6,189,120 627 6,206,270
3 647 6,442,440 626 6,234,520 644 6,210,170 590 6,188,690 589 6,192,880 596 6,215,060
4 639 6,420,500 640 6,223,830 648 6,218,170 588 6,195,910 592 6,185,770 600 6,220,470
5 648 6,447,900 617 6,231,440 649 6,216,020 591 6,191,490 595 6,188,090 618 6,204,360
6 627 6,433,810 627 6,197,070 647 6,207,870 586 6,196,840 621 6,182,220 612 6,221,520
7 618 6,439,240 604 6,247,850 651 6,216,220 592 6,189,140 592 6,185,170 606 6,226,470
8 623 6,449,790 635 6,231,860 649 6,215,420 589 6,199,870 617 6,183,620 631 6,221,970
9 630 6,443,805 623 6,198,650 645 6,208,920 617 6,187,390 616 6,202,590 611 6,225,870
10 629 6,450,065 651 6,262,830 642 6,198,520 616 6,190,570 595 6,195,790 633 6,216,610
Pop Size 500 500 500 180 200 250
E:::U‘;i 500 500 500 450 700 130
NFE 250,000 250,000 250,000 162, 180 140,200 65,250
APD (%) 4.1 0.7 0.18 0.14 0.12 0.60
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Figures 4 and 5 provide a graphical representation
of the Pareto front solutions, further illustrating
AOA's capability to balance the time and cost
objectives. The performance of AOA tends to
decrease as project size increases, particularly when
addressing larger-scale TCTPs. This decline in
efficiency is attributed to the increased complexity
of the search space as the number of activities and

modes grows. Nevertheless, the AOA model
demonstrated satisfactory performance for the
medium-sized 63-activity problem. Both scenarios
(63a) and (63b) confirmed that AOA could
efficiently generate Pareto-optimal solutions with
competitive results in terms of cost minimization
and project duration.
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5.700.000 § - +
+
5.650.000 + +GA
5.600.000 + e ACO
2
= 5.550.000 } PSO
3 TLBO
5.500.000 +
o [ I ] [ ® o o © n RAO-2
5.450.000 + s N o o . ¢ AOA
N 2o
5.400.000 +
5.350.000 2 2 2 2 : 2 2 2 2 : 2 2 2 2 $ 2 : 2 2 2 2 : 2 2 2 2
610 620 630 640 650 660 670
Duration (day)
Fig. 4. Pareto front solutions of the 63a problem
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® L] ®
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Fig. 5. Pareto front solutions of 63b problem
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6. Conclusion

In construction management, optimizing the TCTP
is critical for maintaining a competitive advantage
in the highly competitive construction sector.
Efficiently balancing project duration and cost is
essential to meet tight deadlines, reduce overruns,
and maximize profitability. This study explored the
potential of the newly developed AOA for solving
multi-objective optimization problems, specifically
focusing on the TCTP. The AOA model was tested
across different project scales—comprising 18, 29,
and 63 activities—and demonstrated its efficiency
in generating Pareto-optimal solutions with fewer
function evaluations than many established
metaheuristic algorithms.

The results confirmed that AOA is particularly
effective in small-scale problems, generating high-
quality Pareto front solutions with fewer total
function evaluations and lower APD compared to
GA, ACO, TLBO, and RAO-2 algorithms. In
smaller projects, AOA consistently outperformed
these models in terms of both solution quality and
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