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Abstract

Understanding how network complexity affects optimization algorithms is crucial for
improving computational efficiency. This study investigates how variations in network
complexity impact the performance of optimization algorithms. By examining networks
with different serial/parallel indicator (I2) values, the research uncovers several key
insights into how topology influences computational requirements. The experiments
show that higher 12 values, which are closer to serial configurations, heighten the
problem’s complexity. This study reveals that networks with lower 12 values, which
exhibit steeper time-cost curves with fewer solutions over their efficient frontiers, require
significantly more CPU time, indicating that project complexity does not necessarily scale
with the extend of the Pareto fronts. This contradicts the expectation that more Pareto
front solutions would inherently demand greater computational resources. Lastly, the
study highlights that while the number of time-cost realizations is often used to gauge
project complexity, it may not be conclusive on its own and that one complexity measure
can outperform another. Although it can be an effective indicator, it does not fully capture
the computational challenges posed by different network topologies. This study further
acknowledges the difficulty in establishing a clear link between project performance and
complexity due to the multifaceted nature of the problem. The findings suggest that
exploring similar problems in other contexts could provide valuable insights into
understanding and managing computational complexity.

1. Introduction

Project scheduling is integral to effective project
management, and over time, various strategies and
tools have emerged to enhance this process. Among
these, the Critical Path Method (CPM), introduced
by Kelley and Walker [1], stands out as a
fundamental and widely practiced technique. CPM
is a method based on network analysis that aids in
planning, scheduling, and controlling complex
projects. It operates on the premise that when the

activity duration amounts are defined, CPM can
determine the minimum project duration and
identify which tasks and paths are critical. CPM
employs the project network for modeling a project,
which needs to be a directed, acyclic graph linking
the activities, including two milestones denoting
start and finish of the project.

Since the project network forms the basis for
CPM calculations, the overall effectiveness of this
simple scheduling technique significantly relies on
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the complexity of the network. This is why the
topological structure of the network becomes
crucial, and its impact on the complexity and the
computational requirements of the
problem needs to be addressed in detail. A range of
studies have therefore focused on the application of
CPM within the context of construction project
network topology. For instance, Hegazy [2] and
Okmen [3] concentrate on linear construction
projects with repetitive activities. Okmen [3]
presents a CPM scheduling procedure while
Hegazy [2] integrates CPM with the line of balance
technique (LOB) technique in their model. Shankar
et al. [4] improve on CPM by introducing an ant
colony optimization (ACO) algorithm,
demonstrating its improved capabilities in
determining the critical and sub-critical paths in the
network. Such studies have contributed to a deeper
understanding and application of CPM in
construction project network topology. Moreover,
the complexity of the optimization problem has
been recognized and addressed in a range of studies
on diverse optimization problems [5-8]. However,
given the sparse literature with a specific focus on

resource

the application of CPM within the context of
network complexity, the overview of body of
literature provided herein will not only cover these
areas, rather will also focus on the relevant research
concentrating on the generation of new test sets and
the measurement of perceived complexity in
various optimization problems.

The coefficient of network complexity (CNC),
for example, was first defined by Pascoe [9] for
activity-on-arrow (AoA) networks as the number of
arcs over the number of activities which was later
modified by Davies [10] and Kaimann [11]. CNC is
one of the very earliest and perhaps the best-known
metric characterizing the topological structure of
project networks. Later, Davis [12] adapted this
metric for activity-on-node (AoN) networks as the
number of direct arcs over the total number of
activities. Mastor [13] present an alternative
indicator of the topological structure of AoN project
networks known as the order strength (OS). OS is
defined as the number of precedence relations
excluding the arcs connecting the start and finish

milestone activities divided by the theoretical
maximum number of precedence relations. OS is
another well-known metric used to
complexity of a project network.
Elmaghraby and Herroelen [14] address the
need for measuring the complexity of activity
networks to estimate computing requirements and
compare heuristic procedures. This study refers to
network complexity as the difficulty in analyzing

reflect

and synthesizing a network and discusses the
relationship between the measures of network
complexity (MNC) and the theory of combinatorial
complexity. Elmaghraby and Herroelen [14]
generate a total of 104 different networks based on
the hybrid algorithm of Herroelen and Caestecker
[15] where each network is characterized by the
number of nodes and arcs as well as a random
topological structure. This study introduces a
measure of network complexity based on the
number of multiplications, convolutions, and
integrations of arcs, though the challenges in
measuring network complexity with varying
resource availability is acknowledged. Liu and
Chen [16] extend the concept of the critical path to
interval plan networks by introducing the deadline-
based interval critical path (DBICP) and presenting
an algorithm for its determination.

Bein et al. [17] propose complexity index (CI)
for two-terminal acyclic AoA project networks. CI
is defined as the reduction complexity, or the
smallest number of node reductions that, in addition
to series and parallel reductions, permit the
reduction of a two-terminal acyclic network to a
single edge. CI in essence quantifies how close an
AoA network is to a series-parallel directed graph.
Kolisch et al. [18] introduced ProGen, a network
generator for AoN networks that considers both
network topology and resource-related
characteristics.  Schwindt [19] subsequently
expanded ProGen into ProGen/Max, enabling the
handling of three distinct types of resource-
constrained project scheduling problems, including
those with minimal and maximal time lags.
Agrawal et al. [20] emphasized the importance of
CI indicator and developed DAGEN, an AoA
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network generator, which allows for the presetting
of this complexity measure.

However, Demeulemeester et al. [21] argued
that the networks generated by these tools cannot be
considered strongly random, as they do not
guarantee that the topology is a random selection
from the space of all networks that satisfy the
specified input parameters. Demeulemeester et al.
[21] criticize Pascoe’s [9] CNC metric for its
inability to distinguish between simple and
complex instances, rendering it inadequate as a
measure of how network topology influences
project scheduling difficulty. To address these
limitations, Demeulemeester et al. [21] propose an
instance generator known as RanGen, that creates
networks with predetermined CI and OS values and
taking into account the pre-specified CPU time-
limit and the maximum number of networks.
RanGen network generator is designed to
implement a recursive enumeration method in order
to prevent the generation of networks with identical
topological structures. Later, Vanhoucke et al. [22]
introduced RanGen2, a modified version of
Demeulemeester et al.’s [21] RanGen,
incorporating alternative topological indicators.
Their findings indicate that RanGen2 outperforms
ProGen, RanGen, and RiskNet [23] in terms of the
total number of networks generated. Starting from
a larger set of possible networks, RanGen2 is shown
to be capable of generating multiple distinct
networks in a single run.

Vanhoucke and Maenhout [24], debating that
there is a growing demand for a base for
comparison in the nurse scheduling problem
research ~ community, present  benchmark
scheduling instances. This study also presents
complexity indicators, including problem size, to
predict complexity of the scheduling problems and
as a result the computational effort of the solution
procedures. This study explores the one-
dimensional and two-dimensional relationships
between the indicators and their effects on problem
complexity. The paper also presents a regression
tree model for predicting problem complexity and
discusses the discriminative and predictive power
of the proposed complexity indicators. Based on the

proposed complexity indicators, a tool named
NSPGen is presented for generating benchmark
instances which have been used to evaluate the
behavior different
parameter values for the complexity indicators.
Batselier and Vanhoucke [25] by focusing on
the project control phase and Earned Value
Management (EVM), introduce the concept of
project regularity which measures the deviation of

of meta-heuristics under

the project’s planned value curve from a perfectly
linear curve and suggest that project regularity
could be more influential than project seriality
(expressed by the serial/parallel-indicator, SP or
12). The paper suggests that project regularity could
be useful for project network generators. Project
regularity which categorizes projects as strongly
irregular, mildly irregular, or regular is a new
characteristic that reflects the value accrued within
a project, expressed in terms of the
regular/irregular-indicator (RI). Results of this
study show that project irregularity has an adverse
effect on both time and cost forecasting accuracy.
Ellinas et al. [26] address the challenge of
quantitatively assessing project complexity by
using empirical activity networks to measure the
technological aspect of five real-world projects.
The study presents a procedure that uses activity
networks to capture structural complexity in a
quantitative manner. This study highlights that
project complexity does not necessarily scale with
project cost or size and that the similarities between
activity networks and complex systems, such as the
internet, are indisputable.

Van Den Eeckhout et al. [27] address the project
staffing problem with discrete time-resource trade-
offs to minimize personnel staffing budget. This
study embeds activity scheduling flexibility by
incorporating the project scheduling problem and
introduces extra demand scheduling flexibility via
discrete trade-offs. The paper
discussing the significance of network topology
during planning, utilizes the multi-mode PSPLib
dataset to generate various network topologies for
problem instances based on different complexity

time-resource

indicators. This research leverages the ProGen
network generator for generation of problem
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instances with duration and resource demand
characteristics set based on ProGen and RanGen
project generators. The provision of data for a
realistic case is undoubtedly crucial and highly
beneficial. In this regard, aiming to provide a test
bed for examining hypotheses, algorithms,
Probabilistic Risk Modeling and Decision
outcomes models, Thiele et al. [28] present a
dataset containing a portfolio comprising six
projects across which a set of interrelated resources
are utilized.

Queiroz et al. [29] discuss that the size
influences the challenge during experiments,
affecting computational time and solution quality.
In this respect, Queiroz et al. [29] introduce
REQreate, a tool for generating realistic instances
for on-demand transportation problems such as the
Dial-a-Ride Problem (DARP) and On-demand Bus
Routing Problem (ODBRP). The tool addresses the
common practice of using instances based on
artificial networks or specific city data by providing
a more flexible and diverse approach for generating
instances. REQreate tackles the lack of standard
benchmark sets by generating instances based on
real-world networks from OpenStreetMaps and
assists in testing optimization algorithms. Since this
tool can be configured to generate instances with
different sizes, levels of urgency, dynamism, and
geographic dispersion, their effect on performance
metrics for the Meal Delivery Routing Problem
(MDRP) is evaluated. Deploying bipartite graph
and maximal matching, this paper also introduces
the concept of instance similarity for informative
algorithm analyses.

Coelho and Vanhoucke [30] introduce a new
complexity indicator to measure the difficulty of
project instances and propose a new data generation
method for creating challenging instances of the
resource-constrained project scheduling problem
(RCPSP). This study proposes numerous instances,
notably a new set of 390 hard project instances
generated based on a modified version of the “going
to the core” algorithm. By analyzing the solution
space of 10,793 instances, this study presents an
instance hardness measurement named as Sigma
distance method based on the average and standard

deviation of the solution space and a chosen
reference point. Snauwaert and Vanhoucke [31]
further contributes by proposing a new data
generation procedure as well as artificial datasets
for multi-skilled resource-constrained project
scheduling problem (MSR-CPSP) using which the
hardness of the multi-skilled project instances is
investigated. The authors generate 500 networks
including 30 to 90 activities with SP indicator
values as 0.1, 0.3, 0.5, 0.7, and 0.9 by the RanGen2
generator incorporating skill and
constraints. To evaluate the dataset, they use
scatterplots to analyze the feature space and
compare it to existing benchmark datasets. The
computational reveal that the
percentage of optimal and feasible solutions for
mixed integer linear programming (MILP) model
increases with increasing SP values and that the
number of optimal and feasible solutions decreases

resource

experiments

with an increasing number of activities. The results
also showed that the serial-parallel network
indicator value SP has a high impact on the
hardness of the instances.

Snauwaert et al. [32] formally define and
explain various multi-skilled workforce formation
problems, analyze their complexity, and outline the
structure of the complexity proofs. This study
addresses multi-skilled project scheduling and
workforce  scheduling, examining  genetic
algorithms (GA), simulation-based algorithms, and
mixed-integer programming (MIP/MILP) models
as potential solutions. Snauwaert et al. [32] generate
over 300 instances involving the similar principles
used in and Vanhoucke [31].
Computation time forms the basis for comparisons
since average and maximum CPU time as well as
the percentage of instances not solved to optimality
within a processing time of one hour have been
employed as indicators of problem complexity.
Kosztyan and Novak [33], on the other hand,
explore the significance of project indicators in
influencing  project  structures,
duration, and resource demands and their impact on
scheduling and resource allocation algorithms. The

Snauwaert

complexity,

authors introduce the flexible structure generator
(FSG) to transform conventional project database
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instances into flexible instances, enabling the
analysis of project indicators in a flexible project
environment. The project indicators assess project
complexity and demands, enabling analysis and
classification of flexible projects. This study
provides illustrative examples for calculating
specific indicator values from matrix-based
instances and running corresponding unit test suites
for indicator types. The paper also discusses the role
of minimal and maximal structure variants in
bridging the gap between traditional and emerging
flexible project scheduling algorithms.

With the increasing complexity of project
networks, along with the intricate trade-offs
between duration and cost, extensive research has
been conducted into various aspects of scheduling
and network generation. Research on project
scheduling covers a wide range of subjects, from
basic techniques such as CPM to the complexities
of network generation and project instance
evaluation. The studies discussed in this paper also
underscore the importance of generating realistic
and challenging problem instances, which are
essential for testing and validating optimization
algorithms across various project scheduling
scenarios. Despite several studies, it is observed
that research on network generators for project
scheduling problems does not adequately address
how the characteristics of the problems and their
solution spaces can change under different
arrangements of the project network. Furthermore,
the practical impact of complexity on solution
difficulties has not been sufficiently explored in the
extant literature. This study, therefore, aims to
address this gap by experimenting how network
complexity influences the solution and processing
requirements of one of the most intricate types of
scheduling problems, the Pareto front in time-cost
trade-off problem (TCTP).

This significant area in project scheduling
research is commonly studied within the field,
where each activity can be performed using various
execution modes, each associated with different
durations and costs. In practice, the normal duration
of an activity corresponds to the resource level for
which the duration cannot be shortened without

increasing the direct cost of the activity.
Nevertheless, in practical scenarios, tasks are often
accelerated (or crashed) below their normal
durations to avoid delay penalties or to reduce
expenses incurred in the form of indirect costs [34].
Such accelerations come at a cost, creating a trade-
off between time and expenses. While various
versions of TCTP have been the focus of numerous
studies, the most complex variant seeks to achieve
the complete set of optimal solutions generated by
the numerous combinations of execution modes.
This complete set of optimal solutions is referred to
as the Pareto front and contains mutually non-
dominated solutions; that is, cost components
cannot be improved without worsening the
corresponding duration component, and vice versa.

The remainder of this paper is organized as
follows. Section 2 describes the research
methodology. In Section 3 the computational
results outlined. Section 4 provides a detailed
discussion of findings. Finally, concluding remarks
on the present work are given in Section 5.

2. Research Methodology

In order to investigate the characteristics of the
Pareto front time-cost trade-off problems and their
solution spaces under different arrangements of the
project network, also in order to experiment how
topological structure of the underlying project
networks influence the computational
requirements, a new set of instances have been
generated in this study. As discussed in Section 1,
numerous random network generators have been
proposed in the literature, including ProGen/Max
[19], RanGen [21], DAGEN [20], and RanGen2
[22]. Among these, RanGen2 has been
demonstrated to be superior to the aforesaid
generators. RanGen2 has, therefore, been adopted
for generation of the networks for the instances
used in this study. RanGen2 incorporates several
topological indicators based on predefined values
for these indicators. These indicators include I1
(number of activities), 12 (serial/parallel indicator,
SP), I3 (activity distribution indicator), 14 (short
precedence relations indicator), I5 (long precedence
relations indicator), and 16 (topological float of
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activities) [22]. Of these indicators, 12 — also the
main focus of current study — is particularly notable,
as it is used to regulate the networks closeness to a
truly serial or completely parallel graph. Section
will cover the explanations about the instances
generated.

The project test dataset consists of fictitious
project networks with 25, 50, and 75 activities.
Initially, project networks are generated using the
activity-on-node  (AoN) network  generator
RanGen2 [22]. These networks are designed with
controlled  variations in the SP-indicator
(serial/parallel indicator, 12), which measures the
extent to which a project network approximates a
completely serial or parallel configuration [35]. The
dataset includes networks where the SP-indicator
ranges from 0.3 to 0.9, in steps of 0.3. Specifically,
the values 0.3, 0.6, and 0.9 represent almost
parallel, intermediate, and almost serial network
configurations, respectively. Then, time-cost
alternatives, ranging from 3 to 9 per activity, are
generated using non-increasing convex time-cost
functions, following the methodology outlined by
Akkan et al. [36]. Finally, the new TCTPs are
created by combining the RanGen2 networks with
the execution modes generated through a custom
C# code.

It is of utmost importance to note that for each
problem size, the three problems (e.g., T25 3,
T25 6, and T25 9) differ as follows. The three

Table 1. Details of T25, T50, and T75 problems

distinct problems are characterized by their network
structure. Specifically, T25 3, T50 3, and T75_3
are generated using an 12 value of 0.3, T25 6,
T50 6, and T75 6 using 12 of 0.6, and T25 9,
T50 9, and T75 9 using 12 of 0.9. Despite these
differences in network structure, for each problem
size, all the three variants share identical execution
modes per activity. This ensures that the observed
variations are attributable solely to the differences
in topological structure of networks, allowing for a
focused analysis of its effects. Table 1 outlines the
details of this dataset.

All the 25-activity instances consist of four
activities with three modes, two with four modes, a
single one with five modes, four with six modes,
four with seven modes, six with eight modes, and
four with nine modes; totaling to 3.47x10"
different time-cost combinations. T50 problems
consist of nine activities with three modes, seven
with four modes, seven with five modes, three with
six modes, nine with seven modes, nine with eight
modes, and six with nine modes; totaling to
1.57x10% different possible combinations. And
T75 3 to T75 9 problems consist of seven
activities with three modes, 16 with four modes, 18
with five modes, nine with six modes, six with
seven modes, ten with eight modes, and nine with
nine modes; totaling to 1.77x10°° different time-
cost realizations.

Problem # of Acts. # of Modes 12 (Nominal)*
T25 3 25 [3-9] 0.30
T25 6 25 [3-9] 0.60
T25 9 25 [3-9] 0.90
T50 3 50 [3-9] 0.30
T50 6 50 [3-9] 0.60
T50 9 50 [3-9] 0.90
T75 3 75 [3-9] 0.30
T75_6 75 [3-9] 0.60
T75 9 75 [3-9] 0.90

*The nominal value entered into RanGen2 may differ from the actual value observed.
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2.1. Case Example

In this subsection, a detailed case example is
presented to illustrate the structure and
characteristics of the dataset used in the subsequent
stages of this study. As shown in Table 2, this
example includes five actual and two milestone
activities with a solution space comprising 540
possible realizations. The purpose of this example
is to elucidate the rationale behind the generation of
the problems, specifically focusing on the
variations network structures and their
implications. The same rationale employed for
generating the T25, TS50, and T75 problems has
been applied to create the T5 3, TS5 6, and T5 9
case problems. Each set of problems is designed
with varying network structures according to their
respective 12 values. Specifically, TS 3, T5 6, and
T5 9, like their T25, T50, and T75 counterparts, are
distinguished by I2 values of 0.3, 0.6, and 0.9,
respectively. It is worth noting that Table 2 provides

in

Table 2. Mutual execution modes for T5 case examples

details on the mutual execution modes for the three
TS5 problems. Moreover, the contrast in precedence
relationships among the T5 case examples is
detailed in Table 3.

In addition, the structural differences among the
different versions of TS5 problem is showcased by
presenting their respective AoN diagrams in Figs. 1
to 3. These graphical representations clarify how
each problem is configured and how the networks
differ in terms of their 12 values, further, they
provide insights into how the variations in network
topology contribute to the overall problem design.

Each project network for the TS5 case examples
was analyzed using a custom graph analyzer coded
in C#. This tool calculates several key metrics,
namely, the total number of paths, the longest arc in
the network, and the actual SP-indicator (I12) value.
It is crucial to measure the actual 12 value since,
during the network generation process with
RanGen2, the I2 values are initially specified as
network generation parameters.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost
(day) &) (day) %) (day) &) (day) %) (day) %)
Start 0 0 - - - - - - - -
1 5 87,204 16 80,095 36 70,476 45 67,635 - -
2 1 84,840 32 63,943 39 62,595 - - - -
3 6 39,755 27 34,692 52 30,576 - - - -
4 6 92,243 14 86,072 25 79,323 36 74,888 42 73,626
5 9 50,307 23 45,166 42 42,840 - - - -
Finish 0 0 - - - - - - - -
Table 3. Precedence relationships for T5 case examples
Direct Predecessor(s)
Act.
75 3 75 6 75 9
Start - - -
1 Start Start Start
2 Start 1 1
3 1,2 Start 1
4 1 2,3 2,3
5 1 2,3 4
Finish 3,4,5 4,5 5
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1 3
5 | $87,204 6 | $39,755
| ,
Start —=—> 16 | $80,095 27 | $34,692
36 | $70,476 52 | $30,576
45 | $67,635
4
2 6 | $92,243
1| s84.840 14 | $86,072
32 | $63.943 25 | $79,323
39 | $62.595 36 | $74,888
42 | $73,626
5
9 | $50,307 Finish
23 | $45,166
42 | $42,840

Fig. 1. Network diagram for T5_3 case example
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Fig. 2. Network diagram for T5_6 case example
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42 | $42,840

Fig. 3. Network diagram for T5_9 case example
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However, these nominal values are experienced to
differ slightly from the actual values observed in the
generated networks. The post-analysis conducted
using the custom tool these slight
discrepancies, providing a more accurate
measurement of the 12 value as provided in Table 4.
This small variation arises due to the fact that the
nominal (pre-specified) 12 values either could not
be generated or simply do not exist.

reveals

3. Computational Results

As mentioned earlier, this study’s objective is to
explore the practical impact of network complexity
on solution difficulty by examining how varying
topological structure of the network affects the
computational demand of solving one of the most
intricate scheduling problems, the Pareto front
time-cost trade-off problem (TCTP). Vanhoucke
and Maenhout [24] emphasize that the hardness of
a problem instance is typically measured by the
CPU time required for an exact solution procedure
to solve it to optimality. In line with this
perspective, Pareto front optimization of the new
set of instances discussed earlier was conducted
using a basic mixed-integer linear programming
(MILP) model that uses the Gurobi Optimizer
(version 11.0). The specifics of the MILP model are
not elaborated upon here, as the primary focus of

Table 4. Topological characteristics of T5 case examples

this study is not on the model’s development or its
intricacies. Instead, the emphasis is on employing a
uniform technique to evaluate how different
problem characteristics impact the performance of
the MILP approach. The optimization routines are
implemented using C# on a 64-bit platform. The
experiments were conducted on a desktop computer
equipped with 8 GB of RAM, an Intel® Core™ i7-
9700 CPU @ 3.00 GHz, and a 64-bit Windows 11
operating system.

Initially, each project network for the T25, T50,
and T75 problems was analyzed using a custom
graph analyzer developed in C#. This tool,
introduced earlier in the context of the TS5 case
example, was again employed to calculate key
network characteristics, including the total number
of paths, the length of the longest arc, and the actual
12 values as given in Table 5. As discussed
previously, while RanGen2 allows for the input of
desired 12 values during network generation, these
values may differ slightly from the actual 12
observed post-generation. The minor discrepancies
between the nominal and actual 12 values stems
from the technique RanGen2 uses to approximate
the predefined 12 value. This approximation is
influenced by Il (number of activities) indicator
and the length of the longest arc, which RanGen2
balances to create a network structure as close as
possible to the pre-specified 12 value.

Problem Total # of Paths Longest Arc 12 (Nominal) 12 (Actual)
T5 3 4 2 0.30 0.25
T5 6 4 3 0.60 0.50
T5 9 2 4 0.90 0.75
Table 5. Topological characteristics of T25, T50, and T75 problems

Problem Total # of Paths Longest Arc 12 (Actual)
T25 3 510 8 0.29

T25 6 168 15 0.58

T25 9 8 22 0.88

T50 3 9,998 15 0.29

T50 6 72,000 30 0.59

T50 9 32 45 0.90

T75 3 7,944,022 23 0.30

T75 6 2,663,424 45 0.59

T75 9 256 67 0.89
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As can be followed from Table 5, as 12
increases, the longest arc in the problem also
increases, confirming that higher values of 12
correspond to networks where activities are
arranged in a more serial structure. Further, there is
a noticeable decrease in the total number of paths as
12 increases, reinforcing that higher values of 12
result in greater number of parallel paths.

3.1. T5 case examples

The Pareto front optimization is first applied to the
T5 case examples. The Pareto fronts obtained for
TS5 3, TS 6, and TS5 9 are plotted against each
other in Fig. 4. As seen in Fig. 4, as 12 increases
from 0.3 for TS5 3 to 0.9 for TS5 9, the number of
non-dominated solutions increases. This indicates
that more diverse solutions become available as the
project network approaches a serial structure. The
spread of the Pareto front becomes wider with
higher values of 12. T5_9, with the highest 12 0f 0.9,
shows a more extended range of solutions,
reflecting greater variability in the solution space.
More precisely, hyperarea which measures the
diversity (distribution and spread) of the Pareto
fronts is calculated as 10,371,404, 9,135,274, and
7,564,477 for TS5 3, T5 6, and T5 9 case
examples, respectively. In addition, the Pareto front
corresponding to the smallest 12 is noticeably

parallel/pseudo-parallel networks, small increases
in duration result in significant reductions in cost.

3.2. T25 problems
Following the analysis of the T5 case example, this
section investigates the T25 problems. The results
obtained by the MILP model for the T25 problems
are presented in Table 6. This table presents CPU
time, the normal (cheapest and longest) solution,
the crashed (most expensive and shortest) solution,
as well as the number of Pareto front (PF) solutions,
per each setting. The costs considered are solely the
direct costs of the activities, where in the normal
solution, all activities are executed in their normal
modes, and in the crashed solution, all activities are
executed in their crashed modes. It must be pointed
out that crashed solutions are not derived through
an optimization process; rather, all activities are
crashed to the maximum extent possible. As a
result, some fully crashed activities may have float.
As seen in Table 6, 12 indicator’s impact on the
results can be observed through variations in the
performance metrics. Although all variants of the
T25 problem have the same total time-cost mode
combination of 3.47x10', wvarying 12 has
dramatically altered the solution space. When CPU
time is considered, for 12 = 0.3 it is the highest at
49.2 seconds, while for 12 = 0.9, it is the lowest at

steeper. This steepness implies that for 21.13 seconds.
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Table 6. Comparison of results for T25 problems

Normal Sol. Crashed Sol.
Problem CPU Time (S) # of PF Sols
Dur. (day) Cost ($) Dur. (day) Cost ($)
T25 3 49.20 388 1,571,636 41 1,986,464 311
T25 6 36.36 720 1,571,636 64 1,999,585 598
T25 9 21.13 1,033 1,571,636 91 2,003,340 902

With regard to the number of Pareto front solutions,
for 12 = 0.3, it is 311, and this number rises to 902
for 12 = 0.9. Despite T25 9 having a larger set of
Pareto front solutions, it requires less CPU time
compared to T25 3 and T25 6. Similarly, T25 6
also shows a shorter CPU time compared to T25 3,
in spite of having a greater number of non-
dominated solutions in its front. There is an increase
in CPU time from 12 = 0.9 to 0.6 by 72.04%, while
from 12 = 0.6 to 0.3 the increase is 35.31%. In the
same order, there is a decline in the size of Pareto
front set by 47.99% and 33.70%, respectively. This
pattern highlights an intriguing aspect of the
problem’s computational complexity. This trade-
off between CPU time and the number of Pareto
front solutions is demonstrated in Fig. 5 for each
setting of T25 problem.

Fig. 6 displays the Pareto fronts for T25 3,
T25 6, and T25 9 problems plotted against one
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another. As seen in this figure, the number of non-
dominated solutions grows as 12 rises from 0.3 for
T25 310 0.9 for T25_9. In addition, Hyperarea for
the Pareto fronts is calculated as 381,831,632,
335,546,722, and 268,809,617 for T25 3, T25 6,
and T25 9 problems, respectively. This suggests
that when the project network becomes closer to a
serial structure, Pareto front stretches out, leading
to a wider range of non-dominated solutions.
Moreover, the time-cost curve associated with the
smallest 12 has a much sharper slope. This steepness
suggests that tiny duration increases lead to
considerable cost savings for parallel and pseudo-
parallel networks. A steeper Pareto front curve, on
the other hand, can increase the complexity of the
problem, as it poses a more challenging solution
space for exploration compared to a shallower
curve.
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Fig. 5. CPU Time vs. no. of distinct Pareto front solutions for T25 problems
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3.3. T50 problems

This section explores the T50 problems, providing
a detailed analysis of their characteristics and the
results obtained. The results of the MILP model for
the T50 problems are presented in Table 7 which
shows CPU time, the normal (cheapest and longest)
solution, the crashed (most expensive and shortest)
solution, and the number of Pareto front (PF)
solutions, for each variant of the problem. Similar
to T25 set, the costs considered are solely the direct
costs of the activities, and that crashed solutions are
not derived through an optimization process. They
obtained by crashing all activities are to the
maximum extent possible, therefore, some crashed
activities may have float.

As seen in Table 7, the impact of 12 on the
performance metrics is present here as well. Despite
all variants of the T50 problem share the same total
time-cost realizations of 1.57x10%7, varying 12 has

Table 7. Comparison of results for T50 problems

significantly transformed the solution space. With
regard to CPU time, the pattern is similar to the
previous dataset. CPU time decreases as 12
increases with 279.86 seconds for 12 = 0.3, 178.85
seconds for 12 =0.6, and 79.47 seconds for 12 =0.9.
When the number of Pareto front solutions is
considered, the observations are consistent with the
previous dataset and shows that higher values of 12
lead to a larger set of optimal solutions. More
specifically, for 12 = 0.3, it is 577, and this number
rises to 1,835 for 12 = 0.9. Similar to the
observations made for the T25 problems, a notable
trade-off between the number of Pareto front
solutions and CPU time is also evident for the T50
problems. As previously discussed, although it is
expected that a higher number of Pareto front
solutions would require increased CPU time, TS50 9
with a larger set of Pareto front solutions requires
less processing time compared to T50 3 or T50 6.

Normal Sol. Crashed Sol.
Problem CPU Time (S) # of PF Sols
Dur. (day) Cost ($) Dur. (day) Cost ($)
T50 3 279.86 699 2,931,049 77 3,627,997 577
T50 6 178.85 1,407 2,931,049 165 3,708,208 1,219
T50 9 79.47 2,074 2,931,049 221 3,718,023 1,835
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Similarly, T50 6 also shorter
computational time compared to T50 3, despite
having a greater number of non-dominated
solutions. There is an increase in CPU time from 12
=0.9 to 0.6 by 125.06%, while from 12 = 0.6 to 0.3
the increase is 56.47%. In the same order, there is a
decline in the size of Pareto front set by 52.67% and
33.57%, respectively. This trade-off between CPU
time and the number of Pareto front solutions for
T50 problems is displayed in Fig. 7.

Fig. 8 illustrates the Pareto fronts for the T50 3,
T50 6, and T50 9 problems plotted together. The

requires a
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figure reveals that as the project network
approaches a more serial structure, the Pareto front
expands, resulting in a broader range of non-
dominated solutions. More specifically, Hyperarea
values associated with these fronts are calculated as
1,453,752,001, 1,212,075,679, and 958,423,761 for
T50 3, T50_6, and T50_9 problems, respectively.
These observations are consistent with the previous
findings for the T25 problems. Additionally, the
time-cost curve for the lowest 12 value, again,

exhibits a much steeper slope.
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This steepness implies that smaller values of 12 can
heighten the problem’s complexity, making the
solution space more challenging to explore
compared to a shallower curve.

3.4. T75 problems

This section further sheds light on the
characteristics of T75 3, T75 6 and T75 9,
presenting the solutions achieved for these
problems. The results of the MILP model for the
T75 problems are presented in Table 8 which
includes CPU time, the normal and crashed
solutions, and the number of Pareto front (PF)
solutions, for each version of the problem. Crashed
solutions are obtained in a manner similar to T25
and T50 problems. That is, solely the direct costs
are considered, and that crashed solutions are
obtained by crashing all activities are to the
maximum extent possible, which means some
crashed activities may have float.

As provided in Table 8, the influence of the 12
indicator on the performance metrics is evident here
as well. Even though all T75 problems have the
identical execution modes, totaling to 1.77x10%
number of different combinations, changes in 12
have remarkably reshaped the solution space of the
three variants. Regarding CPU time, the pattern
observed is consistent with that of T25 and T50
problems. Increasing 12 leads to significant
reductions in CPU time with 16,837.01 seconds for
12 = 0.3, 662.43 seconds for 12 = 0.6, and 129.47
seconds for 12 = 0.9. The extraordinarily long CPU
time for T75 3, despite having the lowest number
of Pareto front solutions of 941 and the smallest
longest arc of 23, can be attributed to the
exceptionally high number of parallel paths, which
totals 7,944,022. This number of parallel paths is
198% higher than that for T75_6 and 3.1x10%%

Table 8. Comparison of results for T75 problems

higher than for T75 9 problem. Considering the
number of Pareto front solutions, the observations
are in line with those from previous datasets and
demonstrate that higher values of 12 lead to a larger
set of Pareto solutions. More precisely, 941 for 12 =
0.3, 1,873 for 12 = 0.6, and 2,802 for 12 = 0.9.
Consistent with the observations for the T25 and
T50 problems, a significant trade-off between the
number of Pareto front solutions and CPU time is
also evident for the T75 problems. As previously
noted, while locating a higher number of Pareto
front solutions would generally demands more CPU
time, T75_9, which has a larger set of Pareto front
solutions, requires less processing time compared
to T75 3 and T75_6. Likewise, T75_6, despite
having more non-dominated solutions than T75_3,
also demands shorter computational time. A
notable increase in CPU time is observed from 12 =
0.9 to 0.6 by 2,441.72%, while from 12 = 0.6 to 0.3
the increase is 411.66%. In the same order, there is
a decline in the size of Pareto front set by 49.76%
and 33.15%, respectively. Fig. 9
demonstrates the trade-off between CPU time and
the number of Pareto front solutions for the T75

clearly

problems.

Pareto fronts for T75 3, T75 6, and T75 9
problems are shown in Fig. 10. This figure reveals
that as the project network lies closer to a serial
structure, the Pareto front broadens, leading to
larger range of pareto solutions. To be precise,
Hyperarea values associated with these Pareto
fronts are calculated as 3,570,038,770,
3,058,874,865, and 2,420,847,312 for T75 3,
T75_6, and T75_9 problems, respectively. These
findings align with the observations made for the
T25 and T50 problems. Moreover, the efficient
frontier for the smallest level of 12 exhibits a
significantly steeper slope.

Normal Sol Crashed Sol
Problem CPU Time (S) # of PF Sols
Dur. (day) Cost ($) Dur. (day) Cost ($)
T75 3 16,837.01 1,103 4,678,002 127 5,911,510 941
T75_6 662.43 2,103 4,678,002 216 5,944,992 1,873
T75 9 129.47 3,127 4,678,002 295 5,976,856 2,802
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This steepness suggests that larger values of 12 can
reduce the complexity of the problem, making the
solution space easier to explore.

4. Discussion of Findings

The performance evaluations across the different
problem instances reveal that the spread of the
Pareto front becomes wider with higher values of
12, indicating a broader range of non-dominated
solutions as the project network transitions towards
amore serial structure. A clear relationship between

network topology and computational complexity is
also observed, with the empirical hardness of the
instances decreasing for increasing values of 12,
leading to improved performance of the
optimization algorithm. Empirical complexity,
meanwhile, refers to the observed difficulty in
solving the problems, reflected by the
computational effort required for the solution of the
instances. Interestingly, an inverse relationship
between CPU time and the number of Pareto front
solutions was observed, contrasting with the direct
relationship between CPU time and the number of



Journal of Construction Engineering, Management & Innovation 262

paths in the network. Contrary to the expectation
that locating a higher number of Pareto front
solutions would generally demand more CPU time,
the experiments show that smaller 12 values with
fewer Pareto solution demand much higher
computational effort. Specifically, lower 12 values,
which result in a greater number of paths and a
steeper Pareto front, are significantly more
challenging and require higher computational
resources. This can be explained by the observation
that the efficient front curve is steeper for smaller
12 values, making the solution space more difficult
for algorithms to explore effectively.

A critical insight from this study challenges the
common assumption that empirical hardness of a
problem is best reflected by the total number of
time-cost realizations. This notion is debunked
here, as the experiments with problems having
identical numbers of realizations but varying 12
values demonstrate that the number of realizations
alone may not accurately portray the true
complexity of the problems. Instead, the structural
characteristics of the network, influenced by 12,
play a crucial role in determining the problem’s
computational demands. The
computational effort primarily arises from the way
the non-dominated solutions are distributed in the

increased

solution space. Problems with steeper Pareto front
curves make it more challenging for algorithms to
converge to optimal solutions because a small
change in one objective can cause substantial
changes in the value of another objective. It can be
said that, in problems characterized by steeper
curves, the trade-off between project time and cost
is more pronounced and noticeable. In contrast, a
shallower Pareto front curve allows for easier and
less computationally expensive exploration.
Consequently, locating a larger number of Pareto
solutions on a shallow curve can be significantly
less time-consuming compared to finding fewer
solutions on a steeper curve. In light of these
observations, this study offers valuable insights and
guidelines on how network topology influences
computational complexity, highlighting the
importance of considering 12 in problem-solving
strategies.

5. Conclusions

This study experimented on how network
complexity influences the solution and processing
requirements of one of the most intricate types of
scheduling problems, the Pareto front in time-cost
trade-off problem (TCTP). In order to investigate
the characteristics of the Pareto front time-cost
trade-off problems and their solution spaces under
different arrangements of the project network, and
to experiment with how the topological structure of
the underlying project networks influences the
computational requirements, a new set of instances
was generated in this study. The results from the
computational experiments reveal several key
insights. Firstly, the performance of the proposed
procedures improved for instances with larger
serial/parallel indicator (SP or 12) values, which are
closer to serial networks. This indicates that the
optimization algorithms are more effective when
dealing with networks that lie closer to a serial
graph.

The experiments conducted at three activity
levels demonstrated that the percentage of optimal
solutions for the mixed-integer linear programming
(MILP) model increases with higher 12 values. This
further emphasizes the significant impact of the 12
indicator on the problem’s solution space. Contrary
to the common expectation that a higher number of
Pareto front solutions would generally demand
more CPU time, the findings show that smaller 12
values, which correspond to steeper time-cost
curves, require significantly higher computational
effort. For instance, a solution space with fewer
Pareto front solutions may still require considerable
computational resources due to its topological
structure. This suggests that the steepness of the
Pareto front curve, rather than the number of Pareto
front solutions alone, plays a crucial role in
determining the computational complexity of the
problem. Additionally, the study found that project
complexity does not necessarily correlate with the
total number of time-cost realizations. Instead, the
empirical hardness of the instances increases with
decreasing 12 values. This means that the
complexity of the problem is more accurately
reflected by the network’s topological structure
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than by the sheer number of time-cost
combinations.

To sum up, the number of time-cost
combinations or the number of Pareto front
solutions that must be explored and located per se
may not truly portray the complexity of the
problems. Drawing analogies with similar problems
in other contexts may provide additional insights

into the issues raised by this study. Furthermore,

Declaration

Funding

This research received no external funding.

Author Contributions

S. Aminbakhsh: Conceptualization, Methodology,
Formal analysis, Investigation, Writing - Original
Draft, Writing - Review & Editing.

Acknowledgments
Not applicable.

Data Availability Statement

The data presented in this study are available on
request from the corresponding author.

Ethics Committee Permission
Not applicable.

Conflict of Interests

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

[1] Kelley JE, Walker MR (1959) Ceritical-path
planning and scheduling. In: Proceedings of
Eastern Joint Computer Conference 16:160-173.
https://doi.org/10.1145/1460299.1460318

[2] Hegazy T (2001) Critical path method-line of
balance model for efficient scheduling of repetitive

future research could focus on developing adaptive
algorithms that adjust their strategies based on
network topology, potentially improving efficiency
in solving TCTP problems. Future research
focusing on empirically validating the performance
trends observed with MILP by applying both
heuristic and metaheuristic methods to various
network structures and complexities seems to be
another promising avenue.

construction projects. Transportation Research
Record 1761(1):124-129.
https://doi.org/10.3141/1761-16

[3] Okmen O (2013) A procedure for critical path
method-based scheduling in linear construction
projects. Journal of The South African Institution
of Civil Engineering 55(2):12-20.

[4] Shankar NR, Rao PP, Siresha S, Madhuri KU
(2011) Critical path method in a project network
using ant colony optimization. International
Journal of Computational Intelligence Research
7(1):7-16.

[5] Altun M, Sonmez R, Akcamete A (2020) A mixed
integer programming method for multi-project

resource leveling. Journal of Construction
Engineering, Management & Innovation 3(2):131-
140.

https://doi.org/10.31462/jcemi.2020.02131140

[6] Bettemir OH, Erzurum T (2019) Comparison of
resource distribution metrics on multi-resource
projects. Journal of Construction Engineering
Management &  Innovation  2(2):93-102.
https://doi.org/10.31462/jcemi.2019.02093102

[7] Bettemir OH, Birgéniil MT (2016) Network
analysis algorithm for the solution of discrete time-
cost trade-off problem. KSCE Journal of Civil
Engineering 21(4):1047-1058.
https://doi.org/10.1007/s12205-016-1615-x

[8] Bettemir OH, Erzurum T (2021) Exact solution of
resource leveling problem by exhaustive
enumeration with parallel programming. Teknik
Dergi 32(3):10767-10805.
https://doi.org/10.18400/tekderg.595238

[9] Pascoe TL (1966) Allocation of resources C.P.M.
Revue  Francaise Recherche  Operationelle
10(38):31-38.

[10] Davies EM (1973) An experimental investigation
of resource allocation in multiactivity projects.
Journal of the Operational Research Society
24(4):587-591. https://doi.org/10.2307/3008335



Journal of Construction Engineering, Management & Innovation 264

[13]

[14]

[15]

[18]

[20]

(21]

Kaimann RA (1974) Coefficient of network
complexity. Management Science 21(2):172-77.
Davis EW (1975) Project network summary
measures constrained- resource scheduling. AIIE
Transactions 7(2):132-142.
https://doi.org/10.1080/05695557508974995
Mastor AA (1970) An experimental investigation
and comparative evaluation of production line
balancing techniques. Management Science
16(11):728-746.
https://doi.org/10.1287/mnsc.16.11.728
Elmaghraby SE, Herroelen W (1980) On the
measurement of complexity in activity networks.
European Journal of Operational Research
5(4):223-234. https://doi.org/10.1016/0377-
2217(80)90053-3

Herroelen WS, Caestecker G (1979) The
generation of random activity networks, Research
report No. 7906, Department of Applied
Economics, K.U. Leuven.
https:/lirias.kuleuven.be/1833996&lang=en.
Accessed 01 Aug 2024.

Liu CL, Chen HY (1991) Critical path for an
interval project network. Journal of Management
Sciences in China 9(1):27-32.

Bein WW, Kamburowski J, Stallmann MFM
(1992) Optimal
directed acyclic
Computing
https://doi.org/10.1137/0221065

Kolisch R, Sprecher A, Drex] A (1995)
Characterization and generation of a general class
of  resource-constrained  project  scheduling

reduction of Two-Terminal
graphs. SIAM Journal on
21(6):1112-1129.

problems. Management Science 41:1693-1703.
Schwindt C (1995) ProGen/Max: A New Problem
Generator for Different Resource-Constrained
Project Scheduling Problems with Minimal and
Maximal Time Lags. Institut fiir Wirtschaftstheorie
und Operations Research, Universitdt Karlsruhe,
WIOR Report 449.
Agrawal M, Elmaghraby S, Herroelen W (1996)
DAGEN: A generator of testsets for project activity
nets. European Journal of Operational Research
90(2):376-382. https://doi.org/10.1016/0377-
2217(95)00361-4
Demeulemeester E, Vanhoucke M, Herroelen W
(2003) RanGen: A random network generator for
Journal  of
6:17-38.

activity-on-the-node  networks.
Scheduling

https://doi.org/10.1023/A:1022283403119

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Vanhoucke M, Coelho J, Debels D, Maenhout B,
Tavares LV (2008) An evaluation of the adequacy
of project network generators with systematically
Journal  of
Operational Research 187(2):511-524.
https://doi.org/10.1016/j.ejor.2007.03.032

Tavares LV (1999) Advanced Models for Project
Management, Sixteenth Edition. Springer Science
& Business Media.

Vanhoucke M, Maenhout B (2009) On the
characterization and generation of nurse scheduling

sampled networks. European

problem instances. European Journal of
Operational Research 196(2):457-467.
https://doi.org/10.1016/j.ejor.2008.03.044
Batselier J, Vanhoucke M (2017) Project
regularity: Development and evaluation of a new
project characteristic. Journal of Systems Science
and Systems  Engineering  26(1):100-120.
https://doi.org/10.1007/s11518-016-5312-6

Ellinas C, Allan N, Johansson A (2018) Toward
project complexity evaluation: A  Structural
perspective. IEEE Systems Journal 12(1):228-239.
https://doi.org/10.1109/jsyst.2016.2562358

Van Den Eeckhout M, Maenhout B, Vanhoucke M
(2020) Mode generation rules to define activity
flexibility for the integrated project staffing
problem with discrete time/resource trade-offs.
Annals of Operations Research 292(1):133-160.
https://doi.org/10.1007/s10479-020-03619-3
Thiele B, Ryan MJ, Abbasi A (2021) Developing a
dataset of real projects for portfolio, program and
project control management research. Data in Brief
34:106659.
https://doi.org/10.1016/j.dib.2020.106659

Queiroz M, Lucas F, Sérensen K (2022) Instance
generation tool for on-demand transportation
problems. European Journal of Operational
Research 317(3):696-717.

Coelho J, Vanhoucke M (2023) New resource-
constrained project scheduling instances for testing
(meta-)heuristic scheduling algorithms. Computers
& Operations Research 153:106165.
https://doi.org/10.1016/j.cor.2023.106165
Snauwaert J, Vanhoucke M (2023) A classification
and new benchmark instances for the multi-skilled
resource-constrained project scheduling problem.
European Journal of Operational Research
307(1):1-19.
https://doi.org/10.1016/j.ejor.2022.05.049
Snauwaert J, Van Eynde R, Vanhoucke M (2023)
On the complexity of efficient multi-skilled team



265  S. Aminbakhsh
composition. Computers & Operations Research https://doi.org/10.1061/(asce)co.1943-
157:106277. 7862.0001870
https://doi.org/10.1016/j.co0r.2023.106277 [35] Vanhoucke M (2010) Using activity sensitivity and

[33] Kosztyan ZT, Novak G (2024) Project indicators network topology information to monitor project
and flexible project structure generators. Journal of time performance. Omega  38(5):359-370.
Computational Science 75:102203. https://doi.org/10.1016/j.omega.2009.10.001
https://doi.org/10.1016/j.jocs.2023.102203 [36] Akkan C, Drexl A, Kimms A (2005) Network

[34] Sonmez R, Aminbakhsh S, Atan T (2020) Activity decomposition-based benchmark results for the

uncrashing heuristic with noncritical activity
rescheduling method for the discrete time-cost
trade-off problem. Journal of Construction
and 146(8).

Engineering Management

discrete time—cost tradeoff problem. European
Journal of Operational Research 165(2):339-358.
https://doi.org/10.1016/j.ejor.2004.04.006



	1. Introduction
	2. Research Methodology
	2.1. Case Example

	3. Computational Results
	3.1. T5 case examples
	3.2. T25 problems
	3.3. T50 problems
	3.4. T75 problems

	4. Discussion of Findings
	5. Conclusions

