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The time-cost trade-off problem (TCTP) presents a significant challenge in construction 
management, requiring a balance between project duration and associated costs for 
successful completion. This study evaluates the performance of an arithmetic 
optimization algorithm (AOA) for solving the TCTP. AOA integrates non-dominated 
sorting (NDS) to generate Pareto-optimal solutions that address both time and cost 
objectives. The methodology involves testing the AOA on three case studies representing 
small- and medium-scale construction projects with 18, 29, and 63 activities. 
Comparative analyses with traditional metaheuristic algorithms, such as ant colony 
optimization, genetic algorithms, and particle optimization algorithms, reveal that NDS-
AOA delivers competitive results, particularly in smaller projects, that achieve lower costs 
and faster computation times. However, its effectiveness decreases in medium-scale 
projects, indicating scalability limitations. Numerical tests suggest that while AOA is well-
suited for small to medium projects, it requires further enhancements, such as 
hybridization with other techniques, to effectively handle larger-scale problems. 
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1. Introduction 
Today, construction projects aim at the efficient use 
of resources to meet predefined objectives. Time 
and cost are critical parameters that significantly 
influence a project's overall efficiency [1]. 
Construction management entails the supervision 
of planning, execution, and completion of 
construction projects within specified timeframes, 
budgets, and resource limitations [2]. This field 
involves coordinating various elements of the 
construction process, including task scheduling, 
cost control, and resource allocation, such as 
labour, materials, and equipment [3].  
 In construction project planning, time-cost 
trade-off analysis plays a vital role in optimizing 

schedules by striking a balance between duration 
and cost. Time-cost trade-off analysis optimizes 
schedules by balancing project duration and cost 
and determining the most effective resource 
distribution to minimize both [4]. The critical path 
method (CPM) is widely used in construction 
projects and is primarily designed to identify the 
critical path of a project, which is the sequence of 
activities that determines the shortest possible 
completion time [5]. However, the presence of 
multiple time and cost options for each activity 
introduces complexity, leading to the recognition of 
the multi-objective Time-Cost Trade-Off Problem 
(TCTP). As the number of activities and options 

https://doi.org/10.31462/jcemi.2024.04336353
mailto:cksulub10@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.goldenlightpublish.com/
https://orcid.org/0009-0008-7015-4239
https://orcid.org/0000-0003-0974-1270
https://orcid.org/0000-0001-8734-6300


337 A.S. Sulub et al.  

 

increases, decision makers face a more complicated 
search space for optimal solutions.  
 Extensive research has been conducted to 
address TCTP, employing various metaheuristic 
algorithms. For instance, Sönmez and Bettemir [6] 
formulated a hybrid strategy that integrates a 
genetic algorithm (GA), simulated annealing, and 
quantum simulated annealing techniques to address 
TCTP.  Aminbakhsh and Sönmez [7] presented a 
particle swarm optimization (PSO)-based method 
to solve large-scale discrete TCTP, demonstrating 
superior solution quality and computation time, 
particularly for medium- and large-scale problems. 
Ng and Zhang [8] introduced an evolutionary 
algorithm with a novel ant colony optimization 
(ACO) algorithm inspired by ant behavior to 
simultaneously optimize time and cost and achieve 
superior performance compared to previous 
methods, and Afshar et al. [9] applied multi-colony 
ant optimization to resolve 7- and 18-activity TCTP 
in construction project management scenarios. 
 In another approach, Eirgash et al. [10] 
conducted a comparative study involving a Non-
Dominated Sorting (NDS)-based Teaching-
Learning Optimization (TLBO) algorithm for 
TCTP, outperforming other existing algorithms. 
Toğan et al. [11] introduced novel variations of the 
New Modified Adaptive Weight Approach 
(nMAWA), an optimization technique that adjusts 
weights dynamically to improve solution 
performance. They applied nMAWA using 
algorithms such as TLBO, Jaya, and Genetic 
Algorithm (GA), which showed better performance 
compared to the original Modified Adaptive 
Weight Approach (MAWA). Furthermore, Toğan 
et al. [12] evaluated the efficiency of TLBO and its 
variants, eTLBO and mTLBO, in optimizing TCTP 
in highway development projects, and showed 
considerable variations in both project duration and 
cost across algorithms. Yılmaz and Dede [13] 
incorporated the NDS approach into the RAO-1 and 
RAO-2 algorithms to solve TCTPs, yielding better 
results than several other optimization methods. 
Moreover, multi-objective approaches that consider 
additional factors, such as quality, environment, 

and resources, along with time and cost, have been 
examined in numerous studies [14-20].  
 Pham et al. [21] introduced a hybrid 
optimization model combining the Multi-Verse 
Optimizer (MVO) with the Sine Cosine Algorithm 
(SCA), aimed at solving discrete TCTP in 
construction project management. The model was 
tested on four discrete TCTP benchmark problems, 
including two medium-scale (63 activities) and two 
large-scale (630 activities) instances, revealing that 
the model outperformed the existing algorithms in 
optimizing TCTPs for large, complex construction 
projects. Bettemir and Birgonul [22] proposed a 
hybrid heuristic meta-heuristic algorithm that 
integrates a minimum-cost slope-based heuristic 
network analysis with Differential Evolution, and 
successfully addressed large-scale discrete TCTPs.  
 Albayrak [16] introduced a new hybrid 
algorithm that combines PSO and GA to solve the 
TCTP, yielding shorter project durations and more 
cost-effective solutions compared to standard PSO. 
Patil et al. [23] developed a new TCTP optimization 
model tailored to retrofitting projects in densely 
populated regions such as India. This model 
accounts for several project components, including 
electrical and structural requirements, and uses 
Multi-Objective Genetic Algorithms (MOGAs) to 
identify solutions that balance project duration and 
cost while meeting the necessary requirements. 
 While widely used algorithms such as GA, 
ACO, PSO, and TLBO have been applied to solve 
TCTP, research on the development of novel 
metaheuristic algorithms continues to advance. To 
validate the effectiveness of these algorithms, they 
are increasingly being tested on real-world 
construction problems rather than relying solely on 
benchmark datasets. Abualigah et al. [24] recently 
introduced the AOA, demonstrating its superior 
performance compared to eleven other widely 
recognized optimization algorithms in addressing 
complex optimization challenges. The AOA has 
been successfully implemented in various 
engineering applications, including the design of 
welded beams, tension/compression springs, 
pressure vessels, 3-bar trusses, and speed reducers, 
highlighting its versatility and effectiveness.  
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 Optimization techniques are frequently 
enhanced by integrating methods, such as the 
Modified Adaptive Weight Approach (MAWA) 
and Non-Dominated Sorting (NDS). MAWA 
consolidates multiple objectives into a single one by 
allocating weights; however, it often becomes 
trapped in local optima and yields only one 
solution. To address this limitation, more efficient 
and reliable NDS approaches have gained attention, 
as discussed by Deb et al. [25]. NDS ranks solutions 
using Pareto dominance and is widely employed in 
TCTP because of its ability to produce multiple 
optimal solutions. This approach enables decision 
makers to select optimal solutions based on their 
expertise, thereby addressing the limitations of 
MAWA. 
 This study extends the AOA by incorporating 
the NDS method to generate effective Pareto-
optimal solutions for TCTP in construction 
management. The primary goal is to enhance the 
efficiency and performance of an AOA-based 
multi-objective optimization framework. 
 This paper outlines time-cost optimization 
formulations, details the NDS approach and 
attributes of the AOA-based optimizer for solving 
TCTP in construction projects, and tests the 
performance of the NDS-AOA on benchmark 
problems to demonstrate its potential in real-world 
applications. 
 
2. Mathematical Formulation for TCTP 
TCTP is framed as a multi-objective optimization 
challenge, aiming to simultaneously minimize both 
time and cost by selecting optimal alternatives for 
each activity. The mathematical representation of 
the time calculation follows Eqs. (1)-(4). 
𝐸𝐸𝐸𝐸0 = 0 (1) 

𝐸𝐸𝐸𝐸𝑗𝑗 =
𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝜖𝜖𝜖𝜖𝑗𝑗 {𝐸𝐸𝐸𝐸𝑖𝑖  }    𝑗𝑗 = 1, … ,𝑛𝑛 + 1 (2) 

𝐸𝐸𝐸𝐸𝑖𝑖 =  𝐸𝐸𝐸𝐸𝑖𝑖 + �𝑡𝑡𝑖𝑖(𝑘𝑘)
𝑚𝑚

𝑘𝑘=1

  𝑥𝑥𝑖𝑖(𝑘𝑘)          

 𝑖𝑖 = 0, … ,𝑛𝑛 + 1 
(3) 

𝑇𝑇 =  𝐸𝐸𝐸𝐸𝑛𝑛+1 (4) 
where T denotes the total project duration; ESj and 
EFj are the earliest start and finish times of activity 
j, respectively; pj refers to the immediate 

predecessor(s) of activity j; ti
(k) is the duration of 

activity i for the k-th option; and xi(k) is the binary 
decision variable for activity i, where  xi

(k) = 1 if the 
k-th option is selected, and xi

(k) = 0 otherwise. The 
two dummy activities represent the start (activity 0) 
and finish (activity n + 1). 
 The objective of the equations outlined above is 
to calculate project completion time by determining 
the longest path within the activity network, also 
known as the critical path. In parallel, the total cost 
calculation for the project includes both the direct 
and indirect costs. Direct costs are associated with 
individual activities, whereas indirect costs are 
calculated based on the total project duration, as 
expressed in Eqs. (5)-(7). 

𝐷𝐷𝐷𝐷 =  �𝑑𝑑𝑑𝑑𝑖𝑖
(𝑘𝑘)

𝑛𝑛+1

𝑖𝑖=0

 𝑥𝑥𝑖𝑖(𝑘𝑘) (5) 

𝐼𝐼𝐼𝐼 = 𝑇𝑇 × 𝐼𝐼𝐼𝐼𝐼𝐼 (6) 
𝐶𝐶 = 𝐷𝐷𝐷𝐷 +  𝐼𝐼𝐼𝐼 (7) 

Here, DC refers to the total direct costs and IC 
represents the total direct and indirect costs of the 
project. C denotes the overall project cost, which 
combines the direct and indirect costs. The term 
dci

(k) xi
(k) captures the direct cost for the k-th option 

of activity i, whereas ICR denotes the indirect cost 
rate associated with the project. 
 This mathematical formulation allows project 
managers to calculate the total project duration and 
costs and explore various TCTPs to select the 
appropriate activity options. The capability of the 
model to optimize the trade-offs between time and 
cost is critical in project planning, resource 
allocation, and minimizing project overruns [10]. 
 
3. Multi Objective Optimization 
Multi-objective optimization considers multiple 
competing objectives to determine the optimal 
solution for a given problem [26]. Unlike single-
objective optimization, which focuses on one goal, 
multi-objective optimization aims to identify 
Pareto-optimal solutions that represent the best 
trade-offs between conflicting objectives [27]. This 
approach is crucial for decision-makers who must 
balance competing goals in real-world projects, 
making it an essential tool for informed decision-
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making. Its applications span various fields and 
require comprehensive understanding of multiple 
objectives [28]. The methodologies used range 
from classical mathematical programming 
techniques to advanced metaheuristic algorithms, 
facilitating the exploration of solution spaces to find 
NDS that offer optimal compromises [25]. 

3.1. NDS for multi-objective optimization 
NDS is a prominent method for solving multi-
objective optimization problems. In a two-objective 
scenario, solution A is said to dominate solution B 
if it performs no worse on any objective and better 
on at least one objective [27]. Solutions that are not 
dominated by any other form the first Pareto front, 
which is assigned a rank of one. Subsequently, the 
populations were ranked sequentially (i.e., 2, 3, and 
4). NDS plays a crucial role in metaheuristic 
optimization algorithms such as NSGA and its 
variants [27]. These algorithms use NDS to guide 
the search process, ensuring that the population of 
solutions evolves toward Pareto-optimal solutions 
in subsequent iterations [29, 30]. Within each 
Pareto front, solutions are further differentiated 
using a CD metric, which measures the diversity of 
solutions by calculating the distance between 
neighboring solutions on the front. The crowding 
distance was calculated using Eq. (8) Yilmaz and 
Dede [13]. 

𝐷𝐷𝐼𝐼𝑗𝑗𝑚𝑚 = 𝐷𝐷𝐼𝐼𝑗𝑗𝑚𝑚  +  
𝑓𝑓𝑚𝑚
𝐼𝐼𝑗𝑗+1

       𝑚𝑚

−  𝑓𝑓𝑚𝑚
𝐼𝐼𝑗𝑗−1

       𝑚𝑚

𝑓𝑓𝑚𝑚   𝑚𝑚𝑚𝑚𝑚𝑚
 −  𝑓𝑓𝑚𝑚   𝑚𝑚𝑚𝑚𝑚𝑚

 (8) 

here Ij denotes the solution index of the j-th 
population in the sorted population for objective m, 

while 𝑓𝑓𝑚𝑚
𝐼𝐼𝑗𝑗+1

 𝑚𝑚

and 𝑓𝑓𝑚𝑚
𝐼𝐼𝑗𝑗−1

  𝑚𝑚

represent the function values of 
the next and previous solutions, respectively. The 
maximum and minimum function values for each 
objective were also considered when calculating 
CD, ensuring that the solutions were well 
distributed across the Pareto front. The CD values 
were calculated separately for the members in each 
rank, with the largest and smallest values of each 
objective in each rank treated as infinite numbers. 
 

4. Arithmetic Optimization Algorithm 
(AOA) 

AOA is a stochastic optimization algorithm 
developed by Abualigah et al. [24] that utilizes 
classical arithmetic operators such as addition, 
subtraction, division, and multiplication to 
determine the optimal solution for a given problem. 
By employing these operators within a population-
based framework, the AOA initiates the 
optimization process by randomly generating a set 
of potential solutions evaluated using a specific 
objective function. These initial solutions are then 
iteratively refined through a set of rules based on 
optimization techniques to discover the optimal 
solution stochastically. This process is categorized 
into the exploitation and exploration phases. 

4.1. Motivation 
Arithmetic is a fundamental component of number 
theory and is integral to modern mathematics, 
alongside geometry, algebra, and analysis. 
Arithmetic operators, multiplication, division, 
subtraction, and addition are traditional tools used 
to study numbers and are employed in mathematical 
optimization to select the best element from a set of 
candidate alternatives, as demonstrated by 
Abualigah et al. [24]. Optimization problems are 
pervasive across quantitative disciplines, including 
engineering, economics, computer science, 
operations research, and industry. Continuous 
enhancement of solution techniques has been a 
long-standing focus in mathematics. 

4.2. Initialization phase 
According to Abualigah et al. [24], the optimization 
process begins with a set of candidate solutions, as 
shown in matrix X (Eq. 9), which is generated 
randomly. Thus far, the best candidate solution in 
each iteration has been considered the best or nearly 
optimal solution. 

X = 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1,1 𝑥𝑥1,2 ⋯ 𝑥𝑥1,𝑑𝑑−1 𝑥𝑥1,𝑑𝑑
𝑥𝑥2,1 𝑥𝑥2,2 ⋯ 𝑥𝑥2,𝑑𝑑−1 𝑥𝑥2,𝑑𝑑
⋮ ⋮ ⋮ ⋮ ⋮

𝑥𝑥𝑛𝑛−1,1 𝑥𝑥𝑛𝑛−1,2 ⋯ 𝑥𝑥𝑛𝑛−1,𝑑𝑑−1 𝑥𝑥𝑛𝑛−1,𝑑𝑑−1
𝑥𝑥𝑛𝑛,1 𝑥𝑥𝑛𝑛,2 ⋯ 𝑥𝑥𝑛𝑛,𝑑𝑑−1 𝑥𝑥𝑛𝑛,𝑑𝑑 ⎦

⎥
⎥
⎥
⎤
 (9) 
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 The search process of the AOA consists of two 
phases: exploration and exploitation. These phases 
are executed after defining the math optimizer 
accelerator (MOA) value for the current iteration, 
as expressed in Eq. (10). 
𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) =  

𝑀𝑀𝑀𝑀𝑀𝑀 +  𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  ×  �
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
� (10) 

here 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) denotes the function value at the 
t-th iteration, 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 denotes the current iteration 
(ranging from 1 to the maximum number of 
iterations, 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀 denote the 
minimum and maximum values of the accelerated 
function, respectively. 
 When r1 > MOA, we initiate the exploration 
phase by implementing either M or D. The position 
updating equation utilized during the exploration 
phase is presented in Eq.(11), and r1 is a random 
number in the range (0, 1).  

4.3. Exploration phase 
In the exploration phase, solutions are searched 
randomly using division and multiplication 
operators and are updated using Eq. (11). 
𝑋𝑋𝑖𝑖,𝑗𝑗(𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  1 ) = 

⎩
⎪
⎨

⎪
⎧ 𝑖𝑖𝑖𝑖  𝑟𝑟2 < 0.5
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑗𝑗) ÷ (𝑀𝑀𝑀𝑀𝑀𝑀 +  𝜀𝜀) × ��𝑈𝑈𝑈𝑈𝑗𝑗 −  𝐿𝐿𝐿𝐿𝑗𝑗�× 𝜇𝜇 + 𝐿𝐿𝐿𝐿𝑗𝑗�

otherwise
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑗𝑗) ×  𝑀𝑀𝑀𝑀𝑀𝑀 ×  �(𝑈𝑈𝑈𝑈𝑗𝑗 −  𝐿𝐿𝐿𝐿𝑗𝑗�  ×  𝜇𝜇 + 𝐿𝐿𝐿𝐿𝑗𝑗) 

 
(11) 

where  𝑋𝑋𝑖𝑖(𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  1 ) denotes the i-th solution in 
the next iteration, 𝑋𝑋𝑖𝑖,𝑗𝑗(𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ) denotes the j-th 
position of the i-th solution at the current iteration, 
and best (x j ) is the j-th position in the best-obtained 
solution so far. 𝜀𝜀 is a small integer number, and UBj 
and LBj denote the upper and lower bound values of 
the j-th position, respectively. 𝜇𝜇 is a control 
parameter to adjust the search process, fixed at 0.5 
in [24]. 𝑟𝑟2 is a random number in the arange (0, 1).  
 Math optimizer probability (MOP) is a 
coefficient calculated using Eq. (12). 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) =  1 −  
𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

1
𝛼𝛼

𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
1
𝛼𝛼

 (12) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 (𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) denotes the function value at 
the i-th iteration, 𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 indicates the current 
iteration, and 𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 denotes the maximum number 
of iterations. 𝛼𝛼 is a sensitive parameter that defines 

the exploitation accuracy over the iterations, fixed 
at 5 in the source paper [24]. 

4.4. Exploitation phase 
During the exploitation phase, the solutions are 
further refined using subtraction and addition 
operators and are updated using Eq. (13). 
𝑋𝑋𝑖𝑖,𝑗𝑗(𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  1 ) = 

⎩
⎪
⎨

⎪
⎧ 𝑖𝑖𝑖𝑖  𝑟𝑟3 < 0.5 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑗𝑗) −𝑀𝑀𝑀𝑀𝑀𝑀 ×  ��𝑈𝑈𝑈𝑈𝑗𝑗 −  𝐿𝐿𝐿𝐿𝑗𝑗�  ×  𝜇𝜇 + 𝐿𝐿𝐿𝐿𝑗𝑗�  

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑗𝑗) +  𝑀𝑀𝑀𝑀𝑀𝑀 ×  �(𝑈𝑈𝑈𝑈𝑗𝑗 −  𝐿𝐿𝐿𝐿𝑗𝑗�  ×  𝜇𝜇 + 𝐿𝐿𝐿𝐿𝑗𝑗)   

 
(13) 

In this equation, all notations are consistent with the 
previous definitions, and r3 is a random number in 
the range (0, 1).  
 A flowchart of the AOA based on the phases 
explained above is presented in Fig. 1 [24]. 
 
5. Numerical Examples 
To demonstrate the effectiveness of the NDS-AOA 
model in obtaining Pareto front solutions for the 
TCTP, this study examines small- and medium-
scale problems from existing technical literature. 
The objective is to evaluate the performance of the 
proposed model in solving real-world TCTP 
examples, highlighting its applicability and 
efficiency. The implemented algorithm was coded 
in Python and executed on a personal computer 
with an Intel® Core™ i3-3110M CPU (2.40 GHz) 
and 4GB of RAM. To ensure reliability, 10 
consecutive experimental trials were conducted for 
each instance. The effectiveness of the developed 
NDS-AOA was evaluated and compared with 
existing methods in the literature. Assessing an 
algorithm's performance using the Average Percent 
Deviation (APD%) from the optimal solution and 
the Number of Function Evaluations (NFE) 
provides a comprehensive evaluation. NFE 
highlights efficiency by showing convergence 
speed, while APD% emphasizes accuracy by 
indicating proximity to the optimal solution. 
Considering both metrics allows the evaluation of 
the trade-offs between computational cost and 
solution quality, aiding the identification of the 
most suitable algorithm for specific applications. 
 



341 A.S. Sulub et al.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The flowchart of AOA 
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5.1. Case study of 18-activity project 
This 18-activity example was originally introduced 
by Feng et al. [31] and incorporates the time-cost 
alternatives specified by Hegazy [32]. The project 
includes various construction modes (options) for 
its activities, with relationships detailed in Table 1 
alongside corresponding construction time and cost 
values. An indirect cost rate of $1,500 per day was 
adopted. The project comprises one activity with 
two modes, eleven activities with three modes, two 
activities with four modes, and five activities with 
five modes, resulting in a total of 5.90×109 possible 
schedules. 
 Table 2 summarizes the results obtained from 
the AOA alongside the performance of six previous 
metaheuristic algorithms for the 18-activity 
problem. For a duration of 110 days, the ACS-TCO 
of Ng and Zhang [8] and ACS of Zhang and Ng [18] 
provided solutions with higher costs compared to 

the proposed AOA results. The Pareto front 
solutions reported for NA-ACO by Afshar et al. [9], 
PSO by Aminbakhsh and Sönmez [7], TLBO by 
Eirgash et al. [10], and RAO-2 by Yılmaz and Dede 
[13] are identical to those obtained by the NDS-
AOA method. Notably, the proposed algorithm 
explores only a small fraction (3,220/5.90×109 
=0.0000005%) of the solution space, demonstrating 
a remarkable reduction in the Number of Function 
Evaluations (NFE) compared to N-ACO by Afshar 
et al. [9], Aminbakhsh and Sönmez [7], TLBO by 
Eirgash et al. [10], and RAO-2 by Yılmaz and Dede 
[13]. This indicates the proposed algorithm's 
success. Comparing AOA with contemporary 
methods reveals that NDS-AOA is among the most 
effective algorithms for Pareto front optimization of 
complex small-scale TCTPs. Table 3 illustrates the 
Pareto front along with the selected durations for 
the corresponding 18 activities, and Fig. 2 shows 
the Pareto optimal front solution. 

 
Table 1. Options for 18-activities project with five modes 

Description Option 1 Option 2 Option 3 Option 4 Option 5 

Tasks Precedent 
activity 

Dur 
(days) Cost $ Dur  Cost  Dur  Cost  Dur  Cost  Dur Cost  

1 - 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 

2 - 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 

3 - 15 4,500 22 4,000 33 3,200 - - - - 

4 - 12 45,000 16 35,000 20 30,000 - - - - 

5 1 22 20,000 24 17,500 28 15,000 30 10,000 - - 

6 1 14 40,000 18 32,000 24 18,000 - - - - 

7 5 9 30,000 15 24,000 18 22,000 - - - - 

8 6 14 220 15 215 16 200 21 208 24 120 

9 6 15 300 18 240 20 180 23 150 25 100 

10 2, 6 15 450 22 400 33 320 - - - - 

11 7, 8 12 450 16 350 20 300 - - - - 

12 5, 9, 10 22 2,000 24 1,750 28 1,500 30 1,000 - - 

13 3 14 4,000 18 3,200 24 1,800 - - - - 

14 4, 10 9 3,000 15 2,400 18 2,200 - - - - 

15 12 12 4,500 16 3,500 - - - - - - 

16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 

17 11, 14, 15 14 4,000 18 3,200 24 1,800 - - - - 

18 16, 17 9 3,000 15 2,400 18 2,200 - - - - 
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Table 2. Comparison between different algorithms for 18-activity projects 

Dur (days) TCO[8] ACO[9] ACS[18] PSO[7] TLBO[10] RAO-2[13] This study  

100 283,320 283,320 285,400 283,320 283,320 283,320 283,320 
101 279,820 279,820 282,508 279,820 279,820 279,820 279,820 
104 276,320 276,320 277,200 276,320 276,320 276,320 276,320 
110 271,320 271,270 273,165 271,270 271,270 271,270 271,270 
Pop. Size 10 50 10 80 40 60 20 
Number of iterations 200 300 200 100 100 100 80 
NFE 2,000 15,000 2,000 8,000 8,040 6,060 3,220 
No of runs 1 1 1 10 10 10 10 
APD % 0.018 0.000 0.018 0.000 0.000 0.000 0.000 

 
Table 3. Selected options and solutions generated for 18-activity TCTP problems 

PF 
Sol 

Time 
(day) 

Cost ($) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 100 283,320 1 5 3 3 3 1 3 5 1 1 2 1 3 3 1 5 1 1 
2 101 279,820 1 5 3 3 4 1 3 5 1 1 2 1 3 3 1 5 1 1 
3 104 276,320 1 5 3 3 4 2 3 5 1 1 2 1 3 3 1 5 1 1 
4 110 271,270 1 5 3 3 4 3 3 5 1 1 3 1 3 3 1 5 1 1 

 

 
Fig. 2. Pareto fronts optimal solutions of 18-activity problem 
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followed a similar approach to Toğan et al. [12], 
presenting the logical precedence relationships 
among activities in Table 4. An indirect cost of 
$150 per day aligns with prior research 
assumptions.  
 As shown in Table 5, we compared the 
performance of NDS-AOA with TLBO, eTLBO, 

and mTLBO. The NDS-AOA demonstrated 
remarkable efficiency by producing a global 
optimal solution in just one second across 10 
generations, using a population size of 20 and 30 
iterations. 

 

Table 4. Options for 29-activities project with three modes 
 Description  Option 1 Option 2 Option 3 

Act. Activity description Preced 
activity 

Dur 
(days) 

Cost 
($) 

Dur 
(days) Cost ($) Dur 

(days) 
Cost 
($) 

1 Road excavation - 5 2,030 4 2,300 - - 
2 Embankment construction 1 8 1,020 7 1,280 6 1,510 
3 Subbase and base layers 1, 2 8 1,700 7 1,850 6 2,090 
4 Asphalt layer 3 4 590 3 730 - - 
5 Temporary marking and signing 4 2 90  - - - 
6 Earth and semi-rock excavation 1 4 910 3 1,100 - - 
7 Embankment construction 2, 6 2 250 - - - - 
8 Subbase and base layers 7, 3 7 1,490 6 1,650 5 1,830 
9 Asphalt layer 4, 8 4 520 3 750 - - 
10 Temporary marking and signing 5, 9 2 90 -- - - - 
11 Traffic diversion 5, 10 1 50 - - - - 
12 Rock excavation 11 8 3,260 7 3,580 6 3,710 

13 
Main Road, Earth, and semi rock 
excavation - existing pavement 
removal 

12 5 1,140 4 1,400 3 1,720 

14 
Main Road, Subgrade 
stabilization, retaining 
wall/culvert construction 

13 4 300 3 450 - - 

15 Embankment construction 12, 14 8 1,020 6 1,300 5 1,430 
16 Drainage layer 15 9 790 8 900 6 1,180 
17 Drainage pipe construction 15 13 3,340 12 3,750 11 4,060 
18 Electrical ins. at roadway verges 15 9 470 8 650 7 830 
19 Planting at roadway verges 15 6 460 5 600 4 810 
20 Ditches 17 6 1,280 5 1,430 - - 
21 Subbase layer 20 14 1,090 12 1,320 10 1,560 
22 Base layer 21 14 900 11 1,140 9 1,400 
23 Median Island (New Jersey) 22 14 2,220 12 2,510 11 2,690 
24 Electrical ins. at median island 23 3 230 - - - - 
25 Asphalt layer No. 1 23 6 1,590 5 1,790 4 1,990 
26 Asphalt layer No. 2 25 10 2,630 9 2930 8 3240 
27 Friction course overlay 26 8 2,060 7 2450 6 2660 
28 Final marking and signing 27 10 320 9 440 8 610 
29 Traffic restoration 28 1 50 - - - - 
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Table 5. Analysis results of 29-activity TCTP problems (daily indirect cost of $150) 
Toğan et al. [12] 

This study (AOA) 
TLBO eTLBO mTLBO 

Dur (days) Cost ($) Dur (days) Cost ($) Dur (days) Cost ($) Dur (days) Cost ($) 
135 57,270 132 57,640 133 55,070 133 54,530 
144 56,990 143 56,700 138 54,910 138 54,290 
145 56,530 145 56,460 141 54,840 139 54,260 
148 56,300 149 55,650   143 54,280 
Pop. Size 40 20 
Num. of iterations 50 30 
NFE 4,040 1,220 

 
In contrast, the TLBO model by Toğan et al. [12] 
utilized larger population sizes of 40 and 50 
iterations, resulting in longer computational times. 
Based on this comparison, NDS-AOA proved to be 
more efficient and potentially more effective, 
achieving lower project costs with project durations 
comparable to those obtained by Toğan et al. [12]. 
Notably, the NFE in AOA was significantly lower 
than those reported in previous studies, indicating 

superior performance in terms of both duration and 
cost. This reduction in function evaluations implies 
that AOA requires fewer iterations and 
computational resources to reach optimal solutions. 
The Pareto fronts optimal solutions generated by 
AOA for this case study are presented in Table 6, 
while Fig. 3 illustrates the Pareto optimal front 
solutions. 

 

Table 6. Selected options and solutions generated for 29-activity TCTP problem 
PF Sol Dur (days) Cost ($) Obtained solution vector 
1 133 54,530 2  1  1  3  1  1  1  3  2  1  1  1  1  2  3  1  1  1  1  2  3  3  3  1  1  1  1  3  1 
2 138 54,290 1  1  1  3  1  1  1  1  1  1  1  1  1  2  3  1  1  1  1  1  3  3  3  1  1  1  1  3  1 
3 139 54,260 1  1  1  3  1  1  1  1  1  1  1  1  1  2  3  1  1  1  1  1  3  3  2  1  1  1  1  3  1 
4 143 54,280 1  1  1  3  1  1  1  1  1  1  1  1  1  1  3  1  1  1  1  2  3  3  1  1  1  1  1  1  1 

 

 
Fig. 3. Pareto optimal solutions of 29-activity problems 
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5.3. Case study of 63 activity project 
A medium-scale construction project comprising 
63 activities with five options, proposed by 
Bettemir [34], was evaluated using the AOA. The 
time-cost alternatives for this problem are detailed 
in Table 7. The project includes two activities with 
three modes, fifteen activities with four modes, and 
forty-six activities with five modes, resulting in an 
astonishing 1.4×1042 possible time-cost 
alternatives. Two scenarios were tested: case (63a) 
with an indirect cost of $2,300 per day, and case 
(63b) with an indirect cost of $3,500 per day. 
Bettemir [34] identified the optimal solutions for 
these scenarios using integer programming, finding 
that the optimal time and cost for case (63a) were 
630 days and $5,421,120, respectively, while for 
case (63b), the optimal time and cost were 621 days 
and $6,176,170.  
 Previous studies have addressed this problem 
using various metaheuristic approaches. Bettemir 
[34] applied eight different metaheuristic 
algorithms, five of which were hybrid models. 
Aminbakhsh and Sönmez [7] reported Pareto front 
solutions using the PSO method. Eirgash et al. [10] 
employed an NDS-based TLBO algorithm to solve 
the problem, and Yilmaz and Dede [13] utilized 
RAO algorithms. In this study, we applied the 

NDS-AOA to both cases (63a) and (63b) and 
compared the results with those from previous 
studies using GA, PSO, ACO, TLBO, and RAO-2 
algorithms. Each algorithm was tested with ten 
different runs to ensure a robust comparison. The 
comparisons for cases (63a) and (63b) are presented 
in Tables 8 and 9, respectively. 
 The NDS-AOA approach tested in this study 
was designed to efficiently explore a limited portion 
of the solution space. Specifically, AOA searched 
65,250 possible different schedules 
(65,250=250×130×2+250), representing only a 
minuscule fraction of the total solution space 
(65,250/1.4×1042). The population size and number 
of iterations were set to 250 and 130, respectively. 
The number of function evaluations was limited to 
65,250, significantly fewer than in previous studies, 
resulting in APD values of 0.39% and 0.60% for 
cases (63a) and (63b), respectively. 
 As shown in Table 8, the AOA outperformed 
previous optimization methods, including GA, 
ACO, PSO [34], TLBO [10], and RAO-2 [13], in 
terms of the Number of Function Evaluations 
(NFE). However, the APD values for AOA were 
slightly higher than those achieved by PSO, TLBO, 
and RAO-2, indicating that while AOA's solution 
accuracy remains competitive, it was not the 
highest for this medium-scale project.  

 
Table 7. Options for 63- activities project with five modes 

 Description Option 1 Option 2 Option 3 Option 4 Option 5 

No Precedent Dur 
(days) Cost ($) Dur Cost ($) Dur Cost ($) Dur Cost ($) Dur Cost ($) 

1 - 14 3,700 12 4,250 10 5,400 9 6,250 - - 
2 - 21 11,250 18 14,800 17 16,200 15 19,650 - - 
3 - 24 22,450 22 24,900 19 27,950 17 31,650 - - 
4 - 19 17,800 17 19,400 15 21,600 - - - - 
5 - 28 31,180 26 34,200 23 38,250 21 41,400 - - 
6 1 44 54,260 42 58,450 38 63,225 35 68,150 - - 
7 1 39 47,600 36 50,750 33 54,800 30 59,750 - - 
8 2 52 62,140 47 69,700 44 72,600 39 81,750 - - 
9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500 
10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450 
11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400 
12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 965,500 
13 7 40 34,250 37 38,500 33 43,950 31 48,750 - - 
14 8 33 52,750 30 58,450 27 63,400 25 66,250 - - 
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15 9 47 38,140 40 41,500 35 47,650 32 54,100 - - 
16 9, 10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850 
17 10 60 78,450 55 84,500 49 91,250 47 94,640 - - 
18 10, 11 81 127,150 73 143,250 66 154,600 47 161,900 - - 
19 11 36 82,500 34 94,800 30 101,700 - - - - 
20 12 41 48,350 37 53,250 34 59,450 32 66,800 - - 
21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750 
22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400 
23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450 
24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400 
25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800 
26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500 
27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750 
28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500 
29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600 
30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200 
31 19, 25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100 
32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450 
33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500 
34 28, 30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250 
35 24, 27, 29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500 
36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250 
37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600 
38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400 
39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800 
40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200 
41 35 37 17,500 31 21,200 27 26,850 23 32,300 - - 
42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250 
43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200 
44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000 
45 39 59 847,500 55 91,400 51 101,300 47 126,500 43 142,750 
46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000 
47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 9,400 
48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950 
49 38, 41, 44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750 
50 45 101 47,800 74 61,300 63 76,800 49 91,500 - - 
51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200 
52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200 
53 43, 48 39 31,500 36 34,250 33 37,800 29 41,250 26 44,600 
54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300 
55 52, 53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500 
56 50, 53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450 
57 51, 54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400 
58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450 
59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750 
60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800 
61 56, 57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500 
62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100 
63 61 27 9,500 26 9,700 25 10,100 24 10,800 22 12,700 
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Table 8. Analysis results of 63a-activity project (daily indirect cost of $2,300) 
Sr 
No Bettemir [34] Eirgash et al [10] Yilmaz and Dede [13] This study 

 GA ACO PSO TLBO RAO-2 AOA 

 
Time 
(day) Cost ($) Time 

(day) Cost ($) Time 
(day) Cost ($) Time 

(day) Cost ($) Time 
(day) Cost ($) Time 

(day) Cost ($) 

1 641 5,704,200 635 5,490,120 637 5,421,620 630 5,428,870 633 5,425,370 629 5,445,770 

2 661 5,712,485 653 5,494,410 644 5,428,920 630 5,428,120 630 5,426,210 638 5,445,020 

3 650 5,722,260 638 5,491,180 651 5,439,620 630 5,427,770 629 5,424,570 648 5,440,170 

4 653 5,713,450 657 5,491,620 634 5,422,920 630 5,428,120 633 5,423,020 632 5,443,370 

5 645 5,699,650 644 5,494,920 651 5,440,570 630 5,428,920 629 5,423,370 637 5,450,870 

6 639 5,684,295 626 5,486,630 633 5,421,320 637 5,428,220 630 5,426,520 652 5,444,660 

7 640 5,695,655 664 5,495,080 633 5,421,320 633 5,428,870 630 5,427,020 643 5,437,370 

8 621 5,707,600 661 5,490,350 633 5,421,620 628 5,428,170 633 5,422,620 666 5,446,720 
9 641 5,693,015 643 5,490,680 633 5,421,320 633 5,428,470 630 5,423,720 658 5,455,720 
10 623 5,690,790 635 5,492,210 633 5,421,320 633 5,428,720 632 5,427,730 639 5,418,320 

Pop Size 500 500 500 180 200 250 
Num of 
Iteration 

500 500 500 450 700 130 

NFE 250,000 250,000 250,000 162, 180 140,200 65,250 

APD (%) 5.18 1.2 0.09 0.13 0.07 0.39 
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Table 9. Analysis results of 63b-activity project (daily indirect cost of $3,500) 

Sr 
No Bettemir [34] Eirgash et al [10] Yilmaz and Dede [13] This study 

 GA ACO PSO TLBO RAO-2 AOA 

 Time 
(day) Cost ($) Time 

(day) Cost ($) Time 
(day) Cost ($) Time 

(day) Cost ($) Time 
(day) Cost ($) Time 

(day) Cost ($) 

1 617 6,462,580 631 6,219,220 644 6,201,720 612 6,192,140 602 6,185,520 611 6,224,390 

2 651 6,411,540 632 6,205,850 629 6,217,470 617 6,184,820 591 6,189,120 627 6,206,270 

3 647 6,442,440 626 6,234,520 644 6,210,170 590 6,188,690 589 6,192,880 596 6,215,060 

4 639 6,420,500 640 6,223,830 648 6,218,170 588 6,195,910 592 6,185,770 600 6,220,470 

5 648 6,447,900 617 6,231,440 649 6,216,020 591 6,191,490 595 6,188,090 618 6,204,360 

6 627 6,433,810 627 6,197,070 647 6,207,870 586 6,196,840 621 6,182,220 612 6,221,520 

7 618 6,439,240 604 6,247,850 651 6,216,220 592 6,189,140 592 6,185,170 606 6,226,470 

8 623 6,449,790 635 6,231,860 649 6,215,420 589 6,199,870 617 6,183,620 631 6,221,970 
9 630 6,443,805 623 6,198,650 645 6,208,920 617 6,187,390 616 6,202,590 611 6,225,870 
10 629 6,450,065 651 6,262,830 642 6,198,520 616 6,190,570 595 6,195,790 633 6,216,610 

Pop Size 500 500 500 180 200 250 
Num of 
Iteration 500 500 500 450 700 130 

NFE 250,000 250,000 250,000 162, 180 140,200 65,250 

APD (%) 4.1 0.7 0.18 0.14 0.12 0.60 
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Figures 4 and 5 provide a graphical representation 
of the Pareto front solutions, further illustrating 
AOA's capability to balance the time and cost 
objectives. The performance of AOA tends to 
decrease as project size increases, particularly when 
addressing larger-scale TCTPs. This decline in 
efficiency is attributed to the increased complexity 
of the search space as the number of activities and 

modes grows. Nevertheless, the AOA model 
demonstrated satisfactory performance for the 
medium-sized 63-activity problem. Both scenarios 
(63a) and (63b) confirmed that AOA could 
efficiently generate Pareto-optimal solutions with 
competitive results in terms of cost minimization 
and project duration. 

 

 
Fig. 4. Pareto front solutions of the 63a problem 

 

 
Fig. 5. Pareto front solutions of 63b problem 
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6. Conclusion 
In construction management, optimizing the TCTP 
is critical for maintaining a competitive advantage 
in the highly competitive construction sector. 
Efficiently balancing project duration and cost is 
essential to meet tight deadlines, reduce overruns, 
and maximize profitability. This study explored the 
potential of the newly developed AOA for solving 
multi-objective optimization problems, specifically 
focusing on the TCTP. The AOA model was tested 
across different project scales—comprising 18, 29, 
and 63 activities—and demonstrated its efficiency 
in generating Pareto-optimal solutions with fewer 
function evaluations than many established 
metaheuristic algorithms. 
 The results confirmed that AOA is particularly 
effective in small-scale problems, generating high-
quality Pareto front solutions with fewer total 
function evaluations and lower APD compared to 
GA, ACO, TLBO, and RAO-2 algorithms. In 
smaller projects, AOA consistently outperformed 
these models in terms of both solution quality and 

computational efficiency. However, as the problem 
size increased, AOA's performance began to 
decline, especially in medium-scale projects with 
63 activities. In the case of the 63-activity project, 
AOA was outperformed by more advanced 
algorithms such as PSO, TLBO, and RAO-2 in 
terms of Pareto optimality. 
 This study marks the first successful application 
of AOA for solving the TCTP in construction 
management. The results underscore the feasibility 
and potential of AOA as a viable alternative to other 
metaheuristic approaches in small-scale projects. 
Therefore, future research should focus on refining 
the algorithm's structure and testing its applicability 
to medium- and large-scale TCTPs. To overcome 
current limitations, methods such as hybridization 
with other algorithms, adaptive parameter tuning, 
improving the exploration-exploitation balance, 
multi-swarm approaches, problem decomposition, 
and leveraging parallel computing should be 
investigated. Incorporating these enhancements is 
expected to improve the robustness and scalability 
of AOA for solving TCTPs. 
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