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Understanding how network complexity affects optimization algorithms is crucial for 
improving computational efficiency. This study investigates how variations in network 
complexity impact the performance of optimization algorithms. By examining networks 
with different serial/parallel indicator (I2) values, the research uncovers several key 
insights into how topology influences computational requirements. The experiments 
show that higher I2 values, which are closer to serial configurations, heighten the 
problem’s complexity. This study reveals that networks with lower I2 values, which 
exhibit steeper time-cost curves with fewer solutions over their efficient frontiers, require 
significantly more CPU time, indicating that project complexity does not necessarily scale 
with the extend of the Pareto fronts. This contradicts the expectation that more Pareto 
front solutions would inherently demand greater computational resources. Lastly, the 
study highlights that while the number of time-cost realizations is often used to gauge 
project complexity, it may not be conclusive on its own and that one complexity measure 
can outperform another. Although it can be an effective indicator, it does not fully capture 
the computational challenges posed by different network topologies. This study further 
acknowledges the difficulty in establishing a clear link between project performance and 
complexity due to the multifaceted nature of the problem. The findings suggest that 
exploring similar problems in other contexts could provide valuable insights into 
understanding and managing computational complexity. 
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1. Introduction 
Project scheduling is integral to effective project 
management, and over time, various strategies and 
tools have emerged to enhance this process. Among 
these, the Critical Path Method (CPM), introduced 
by Kelley and Walker [1], stands out as a 
fundamental and widely practiced technique. CPM 
is a method based on network analysis that aids in 
planning, scheduling, and controlling complex 
projects. It operates on the premise that when the 

activity duration amounts are defined, CPM can 
determine the minimum project duration and 
identify which tasks and paths are critical. CPM 
employs the project network for modeling a project, 
which needs to be a directed, acyclic graph linking 
the activities, including two milestones denoting 
start and finish of the project. 
 Since the project network forms the basis for 
CPM calculations, the overall effectiveness of this 
simple scheduling technique significantly relies on 

https://doi.org/10.31462/jcemi.2024.03247265
mailto:saman.aminbakhsh@atilim.edu.tr
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.goldenlightpublish.com/
https://orcid.org/0000-0002-4389-1910


Journal of Construction Engineering, Management & Innovation 248 

 

the complexity of the network. This is why the 
topological structure of the network becomes 
crucial, and its impact on the complexity and the 
computational resource requirements of the 
problem needs to be addressed in detail. A range of 
studies have therefore focused on the application of 
CPM within the context of construction project 
network topology. For instance, Hegazy [2] and 
Ökmen [3] concentrate on linear construction 
projects with repetitive activities. Ökmen [3] 
presents a CPM scheduling procedure while 
Hegazy [2] integrates CPM with the line of balance 
technique (LOB) technique in their model. Shankar 
et al. [4] improve on CPM by introducing an ant 
colony optimization (ACO) algorithm, 
demonstrating its improved capabilities in 
determining the critical and sub-critical paths in the 
network. Such studies have contributed to a deeper 
understanding and application of CPM in 
construction project network topology. Moreover, 
the complexity of the optimization problem has 
been recognized and addressed in a range of studies 
on diverse optimization problems [5-8]. However, 
given the sparse literature with a specific focus on 
the application of CPM within the context of 
network complexity, the overview of body of 
literature provided herein will not only cover these 
areas, rather will also focus on the relevant research 
concentrating on the generation of new test sets and 
the measurement of perceived complexity in 
various optimization problems. 
 The coefficient of network complexity (CNC), 
for example, was first defined by Pascoe [9] for 
activity-on-arrow (AoA) networks as the number of 
arcs over the number of activities which was later 
modified by Davies [10] and Kaimann [11]. CNC is 
one of the very earliest and perhaps the best-known 
metric characterizing the topological structure of 
project networks. Later, Davis [12] adapted this 
metric for activity-on-node (AoN) networks as the 
number of direct arcs over the total number of 
activities. Mastor [13] present an alternative 
indicator of the topological structure of AoN project 
networks known as the order strength (OS). OS is 
defined as the number of precedence relations 
excluding the arcs connecting the start and finish 

milestone activities divided by the theoretical 
maximum number of precedence relations. OS is 
another well-known metric used to reflect 
complexity of a project network. 
 Elmaghraby and Herroelen [14] address the 
need for measuring the complexity of activity 
networks to estimate computing requirements and 
compare heuristic procedures. This study refers to 
network complexity as the difficulty in analyzing 
and synthesizing a network and discusses the 
relationship between the measures of network 
complexity (MNC) and the theory of combinatorial 
complexity. Elmaghraby and Herroelen [14] 
generate a total of 104 different networks based on 
the hybrid algorithm of Herroelen and Caestecker 
[15] where each network is characterized by the 
number of nodes and arcs as well as a random 
topological structure. This study introduces a 
measure of network complexity based on the 
number of multiplications, convolutions, and 
integrations of arcs, though the challenges in 
measuring network complexity with varying 
resource availability is acknowledged. Liu and 
Chen [16] extend the concept of the critical path to 
interval plan networks by introducing the deadline-
based interval critical path (DBICP) and presenting 
an algorithm for its determination. 
 Bein et al. [17] propose complexity index (CI) 
for two-terminal acyclic AoA project networks. CI 
is defined as the reduction complexity, or the 
smallest number of node reductions that, in addition 
to series and parallel reductions, permit the 
reduction of a two-terminal acyclic network to a 
single edge. CI in essence quantifies how close an 
AoA network is to a series-parallel directed graph. 
Kolisch et al. [18] introduced ProGen, a network 
generator for AoN networks that considers both 
network topology and resource-related 
characteristics. Schwindt [19] subsequently 
expanded ProGen into ProGen/Max, enabling the 
handling of three distinct types of resource-
constrained project scheduling problems, including 
those with minimal and maximal time lags. 
Agrawal et al. [20] emphasized the importance of 
CI indicator and developed DAGEN, an AoA 
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network generator, which allows for the presetting 
of this complexity measure. 
 However, Demeulemeester et al. [21] argued 
that the networks generated by these tools cannot be 
considered strongly random, as they do not 
guarantee that the topology is a random selection 
from the space of all networks that satisfy the 
specified input parameters. Demeulemeester et al. 
[21] criticize Pascoe’s [9] CNC metric for its 
inability to distinguish between simple and 
complex instances, rendering it inadequate as a 
measure of how network topology influences 
project scheduling difficulty. To address these 
limitations, Demeulemeester et al. [21] propose an 
instance generator known as RanGen, that creates 
networks with predetermined CI and OS values and 
taking into account the pre-specified CPU time-
limit and the maximum number of networks. 
RanGen network generator is designed to 
implement a recursive enumeration method in order 
to prevent the generation of networks with identical 
topological structures. Later, Vanhoucke et al. [22] 
introduced RanGen2, a modified version of 
Demeulemeester et al.’s [21] RanGen, 
incorporating alternative topological indicators. 
Their findings indicate that RanGen2 outperforms 
ProGen, RanGen, and RiskNet [23] in terms of the 
total number of networks generated. Starting from 
a larger set of possible networks, RanGen2 is shown 
to be capable of generating multiple distinct 
networks in a single run. 
 Vanhoucke and Maenhout [24], debating that 
there is a growing demand for a base for 
comparison in the nurse scheduling problem 
research community, present benchmark 
scheduling instances. This study also presents 
complexity indicators, including problem size, to 
predict complexity of the scheduling problems and 
as a result the computational effort of the solution 
procedures. This study explores the one-
dimensional and two-dimensional relationships 
between the indicators and their effects on problem 
complexity. The paper also presents a regression 
tree model for predicting problem complexity and 
discusses the discriminative and predictive power 
of the proposed complexity indicators. Based on the 

proposed complexity indicators, a tool named 
NSPGen is presented for generating benchmark 
instances which have been used to evaluate the 
behavior of meta-heuristics under different 
parameter values for the complexity indicators. 
 Batselier and Vanhoucke [25] by focusing on 
the project control phase and Earned Value 
Management (EVM), introduce the concept of 
project regularity which measures the deviation of 
the project’s planned value curve from a perfectly 
linear curve and suggest that project regularity 
could be more influential than project seriality 
(expressed by the serial/parallel-indicator, SP or 
I2). The paper suggests that project regularity could 
be useful for project network generators. Project 
regularity which categorizes projects as strongly 
irregular, mildly irregular, or regular is a new 
characteristic that reflects the value accrued within 
a project, expressed in terms of the 
regular/irregular-indicator (RI). Results of this 
study show that project irregularity has an adverse 
effect on both time and cost forecasting accuracy. 
Ellinas et al. [26] address the challenge of 
quantitatively assessing project complexity by 
using empirical activity networks to measure the 
technological aspect of five real-world projects. 
The study presents a procedure that uses activity 
networks to capture structural complexity in a 
quantitative manner. This study highlights that 
project complexity does not necessarily scale with 
project cost or size and that the similarities between 
activity networks and complex systems, such as the 
internet, are indisputable. 
 Van Den Eeckhout et al. [27] address the project 
staffing problem with discrete time-resource trade-
offs to minimize personnel staffing budget. This 
study embeds activity scheduling flexibility by 
incorporating the project scheduling problem and 
introduces extra demand scheduling flexibility via 
discrete time-resource trade-offs. The paper 
discussing the significance of network topology 
during planning, utilizes the multi-mode PSPLib 
dataset to generate various network topologies for 
problem instances based on different complexity 
indicators. This research leverages the ProGen 
network generator for generation of problem 
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instances with duration and resource demand 
characteristics set based on ProGen and RanGen 
project generators. The provision of data for a 
realistic case is undoubtedly crucial and highly 
beneficial. In this regard, aiming to provide a test 
bed for examining hypotheses, algorithms, 
Probabilistic Risk Modeling and Decision 
outcomes models, Thiele et al. [28] present a 
dataset containing a portfolio comprising six 
projects across which a set of interrelated resources 
are utilized. 
 Queiroz et al. [29] discuss that the size 
influences the challenge during experiments, 
affecting computational time and solution quality. 
In this respect, Queiroz et al. [29] introduce 
REQreate, a tool for generating realistic instances 
for on-demand transportation problems such as the 
Dial-a-Ride Problem (DARP) and On-demand Bus 
Routing Problem (ODBRP). The tool addresses the 
common practice of using instances based on 
artificial networks or specific city data by providing 
a more flexible and diverse approach for generating 
instances. REQreate tackles the lack of standard 
benchmark sets by generating instances based on 
real-world networks from OpenStreetMaps and 
assists in testing optimization algorithms. Since this 
tool can be configured to generate instances with 
different sizes, levels of urgency, dynamism, and 
geographic dispersion, their effect on performance 
metrics for the Meal Delivery Routing Problem 
(MDRP) is evaluated. Deploying bipartite graph 
and maximal matching, this paper also introduces 
the concept of instance similarity for informative 
algorithm analyses. 
 Coelho and Vanhoucke [30] introduce a new 
complexity indicator to measure the difficulty of 
project instances and propose a new data generation 
method for creating challenging instances of the 
resource-constrained project scheduling problem 
(RCPSP). This study proposes numerous instances, 
notably a new set of 390 hard project instances 
generated based on a modified version of the “going 
to the core” algorithm. By analyzing the solution 
space of 10,793 instances, this study presents an 
instance hardness measurement named as Sigma 
distance method based on the average and standard 

deviation of the solution space and a chosen 
reference point. Snauwaert and Vanhoucke [31] 
further contributes by proposing a new data 
generation procedure as well as artificial datasets 
for multi-skilled resource-constrained project 
scheduling problem (MSR-CPSP) using which the 
hardness of the multi-skilled project instances is 
investigated. The authors generate 500 networks 
including 30 to 90 activities with SP indicator 
values as 0.1, 0.3, 0.5, 0.7, and 0.9 by the RanGen2 
generator incorporating skill and resource 
constraints. To evaluate the dataset, they use 
scatterplots to analyze the feature space and 
compare it to existing benchmark datasets. The 
computational experiments reveal that the 
percentage of optimal and feasible solutions for 
mixed integer linear programming (MILP) model 
increases with increasing SP values and that the 
number of optimal and feasible solutions decreases 
with an increasing number of activities. The results 
also showed that the serial-parallel network 
indicator value SP has a high impact on the 
hardness of the instances. 
 Snauwaert et al. [32] formally define and 
explain various multi-skilled workforce formation 
problems, analyze their complexity, and outline the 
structure of the complexity proofs. This study 
addresses multi-skilled project scheduling and 
workforce scheduling, examining genetic 
algorithms (GA), simulation-based algorithms, and 
mixed-integer programming (MIP/MILP) models 
as potential solutions. Snauwaert et al. [32] generate 
over 300 instances involving the similar principles 
used in Snauwaert and Vanhoucke [31]. 
Computation time forms the basis for comparisons 
since average and maximum CPU time as well as 
the percentage of instances not solved to optimality 
within a processing time of one hour have been 
employed as indicators of problem complexity. 
Kosztyán and Novák [33], on the other hand, 
explore the significance of project indicators in 
influencing project structures, complexity, 
duration, and resource demands and their impact on 
scheduling and resource allocation algorithms. The 
authors introduce the flexible structure generator 
(FSG) to transform conventional project database 
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instances into flexible instances, enabling the 
analysis of project indicators in a flexible project 
environment. The project indicators assess project 
complexity and demands, enabling analysis and 
classification of flexible projects. This study 
provides illustrative examples for calculating 
specific indicator values from matrix-based 
instances and running corresponding unit test suites 
for indicator types. The paper also discusses the role 
of minimal and maximal structure variants in 
bridging the gap between traditional and emerging 
flexible project scheduling algorithms. 
 With the increasing complexity of project 
networks, along with the intricate trade-offs 
between duration and cost, extensive research has 
been conducted into various aspects of scheduling 
and network generation. Research on project 
scheduling covers a wide range of subjects, from 
basic techniques such as CPM to the complexities 
of network generation and project instance 
evaluation. The studies discussed in this paper also 
underscore the importance of generating realistic 
and challenging problem instances, which are 
essential for testing and validating optimization 
algorithms across various project scheduling 
scenarios. Despite several studies, it is observed 
that research on network generators for project 
scheduling problems does not adequately address 
how the characteristics of the problems and their 
solution spaces can change under different 
arrangements of the project network. Furthermore, 
the practical impact of complexity on solution 
difficulties has not been sufficiently explored in the 
extant literature. This study, therefore, aims to 
address this gap by experimenting how network 
complexity influences the solution and processing 
requirements of one of the most intricate types of 
scheduling problems, the Pareto front in time-cost 
trade-off problem (TCTP). 
 This significant area in project scheduling 
research is commonly studied within the field, 
where each activity can be performed using various 
execution modes, each associated with different 
durations and costs. In practice, the normal duration 
of an activity corresponds to the resource level for 
which the duration cannot be shortened without 

increasing the direct cost of the activity. 
Nevertheless, in practical scenarios, tasks are often 
accelerated (or crashed) below their normal 
durations to avoid delay penalties or to reduce 
expenses incurred in the form of indirect costs [34]. 
Such accelerations come at a cost, creating a trade-
off between time and expenses. While various 
versions of TCTP have been the focus of numerous 
studies, the most complex variant seeks to achieve 
the complete set of optimal solutions generated by 
the numerous combinations of execution modes. 
This complete set of optimal solutions is referred to 
as the Pareto front and contains mutually non-
dominated solutions; that is, cost components 
cannot be improved without worsening the 
corresponding duration component, and vice versa. 
 The remainder of this paper is organized as 
follows. Section 2 describes the research 
methodology. In Section 3 the computational 
results outlined. Section 4 provides a detailed 
discussion of findings. Finally, concluding remarks 
on the present work are given in Section 5. 
 
2. Research Methodology 
In order to investigate the characteristics of the 
Pareto front time-cost trade-off problems and their 
solution spaces under different arrangements of the 
project network, also in order to experiment how 
topological structure of the underlying project 
networks influence the computational 
requirements, a new set of instances have been 
generated in this study. As discussed in Section 1, 
numerous random network generators have been 
proposed in the literature, including ProGen/Max 
[19], RanGen [21], DAGEN [20], and RanGen2 
[22]. Among these, RanGen2 has been 
demonstrated to be superior to the aforesaid 
generators. RanGen2 has, therefore, been adopted 
for generation of the networks for the instances 
used in this study. RanGen2 incorporates several 
topological indicators based on predefined values 
for these indicators. These indicators include I1 
(number of activities), I2 (serial/parallel indicator, 
SP), I3 (activity distribution indicator), I4 (short 
precedence relations indicator), I5 (long precedence 
relations indicator), and I6 (topological float of 
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activities) [22]. Of these indicators, I2 – also the 
main focus of current study – is particularly notable, 
as it is used to regulate the networks closeness to a 
truly serial or completely parallel graph. Section 
will cover the explanations about the instances 
generated.  
 The project test dataset consists of fictitious 
project networks with 25, 50, and 75 activities. 
Initially, project networks are generated using the 
activity-on-node (AoN) network generator 
RanGen2 [22]. These networks are designed with 
controlled variations in the SP-indicator 
(serial/parallel indicator, I2), which measures the 
extent to which a project network approximates a 
completely serial or parallel configuration [35]. The 
dataset includes networks where the SP-indicator 
ranges from 0.3 to 0.9, in steps of 0.3. Specifically, 
the values 0.3, 0.6, and 0.9 represent almost 
parallel, intermediate, and almost serial network 
configurations, respectively. Then, time-cost 
alternatives, ranging from 3 to 9 per activity, are 
generated using non-increasing convex time-cost 
functions, following the methodology outlined by 
Akkan et al. [36]. Finally, the new TCTPs are 
created by combining the RanGen2 networks with 
the execution modes generated through a custom 
C# code. 
 It is of utmost importance to note that for each 
problem size, the three problems (e.g., T25_3, 
T25_6, and T25_9) differ as follows. The three 

distinct problems are characterized by their network 
structure. Specifically, T25_3, T50_3, and T75_3 
are generated using an I2 value of 0.3, T25_6, 
T50_6, and T75_6 using I2 of 0.6, and T25_9, 
T50_9, and T75_9 using I2 of 0.9. Despite these 
differences in network structure, for each problem 
size, all the three variants share identical execution 
modes per activity. This ensures that the observed 
variations are attributable solely to the differences 
in topological structure of networks, allowing for a 
focused analysis of its effects. Table 1 outlines the 
details of this dataset. 
 All the 25-activity instances consist of four 
activities with three modes, two with four modes, a 
single one with five modes, four with six modes, 
four with seven modes, six with eight modes, and 
four with nine modes; totaling to 3.47×1019 
different time-cost combinations. T50 problems 
consist of nine activities with three modes, seven 
with four modes, seven with five modes, three with 
six modes, nine with seven modes, nine with eight 
modes, and six with nine modes; totaling to 
1.57×1037 different possible combinations. And 
T75_3 to T75_9 problems consist of seven 
activities with three modes, 16 with four modes, 18 
with five modes, nine with six modes, six with 
seven modes, ten with eight modes, and nine with 
nine modes; totaling to 1.77×1055 different time-
cost realizations. 
 

 
Table 1. Details of T25, T50, and T75 problems 

Problem # of Acts. # of Modes I2 (Nominal)* 

T25_3 25 [3-9] 0.30 
T25_6 25 [3-9] 0.60 
T25_9 25 [3-9] 0.90 
T50_3 50 [3-9] 0.30 
T50_6 50 [3-9] 0.60 
T50_9 50 [3-9] 0.90 
T75_3 75 [3-9] 0.30 
T75_6 75 [3-9] 0.60 
T75_9 75 [3-9] 0.90 
*The nominal value entered into RanGen2 may differ from the actual value observed. 
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2.1. Case Example 
In this subsection, a detailed case example is 
presented to illustrate the structure and 
characteristics of the dataset used in the subsequent 
stages of this study. As shown in Table 2, this 
example includes five actual and two milestone 
activities with a solution space comprising 540 
possible realizations. The purpose of this example 
is to elucidate the rationale behind the generation of 
the problems, specifically focusing on the 
variations in network structures and their 
implications. The same rationale employed for 
generating the T25, T50, and T75 problems has 
been applied to create the T5_3, T5_6, and T5_9 
case problems. Each set of problems is designed 
with varying network structures according to their 
respective I2 values. Specifically, T5_3, T5_6, and 
T5_9, like their T25, T50, and T75 counterparts, are 
distinguished by I2 values of 0.3, 0.6, and 0.9, 
respectively. It is worth noting that Table 2 provides 

details on the mutual execution modes for the three 
T5 problems. Moreover, the contrast in precedence 
relationships among the T5 case examples is 
detailed in Table 3. 
 In addition, the structural differences among the 
different versions of T5 problem is showcased by 
presenting their respective AoN diagrams in Figs. 1 
to 3. These graphical representations clarify how 
each problem is configured and how the networks 
differ in terms of their I2 values, further, they 
provide insights into how the variations in network 
topology contribute to the overall problem design. 
 Each project network for the T5 case examples 
was analyzed using a custom graph analyzer coded 
in C#. This tool calculates several key metrics, 
namely, the total number of paths, the longest arc in 
the network, and the actual SP-indicator (I2) value. 
It is crucial to measure the actual I2 value since, 
during the network generation process with 
RanGen2, the I2 values are initially specified as 
network generation parameters. 

 
Table 2. Mutual execution modes for T5 case examples 

 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Dur. 
(day) 

Cost 
($) 

Dur. 
(day) 

Cost 
($) 

Dur. 
(day) 

Cost 
($) 

Dur. 
(day) 

Cost 
($) 

Dur. 
(day) 

Cost 
($) 

Start 0 0 - - - - - - - - 
1 5 87,204 16 80,095 36 70,476 45 67,635 - - 
2 1 84,840 32 63,943 39 62,595 - - - - 
3 6 39,755 27 34,692 52 30,576 - - - - 
4 6 92,243 14 86,072 25 79,323 36 74,888 42 73,626 
5 9 50,307 23 45,166 42 42,840 - - - - 

Finish 0 0 - - - - - - - - 
 
Table 3. Precedence relationships for T5 case examples 

Act. 
Direct Predecessor(s) 

T5_3  T5_6  T5_9 

Start -  -  - 
1 Start  Start  Start 
2 Start  1  1 
3 1, 2  Start  1 
4 1  2, 3  2, 3 
5 1  2, 3  4 

Finish 3, 4, 5  4, 5  5 
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Fig. 1. Network diagram for T5_3 case example 

 

5    |    $87,204
16    |    $80,095
36    |    $70,476
45    |    $67,635

1    |    $84,840
32    |    $63,943
39    |    $62,595

6    |    $39,755
27    |    $34,692
52    |    $30,576

9    |    $50,307
23    |    $45,166
42    |    $42,840

6    |    $92,243
14    |    $86,072
25    |    $79,323
36    |    $74,888
42    |    $73,626

Finish

Start

1

2

3

4

5

 
Fig. 2. Network diagram for T5_6 case example 

 

5    |    $87,204
16    |    $80,095
36    |    $70,476
45    |    $67,635

1    |    $84,840
32    |    $63,943
39    |    $62,595

6    |    $39,755
27    |    $34,692
52    |    $30,576

9    |    $50,307
23    |    $45,166
42    |    $42,840

6    |    $92,243
14    |    $86,072
25    |    $79,323
36    |    $74,888
42    |    $73,626
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2
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4
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Fig. 3. Network diagram for T5_9 case example 

5    |    $87,204
16    |    $80,095
36    |    $70,476
45    |    $67,635

1    |    $84,840
32    |    $63,943
39    |    $62,595

6    |    $39,755
27    |    $34,692
52    |    $30,576

9    |    $50,307
23    |    $45,166
42    |    $42,840

6    |    $92,243
14    |    $86,072
25    |    $79,323
36    |    $74,888
42    |    $73,626

Finish

Start

1

2

3

4
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However, these nominal values are experienced to 
differ slightly from the actual values observed in the 
generated networks. The post-analysis conducted 
using the custom tool reveals these slight 
discrepancies, providing a more accurate 
measurement of the I2 value as provided in Table 4. 
This small variation arises due to the fact that the 
nominal (pre-specified) I2 values either could not 
be generated or simply do not exist. 
 
3. Computational Results 
As mentioned earlier, this study’s objective is to 
explore the practical impact of network complexity 
on solution difficulty by examining how varying 
topological structure of the network affects the 
computational demand of solving one of the most 
intricate scheduling problems, the Pareto front 
time-cost trade-off problem (TCTP). Vanhoucke 
and Maenhout [24] emphasize that the hardness of 
a problem instance is typically measured by the 
CPU time required for an exact solution procedure 
to solve it to optimality. In line with this 
perspective, Pareto front optimization of the new 
set of instances discussed earlier was conducted 
using a basic mixed-integer linear programming 
(MILP) model that uses the Gurobi Optimizer 
(version 11.0). The specifics of the MILP model are 
not elaborated upon here, as the primary focus of 

this study is not on the model’s development or its 
intricacies. Instead, the emphasis is on employing a 
uniform technique to evaluate how different 
problem characteristics impact the performance of 
the MILP approach. The optimization routines are 
implemented using C# on a 64-bit platform. The 
experiments were conducted on a desktop computer 
equipped with 8 GB of RAM, an Intel® Core™ i7-
9700 CPU @ 3.00 GHz, and a 64-bit Windows 11 
operating system. 
 Initially, each project network for the T25, T50, 
and T75 problems was analyzed using a custom 
graph analyzer developed in C#. This tool, 
introduced earlier in the context of the T5 case 
example, was again employed to calculate key 
network characteristics, including the total number 
of paths, the length of the longest arc, and the actual 
I2 values as given in Table 5. As discussed 
previously, while RanGen2 allows for the input of 
desired I2 values during network generation, these 
values may differ slightly from the actual I2 
observed post-generation. The minor discrepancies 
between the nominal and actual I2 values stems 
from the technique RanGen2 uses to approximate 
the predefined I2 value. This approximation is 
influenced by I1 (number of activities) indicator 
and the length of the longest arc, which RanGen2 
balances to create a network structure as close as 
possible to the pre-specified I2 value. 

 
Table 4. Topological characteristics of T5 case examples 

Problem Total # of Paths Longest Arc I2 (Nominal) I2 (Actual) 
T5_3 4 2 0.30 0.25 
T5_6 4 3 0.60 0.50 
T5_9 2 4 0.90 0.75 

 
Table 5. Topological characteristics of T25, T50, and T75 problems 

Problem Total # of Paths Longest Arc I2 (Actual) 
T25_3 510 8 0.29 
T25_6 168 15 0.58 
T25_9 8 22 0.88 
T50_3 9,998 15 0.29 
T50_6 72,000 30 0.59 
T50_9 32 45 0.90 
T75_3 7,944,022 23 0.30 
T75_6 2,663,424 45 0.59 
T75_9 256 67 0.89 
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 As can be followed from Table 5, as I2 
increases, the longest arc in the problem also 
increases, confirming that higher values of I2 
correspond to networks where activities are 
arranged in a more serial structure. Further, there is 
a noticeable decrease in the total number of paths as 
I2 increases, reinforcing that higher values of I2 
result in greater number of parallel paths. 

3.1. T5 case examples 
The Pareto front optimization is first applied to the 
T5 case examples. The Pareto fronts obtained for 
T5_3, T5_6, and T5_9 are plotted against each 
other in Fig. 4. As seen in Fig. 4, as I2 increases 
from 0.3 for T5_3 to 0.9 for T5_9, the number of 
non-dominated solutions increases. This indicates 
that more diverse solutions become available as the 
project network approaches a serial structure. The 
spread of the Pareto front becomes wider with 
higher values of I2. T5_9, with the highest I2 of 0.9, 
shows a more extended range of solutions, 
reflecting greater variability in the solution space. 
More precisely, hyperarea which measures the 
diversity (distribution and spread) of the Pareto 
fronts is calculated as 10,371,404, 9,135,274, and 
7,564,477 for T5_3, T5_6, and T5_9 case 
examples, respectively. In addition, the Pareto front 
corresponding to the smallest I2 is noticeably 
steeper. This steepness implies that for 

parallel/pseudo-parallel networks, small increases 
in duration result in significant reductions in cost. 

3.2. T25 problems 
Following the analysis of the T5 case example, this 
section investigates the T25 problems. The results 
obtained by the MILP model for the T25 problems 
are presented in Table 6. This table presents CPU 
time, the normal (cheapest and longest) solution, 
the crashed (most expensive and shortest) solution, 
as well as the number of Pareto front (PF) solutions, 
per each setting. The costs considered are solely the 
direct costs of the activities, where in the normal 
solution, all activities are executed in their normal 
modes, and in the crashed solution, all activities are 
executed in their crashed modes. It must be pointed 
out that crashed solutions are not derived through 
an optimization process; rather, all activities are 
crashed to the maximum extent possible. As a 
result, some fully crashed activities may have float. 
 As seen in Table 6, I2 indicator’s impact on the 
results can be observed through variations in the 
performance metrics. Although all variants of the 
T25 problem have the same total time-cost mode 
combination of 3.47×1019, varying I2 has 
dramatically altered the solution space. When CPU 
time is considered, for I2 = 0.3 it is the highest at 
49.2 seconds, while for I2 = 0.9, it is the lowest at 
21.13 seconds. 

 

 
Fig. 4. Pareto fronts for T5 problems 
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Table 6. Comparison of results for T25 problems 

Problem CPU Time (S) 
Normal Sol. Crashed Sol. 

# of PF Sols 
Dur. (day) Cost ($) Dur. (day) Cost ($) 

T25_3 49.20 388 1,571,636 41 1,986,464 311 
T25_6 36.36 720 1,571,636 64 1,999,585 598 
T25_9 21.13 1,033 1,571,636 91 2,003,340 902 

 
With regard to the number of Pareto front solutions, 
for I2 = 0.3, it is 311, and this number rises to 902 
for I2 = 0.9. Despite T25_9 having a larger set of 
Pareto front solutions, it requires less CPU time 
compared to T25_3 and T25_6. Similarly, T25_6 
also shows a shorter CPU time compared to T25_3, 
in spite of having a greater number of non-
dominated solutions in its front. There is an increase 
in CPU time from I2 = 0.9 to 0.6 by 72.04%, while 
from I2 = 0.6 to 0.3 the increase is 35.31%. In the 
same order, there is a decline in the size of Pareto 
front set by 47.99% and 33.70%, respectively. This 
pattern highlights an intriguing aspect of the 
problem’s computational complexity. This trade-
off between CPU time and the number of Pareto 
front solutions is demonstrated in Fig. 5 for each 
setting of T25 problem. 
 Fig. 6 displays the Pareto fronts for T25_3, 
T25_6, and T25_9 problems plotted against one 

another. As seen in this figure, the number of non-
dominated solutions grows as I2 rises from 0.3 for 
T25_3 to 0.9 for T25_9. In addition, Hyperarea for 
the Pareto fronts is calculated as 381,831,632, 
335,546,722, and 268,809,617 for T25_3, T25_6, 
and T25_9 problems, respectively. This suggests 
that when the project network becomes closer to a 
serial structure, Pareto front stretches out, leading 
to a wider range of non-dominated solutions. 
Moreover, the time-cost curve associated with the 
smallest I2 has a much sharper slope. This steepness 
suggests that tiny duration increases lead to 
considerable cost savings for parallel and pseudo-
parallel networks. A steeper Pareto front curve, on 
the other hand, can increase the complexity of the 
problem, as it poses a more challenging solution 
space for exploration compared to a shallower 
curve. 
 

 

 
Fig. 5. CPU Time vs. no. of distinct Pareto front solutions for T25 problems 
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Fig. 6. Pareto fronts for T25 problems 

 

3.3. T50 problems 
This section explores the T50 problems, providing 
a detailed analysis of their characteristics and the 
results obtained. The results of the MILP model for 
the T50 problems are presented in Table 7 which 
shows CPU time, the normal (cheapest and longest) 
solution, the crashed (most expensive and shortest) 
solution, and the number of Pareto front (PF) 
solutions, for each variant of the problem. Similar 
to T25 set, the costs considered are solely the direct 
costs of the activities, and that crashed solutions are 
not derived through an optimization process. They 
obtained by crashing all activities are to the 
maximum extent possible, therefore, some crashed 
activities may have float. 
 As seen in Table 7, the impact of I2 on the 
performance metrics is present here as well. Despite 
all variants of the T50 problem share the same total 
time-cost realizations of 1.57×1037, varying I2 has 

significantly transformed the solution space. With 
regard to CPU time, the pattern is similar to the 
previous dataset. CPU time decreases as I2 
increases with 279.86 seconds for I2 = 0.3, 178.85 
seconds for I2 = 0.6, and 79.47 seconds for I2 = 0.9. 
When the number of Pareto front solutions is 
considered, the observations are consistent with the 
previous dataset and shows that higher values of I2 
lead to a larger set of optimal solutions. More 
specifically, for I2 = 0.3, it is 577, and this number 
rises to 1,835 for I2 = 0.9. Similar to the 
observations made for the T25 problems, a notable 
trade-off between the number of Pareto front 
solutions and CPU time is also evident for the T50 
problems. As previously discussed, although it is 
expected that a higher number of Pareto front 
solutions would require increased CPU time, T50_9 
with a larger set of Pareto front solutions requires 
less processing time compared to T50_3 or T50_6.  
 

 
Table 7. Comparison of results for T50 problems 

Problem CPU Time (S) 
Normal Sol. Crashed Sol. 

# of PF Sols 
Dur. (day) Cost ($) Dur. (day) Cost ($) 

T50_3 279.86 699 2,931,049 77 3,627,997 577 
T50_6 178.85 1,407 2,931,049 165 3,708,208 1,219 
T50_9 79.47 2,074 2,931,049 221 3,718,023 1,835 
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Similarly, T50_6 also requires a shorter 
computational time compared to T50_3, despite 
having a greater number of non-dominated 
solutions. There is an increase in CPU time from I2 
= 0.9 to 0.6 by 125.06%, while from I2 = 0.6 to 0.3 
the increase is 56.47%. In the same order, there is a 
decline in the size of Pareto front set by 52.67% and 
33.57%, respectively. This trade-off between CPU 
time and the number of Pareto front solutions for 
T50 problems is displayed in Fig. 7. 
 Fig. 8 illustrates the Pareto fronts for the T50_3, 
T50_6, and T50_9 problems plotted together. The 

figure reveals that as the project network 
approaches a more serial structure, the Pareto front 
expands, resulting in a broader range of non-
dominated solutions. More specifically, Hyperarea 
values associated with these fronts are calculated as 
1,453,752,001, 1,212,075,679, and 958,423,761 for 
T50_3, T50_6, and T50_9 problems, respectively. 
These observations are consistent with the previous 
findings for the T25 problems. Additionally, the 
time-cost curve for the lowest I2 value, again, 
exhibits a much steeper slope.  
 

 

 
Fig. 7. CPU time vs. no. of distinct Pareto front solutions for T50 problems 

 

 
Fig. 8. Pareto fronts for T50 problems 
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This steepness implies that smaller values of I2 can 
heighten the problem’s complexity, making the 
solution space more challenging to explore 
compared to a shallower curve. 

3.4. T75 problems 
This section further sheds light on the 
characteristics of T75_3, T75_6 and T75_9, 
presenting the solutions achieved for these 
problems. The results of the MILP model for the 
T75 problems are presented in Table 8 which 
includes CPU time, the normal and crashed 
solutions, and the number of Pareto front (PF) 
solutions, for each version of the problem. Crashed 
solutions are obtained in a manner similar to T25 
and T50 problems. That is, solely the direct costs 
are considered, and that crashed solutions are 
obtained by crashing all activities are to the 
maximum extent possible, which means some 
crashed activities may have float. 
 As provided in Table 8, the influence of the I2 
indicator on the performance metrics is evident here 
as well. Even though all T75 problems have the 
identical execution modes, totaling to 1.77×1055 
number of different combinations, changes in I2 
have remarkably reshaped the solution space of the 
three variants. Regarding CPU time, the pattern 
observed is consistent with that of T25 and T50 
problems. Increasing I2 leads to significant 
reductions in CPU time with 16,837.01 seconds for 
I2 = 0.3, 662.43 seconds for I2 = 0.6, and 129.47 
seconds for I2 = 0.9. The extraordinarily long CPU 
time for T75_3, despite having the lowest number 
of Pareto front solutions of 941 and the smallest 
longest arc of 23, can be attributed to the 
exceptionally high number of parallel paths, which 
totals 7,944,022. This number of parallel paths is 
198% higher than that for T75_6 and 3.1×106% 

higher than for T75_9 problem. Considering the 
number of Pareto front solutions, the observations 
are in line with those from previous datasets and 
demonstrate that higher values of I2 lead to a larger 
set of Pareto solutions. More precisely, 941 for I2 = 
0.3, 1,873 for I2 = 0.6, and 2,802 for I2 = 0.9. 
Consistent with the observations for the T25 and 
T50 problems, a significant trade-off between the 
number of Pareto front solutions and CPU time is 
also evident for the T75 problems. As previously 
noted, while locating a higher number of Pareto 
front solutions would generally demands more CPU 
time, T75_9, which has a larger set of Pareto front 
solutions, requires less processing time compared 
to T75_3 and T75_6. Likewise, T75_6, despite 
having more non-dominated solutions than T75_3, 
also demands shorter computational time. A 
notable increase in CPU time is observed from I2 = 
0.9 to 0.6 by 2,441.72%, while from I2 = 0.6 to 0.3 
the increase is 411.66%. In the same order, there is 
a decline in the size of Pareto front set by 49.76% 
and 33.15%, respectively. Fig. 9 clearly 
demonstrates the trade-off between CPU time and 
the number of Pareto front solutions for the T75 
problems. 
 Pareto fronts for T75_3, T75_6, and T75_9 
problems are shown in Fig. 10. This figure reveals 
that as the project network lies closer to a serial 
structure, the Pareto front broadens, leading to 
larger range of pareto solutions. To be precise, 
Hyperarea values associated with these Pareto 
fronts are calculated as 3,570,038,770, 
3,058,874,865, and 2,420,847,312 for T75_3, 
T75_6, and T75_9 problems, respectively. These 
findings align with the observations made for the 
T25 and T50 problems. Moreover, the efficient 
frontier for the smallest level of I2 exhibits a 
significantly steeper slope. 

 
Table 8. Comparison of results for T75 problems 

Problem CPU Time (S) 
Normal Sol Crashed Sol 

# of PF Sols 
Dur. (day) Cost ($) Dur. (day) Cost ($) 

T75_3 16,837.01 1,103 4,678,002 127 5,911,510 941 
T75_6 662.43 2,103 4,678,002 216 5,944,992 1,873 
T75_9 129.47 3,127 4,678,002 295 5,976,856 2,802 
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Fig. 9. CPU time vs. no. of distinct Pareto front solutions for T75 problems 

 

 
Fig. 10. Pareto fronts for T75 problems 

 
This steepness suggests that larger values of I2 can 
reduce the complexity of the problem, making the 
solution space easier to explore. 
 
4. Discussion of Findings 
The performance evaluations across the different 
problem instances reveal that the spread of the 
Pareto front becomes wider with higher values of 
I2, indicating a broader range of non-dominated 
solutions as the project network transitions towards 
a more serial structure. A clear relationship between 

network topology and computational complexity is 
also observed, with the empirical hardness of the 
instances decreasing for increasing values of I2, 
leading to improved performance of the 
optimization algorithm. Empirical complexity, 
meanwhile, refers to the observed difficulty in 
solving the problems, reflected by the 
computational effort required for the solution of the 
instances. Interestingly, an inverse relationship 
between CPU time and the number of Pareto front 
solutions was observed, contrasting with the direct 
relationship between CPU time and the number of 
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paths in the network. Contrary to the expectation 
that locating a higher number of Pareto front 
solutions would generally demand more CPU time, 
the experiments show that smaller I2 values with 
fewer Pareto solution demand much higher 
computational effort. Specifically, lower I2 values, 
which result in a greater number of paths and a 
steeper Pareto front, are significantly more 
challenging and require higher computational 
resources. This can be explained by the observation 
that the efficient front curve is steeper for smaller 
I2 values, making the solution space more difficult 
for algorithms to explore effectively. 
 A critical insight from this study challenges the 
common assumption that empirical hardness of a 
problem is best reflected by the total number of 
time-cost realizations. This notion is debunked 
here, as the experiments with problems having 
identical numbers of realizations but varying I2 
values demonstrate that the number of realizations 
alone may not accurately portray the true 
complexity of the problems. Instead, the structural 
characteristics of the network, influenced by I2, 
play a crucial role in determining the problem’s 
computational demands. The increased 
computational effort primarily arises from the way 
the non-dominated solutions are distributed in the 
solution space. Problems with steeper Pareto front 
curves make it more challenging for algorithms to 
converge to optimal solutions because a small 
change in one objective can cause substantial 
changes in the value of another objective. It can be 
said that, in problems characterized by steeper 
curves, the trade-off between project time and cost 
is more pronounced and noticeable. In contrast, a 
shallower Pareto front curve allows for easier and 
less computationally expensive exploration. 
Consequently, locating a larger number of Pareto 
solutions on a shallow curve can be significantly 
less time-consuming compared to finding fewer 
solutions on a steeper curve. In light of these 
observations, this study offers valuable insights and 
guidelines on how network topology influences 
computational complexity, highlighting the 
importance of considering I2 in problem-solving 
strategies. 

5. Conclusions 
This study experimented on how network 
complexity influences the solution and processing 
requirements of one of the most intricate types of 
scheduling problems, the Pareto front in time-cost 
trade-off problem (TCTP). In order to investigate 
the characteristics of the Pareto front time-cost 
trade-off problems and their solution spaces under 
different arrangements of the project network, and 
to experiment with how the topological structure of 
the underlying project networks influences the 
computational requirements, a new set of instances 
was generated in this study. The results from the 
computational experiments reveal several key 
insights. Firstly, the performance of the proposed 
procedures improved for instances with larger 
serial/parallel indicator (SP or I2) values, which are 
closer to serial networks. This indicates that the 
optimization algorithms are more effective when 
dealing with networks that lie closer to a serial 
graph. 
 The experiments conducted at three activity 
levels demonstrated that the percentage of optimal 
solutions for the mixed-integer linear programming 
(MILP) model increases with higher I2 values. This 
further emphasizes the significant impact of the I2 
indicator on the problem’s solution space. Contrary 
to the common expectation that a higher number of 
Pareto front solutions would generally demand 
more CPU time, the findings show that smaller I2 
values, which correspond to steeper time-cost 
curves, require significantly higher computational 
effort. For instance, a solution space with fewer 
Pareto front solutions may still require considerable 
computational resources due to its topological 
structure. This suggests that the steepness of the 
Pareto front curve, rather than the number of Pareto 
front solutions alone, plays a crucial role in 
determining the computational complexity of the 
problem. Additionally, the study found that project 
complexity does not necessarily correlate with the 
total number of time-cost realizations. Instead, the 
empirical hardness of the instances increases with 
decreasing I2 values. This means that the 
complexity of the problem is more accurately 
reflected by the network’s topological structure 
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than by the sheer number of time-cost 
combinations.  
 To sum up, the number of time-cost 
combinations or the number of Pareto front 
solutions that must be explored and located per se 
may not truly portray the complexity of the 
problems. Drawing analogies with similar problems 
in other contexts may provide additional insights 
into the issues raised by this study. Furthermore, 

future research could focus on developing adaptive 
algorithms that adjust their strategies based on 
network topology, potentially improving efficiency 
in solving TCTP problems. Future research 
focusing on empirically validating the performance 
trends observed with MILP by applying both 
heuristic and metaheuristic methods to various 
network structures and complexities seems to be 
another promising avenue. 
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