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Calculating the productivity of workers in traditional construction projects can be a 
daunting and time-consuming task. However, thanks to the advancements in technology 
and scientific research, measuring worker productivity can be automated. Therefore, this 
study aims to determine the productivity of gypsum plaster workers by collecting motion 
data with a sensor on their arms and using the support vector machine algorithm for 
analysis. Based on the estimation results, motion productivity is determined by 
calculating the ratio of the worker's working time to the total time. On the other hand, 
worker productivity is calculated by determining the ratio of the amount of work 
completed to the product of the number of workers and the total working hours. Finally, 
theoretical productivity is calculated by dividing motion productivity by the calculated 
worker productivity. According to the results of the analysis, whether the worker is 
working or not has been estimated correctly by 95.8%. On the other hand, the mean 
daily theoretical productivity has been determined to be 10.20 m2/man-hour. In this way, 
workers' activities can be automatically detected with a certain accuracy and their 
productivity can be calculated. This helps in the effective management of the 
construction site. 

 

Keywords   
 

Construction technology 
Worker activities 
Support Vector Machine 
Worker productivity 
estimation  
Artificial Intelligence 

  

    

1. Introduction 
The construction industry is a vital sector in the 
global economy, but it often faces challenges such 
as low productivity resulting in low quality, high 
costs, and time overruns. Measuring and estimating 
worker productivity in this industry can be 
challenging due to the variability of worker 
productivity depending on the labor force used. 
This creates difficulties in accurately estimating the 
worker productivity of the construction sector. In 
construction planning and process, measuring and 
estimating worker productivity is crucial. 
Determining worker productivity status helps 

manage the process effectively. Incorporating new 
technologies and advanced methods to measure and 
forecast worker productivity is crucial for 
addressing concerns and improving the 
construction industry's efficiency and effectiveness. 
The integration of modern technology is key to 
enhancing worker productivity in construction, as 
per various studies [1-3]. According to a study in 
the USA, the construction sector has one of the 
lowest scores on the digitalisation index [4]. Today, 
with the convenience of digitalisation, scientific 
studies have been conducted to integrate 
technology into the construction industry [5-9, 21]. 

https://doi.org/10.31462/jcemi.2024.04281290
mailto:ibrahimkaratas@osmaniye.edu.tr
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.goldenlightpublish.com/
https://orcid.org/0000-0003-0845-4536
https://orcid.org/0000-0002-6747-9103


Journal of Construction Engineering, Management & Innovation 282 

 

In 2018, McKinsey & Company published a report 
stating that the construction industry will 
increasingly rely on advanced technologies. These 
technologies encompass digital twins, artificial 
intelligence, the Internet of Things (IoT), 3D 
printers, robotics, real-time monitoring and control 
systems, document management, and 3D modelling 
and BIM technologies [10]. The integration of 
cutting-edge technologies such as artificial 
intelligence, internet of things, real-time 
monitoring, and control can serve as a catalyst for 
automating the recognition of labor activities and 
calculating worker productivity in the construction 
sector. This advancement has the potential to 
significantly streamline processes and increase 
efficiency on construction sites. 
 In 2016, a study by Akhavian and Behzadan 
explored the use of an artificial intelligence model 
that could automatically detect worker movements 
using data from smartphones. The study analysed 
the effectiveness of various AI models, including 
artificial neural network, decision trees, nearest 
neighbour, logistic regression, and support vector 
machines, in identifying the time spent on each 
activity, including idle time. The findings suggest 
that utilizing machine learning techniques to 
analyse worker activity and time can be a valuable 
tool in evaluating productivity. The models created 
by the study can be directly applied to measure 
productivity [11]. Sanhudo et al. (2021) conducted 
a thorough study to assess the accuracy and 
usability of accelerometer data and machine 
learning algorithms in categorizing construction 
workers' activities. To achieve this, a realistic 
circuit was created to capture ten distinct activities 
that occur during wall building in a controlled 
laboratory environment. The workers were outfitted 
with accelerometer sensors to collect data for each 
activity. The data collected from the sensors were 
used to train and compare 13 different machine 
learning algorithms including decision tree, k 
nearest neighbour, logistic regression, multilayer 
perceptions, and support vector machines (SVM). 
Additionally, ensemble machine learning 
algorithms such as random forest, extreme random 
trees, adaptive boosting, and gradient boosting 

machines were also employed for comparison. [12]. 
In Son's (2017) study, the author examined the 
possibility of measuring worker productivity by 
calculating the ratio of active working hours to total 
working hours, based on data obtained from 
workers. To enhance productivity in a construction 
site setting, the author suggests that gathering 
physical and location data every second can be 
beneficial since productivity data can be difficult to 
collect and measure in real-time. The study defines 
worker productivity as the ratio of time spent on 
direct work by a construction worker to total work 
time. Furthermore, the study focuses on measuring 
the individual productivity of each worker rather 
than the project's overall productivity [13]. In their 
study, Karatas and Budak (2021) [14] collected 3-
axis accelerometer, gyroscope, and magnetometer 
data from workers using sensors to estimate the 
activities involved in a construction job. The data 
were then used to train and model basic machine 
learning algorithms such as logistic regression, 
Support Vector Classifier Decision tree, and K 
Nearest Neighbours. The results showed that the 
Support Vector Classifier algorithm provided the 
best prediction with an accuracy rate of 90%. The 
accuracy rates for the other algorithms were 87% 
for K Nearest Neighbours, 80% for logistic 
regression, and 80% for Decision tree. 
 The recognition of construction activities 
involves the utilization of specialized equipment. 
Specifically, the process entails the measurement of 
acceleration, angular velocity, and gravitational 
forces using a combination of three sensors - 
accelerometer, gyroscope, and magnetometer. The 
data obtained from these sensors are then analyzed 
to identify the specific construction activities taking 
place. It is worth noting that the accuracy of the 
results is dependent on the quality of the equipment 
used and the expertise of the personnel involved 
[15]. Some studies have used only accelerometer 
data for activity recognition in construction work 
[12, 16, 17]. The inclusion of both accelerometer 
sensors in the X, Y, and Z axes and gyroscope 
sensors that measure angular velocity allows for the 
recognition of construction activities. These sensors 
can detect rolling, pitching, and yawing movements 
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in the three axes, thereby expanding the range of 
worker activity movement characteristics. As a 
result, it becomes simpler to differentiate between 
each activity [18]. Therefore, some studies have 
used a combination of accelerometer and gyroscope 
data for construction worker activity identification 
analyses [11, 18, 19]. In addition [20] stated in their 
study that gravitational force measurements data 
collected with the magnetometer sensor would be 
useful to be used with other sensors in the 
recognition of labour activities. The aim of this 
study is to examine the information collected from 
employees through accelerometer, gyroscope, and 
magnetometer sensors. Through the use of artificial 
intelligence models, their movements and 
behaviours will be identified, enabling the 
computation of worker productivity to be 
automated. 
 In previous studies, data was mostly collected in 
laboratory settings using accelerometers or a 
combination of accelerometers and gyroscopes. 
These studies focused solely on identifying 
workers' movements. However, our study collected 
data from workers in a real construction site 
environment, using accelerometers, gyroscopes, 

and magnetometers to capture more detailed 
movements. We not only calculated the workers' 
movement efficiency but also their theoretical 
efficiency. This approach sets our study apart from 
previous literature. 
 
2. Research Methodology 
As technology advances, data collection systems 
are becoming increasingly efficient at measuring 
worker productivity. Compared to traditional 
methods like direct observation or surveys, which 
can be time-consuming, tedious, and prone to 
errors, these automated systems offer a more 
effective solution. In light of this, our study seeks 
to utilize machine learning to analyze data collected 
via sensors attached to workers' arms, providing 
predictions of their activities and accurately 
calculating productivity. This study employs the 
support vector machine (SVM) machine learning 
method to accurately predict the work status of a 
Gypsum Plaster worker. To achieve this, we 
followed a step-by-step approach illustrated in the 
Fig. 1 flowchart.  
 

 
Fig. 1. Flowchart for the study 
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We began by collecting and categorizing raw data 
from the worker at the construction site. 
Subsequently, we meticulously processed, sorted, 
and extracted its essential attributes to ensure the 
data was model-ready. The initial step involves 
dividing the data into two distinct sets: training and 
test data. Subsequently, the training data will be 
meticulously analysed to determine the success of 
predictions in comparison with the test data. Once 
this is accomplished, the prediction model will be 
integrated with the data collected during the day to 
forecast worker activities. Finally, the theoretical 
efficiency will be calculated based on movement 
efficiencies and worker efficiencies. 
 In this study, we gathered data on gypsum 
plastering activities during the construction of a 
reinforced concrete school. Fig. 2 shows a sensor 
attached to the worker's arm with an armband. The 
skilled worker plasterer in Fig. 3 wore this sensor, 
and it recorded 3-axis acceleration, gyroscope, and 
magnetometer data throughout the process. Data 

was collected throughout the day at 2-hour intervals 
between 8:00-10:00, 10:00-12:00, 13:00-15:00 and 
15:00-17:00. To label the data according to the 
activity it belonged to, the workers' work at the 
construction site was observed and noted. The data 
was gathered with the assistance of a data 
acquisition device and subsequently analyzed 
utilizing the Python programming language. To 
elevate the predictive potential of the machine 
learning models, the data underwent normalization 
through the z-score standardization method 
subsequent to its collection. Based on the data 
collected, the accelerometer, gyroscope, and 
magnetometer sensors gather information at a rate 
of 25 Hz, which means that 25 data points are 
obtained per second. The accelerometer provides 
data in gravitational acceleration (g) units, the 
gyroscope sensor records values in degrees per 
second (deg/s) related to angle, and the 
magnetometer measures magnetic current density 
in Tesla (T). 

 

 
Fig. 2. Sensor attached to the worker's arm with an armband and x, y, and z directions 

 

 
Fig. 3. Data collection with a sensor attached to the gypsum plaster workers’ arm 
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 Initially, the data will undergo separation and 
feature extraction processes to obtain the necessary 
features for prediction. The data obtained were 
partitioned into windows of a specific duration, and 
the statistical characteristics of the data within each 
window were computed. For this study, a window 
size of 4 seconds and an overlap rate of 75% were 
chosen. The 4-second windows were then shifted, 
as depicted in Fig. 4, and all windows were 
computed with a 75% overlap. The new features 
were calculated by analyzing the statistical 
properties of the data within the specified windows. 
These statistical features include the sum, median, 
mean, length, standard deviation, variance, square 
root (quadratic) mean, maximum and minimum of 
the values in each window of the data in the x, y, 
and z directions taken from the accelerometer, 
gyroscope, and magnetometer sensors as shown in 
Table 1. A total of 81 variables were created using 
this method. After this process, the new data 
obtained will be ready to be used for the model. 
 The data that was prepared for the model was 
initially divided into 80% training data and 20% test 
data. The training data was then analyzed, and 
prediction accuracies were calculated by comparing 
them with the test data. For this study, the machine 
learning model used was the Support Vector 
Machine (SVM) algorithm. After developing the 
SVM model, we utilized the 10-fold cross-

validation technique to ensure the model was 
unbiased and minimize data bias. This involved 
dividing the training data into 10 layers and using 
one layer as validation data while the remaining 9 
layers were used as validation-training data. The 
prediction accuracy values were averaged for each 
layer to calculate the cross-validation prediction 
values. 
 The aim of gypsum plastering is to gauge 
worker productivity using state-of-the-art Artificial 
Intelligence techniques. In order to achieve this, 
data was gathered from accelerometers, 
gyroscopes, and magnetometers along the x, y, and 
z-axes over an 8-hour period. However, only the 2-
hour measurements were scrutinized. For the 
remaining 6 hours, a Support Vector Machine 
(SVM) learning algorithm was employed to predict 
the measurements and create a model for analysis. 
This model aims to classify whether a worker is 
working based on their movement. Using this 
trained classification model, we predicted the 
working and non-working conditions of the worker 
with the remaining 6 hours of working data. Then, 
we calculated the times belonging to these classes. 
 The resulting model was then used to assess 
overall productivity. In order to utilize the SVM 
machine learning model to forecast construction 
activities, it is essential to prepare the data collected 
throughout the day in two-hour intervals.  

 

 
Fig. 4. Data segmentation process 

 

Table 1. Features and description created with statistical feature extraction 
Statistical Features Names Description 
Sum values Calculates the sum over the seperated windows values 
Median  Calculates the median the seperated windows values 
Mean  Calculates the mean the seperated windows values 
Length Calculates the length the seperated windows values 
Standard deviation  Calculates the standard deviation the seperated windows values 
Variance  Calculates the variance the seperated windows values 
Root mean score  Calculates the quadratic mean the seperated windows values 
Maximum  Calculates the maximum value the seperated windows values 
Minimum  Calculates the minimum value the seperated windows values 
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Once the data is prepared, it is analysed each two-
hour measurement using the prediction model to 
obtain anticipated activity times. These predicted 
times will then be compared to the observed activity 
times. To assess the effectiveness of each activity 
during the 2-hour working periods, we will 
calculate their motion productivity based on the 
predicted and observed values. Motion productivity 
will be calculated by dividing the working time of 
each activity by the total time, which includes both 
working time and waiting time. The formula for 
calculating motion productivity is shown in 
Equation 1. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (%)

=
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑠𝑠𝑠𝑠𝑠𝑠)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑠𝑠𝑠𝑠𝑠𝑠) × 100 (1) 

 The workers' motions and the amount of work 
done in 2-hour periods were measured at 
construction sites. This is done to calculate worker 
productivity values during these periods. Equation 
2 is used to calculate worker productivity values. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 (2) 

 After calculating motion and worker 
productivities, the theoretical productivity values 

that a worker would achieve if it were worked at full 
capacity were calculated according to Equation 3. 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

=
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (3) 

 
3. Results and Discussions 
A SVM machine learning model was designed to 
accurately detect the working status of a gypsum 
plaster at a construction site. The model was 
meticulously scrutinized, and the resulting 
confusion matrices have been conveniently 
presented in Fig. 5. The analysis reveals that the 
model was able to predict with 96% accuracy (704 
out of 740) the total waiting activities. Furthermore, 
the model accurately predicted 97% (622 out of 
644) of the total gypsum activities. 
 Confusion matrices are a useful tool to 
determine the predictive success of any activity in 
SVM model. In this study, the predictive success of 
the SVM model is presented in the Table 2, 
considering the overall prediction success. 

 

 
Fig. 5. Confusion matrix of SVM model 
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Table 2. Results of activity recognition 
 Training Accuracy 10-fold CV Accuracy Number of Data 
SVM (C:100) 0.961 0.958 1384 

 
Accuracy scores of the models were evaluated in 
two ways. Firstly, the model was assessed using 
training accuracy scores, and then accuracy values 
were generated using the 10-fold cross-validation 
(CV) technique, which is a more accurate and 
robust method for evaluating models. Upon 
thorough analysis of the results, it has been 
determined that the CV accuracy value of the model 
is considerably lower by a factor of 10. 
Nonetheless, it has been discovered that an 
evaluation based on these values would yield 
greater accuracy and robustness. Consequently, it 
has been observed that the SVM model boasts an 
impressive accuracy rate of 95.8% in predicting the 
working status of a plaster worker. 
 Once the prediction results of the SVM model 
were deemed acceptable, the data collected 
throughout the day was prepared and fed into the 
SVM model to obtain the prediction results. During 
the data collection process from sensors, the system 
also kept track of the time period in which the 
master worked on a particular job and the amount 
of work he accomplished. The aim is to calculate 
workers' estimated productivity throughout the day 
and compare it with their worker productivity. The 

results are presented in Table 3. It shows that the 
observed and predicted working hours and motion 
productivity are very similar in all working hours. 
The estimated motion productivity during 8-10, 10-
12, 13-15, and 15-17 was approximately 47%, 79%, 
88%, and 63%, respectively. 
 Theoretical productivities were calculated by 
dividing measured worker productivity by 
calculated motion productivity. Table 4 shows the 
theoretical productivity of gypsum activity for each 
time frame. Theoretical productivity indicate how 
productive activities would be if they worked 
continuously during the designated working hours, 
without any waiting periods. Based on the results, 
the theoretical productivities of the activities were 
calculated to be 8.50, 11.33, 7.42, and 13.56, 
respectively. 
 When the productivity calculations of the 
gypsum plastering activity are analysed separately, 
the theoretical productivity and partial productivity 
of the construction activities in each time zone are 
visually evaluated and how much the workers work 
in proportion to their daily working capacity is 
shown in Fig. 6. 

 

Table 3. Results of motion productivity 
Activity Working Hours  Work Time (sec) Motion Productivity (%) 

Predict Observed Predict Observed 
Gypsum 
Plaster 

8-10 Gypsum 3257 3231.1 47.05 47.41 
Waiting 3665 3583.69 

10-12 Gypsum 5494 5430 79.44 79.74 
Waiting 1422 1379.5 

13-15 Gypsum 6036 5954.89 87.59 87.73 
Waiting 855 833.048 

15-17 Gypsum 4336 4282.88 62.68 62.88 
Waiting 2582 2528.43 

 

Table 4. Results of theoretical productivity 
Activity Working 

Hours  
Worker Productivity 
(m2/1 man-hour) 

Motion 
Productivity 

Theoretical 
Productivity 

Unit 

Gypsum 
Plaster 

8-10 4.00 0.4705 8.50 m2/man*hour 
10-12 9.00 0.7944 11.33 
13-15 6.50 0.8759 7.42 
15-17 8.50 0.6268 13.56 
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Fig. 6. Daily productivity values of the worker 

 
Based on the findings, the gypsum activity 
demonstrated higher productivity during the 10-12 
and 15-17 hour periods compared to other hours of 
the day. When comparing productivity values 
during these two periods, the worker productivity 
were found to be almost equal. However, the 
theoretical productivity between 15-17 hours is 
quite high. In other words, it is seen that the laborer 
works less in terms of working hours in this time 
period. On the other hand, when the productivity 
values between 8-10 and 13-15 hours are compared, 
the theoretical productivity is almost the same in 
these hours.  It was found that the worker 
productivity value was higher between 13-15 hours 
of work. This means that although the worker's 
working capacity was similar during these time 
periods, they worked more in terms of working 
hours between 13-15 hours. In consideration of the 
daily productivity of a gypsum plaster worker, it is 
observed that should the worker continue to work 
without any breaks, the worker productivity can be 
increased from 7 m2/man*hour per day to a 
theoretical productivity of 10.20 m2/man*hour. In 
light of the fact that laborers are required to take a 
half-hour break prior to and following lunch over 
the course of the day, the maximal theoretical 
efficiency in gypsum plastering activity computes 
to 8.93 m2/man*hour. 

 
4. Conclusions 
Automatically recognizing labor activities and 
measuring productivity in real-time can have a 
positive impact on increasing productivity and 
aiding project managers in site control and 
management. By using sensors to capture motion 
data, the SVM algorithm analyse the data and 
determine with 95.8% accuracy whether a worker 
is present and working on the construction site. By 
monitoring the workers in real-time, it becomes 
possible to have better control over the construction 
site. Automatic recognition of their activities also 
allows for the calculation of their motion 
productivity. The theoretical efficiency is 
determined by comparing the worker productivity 
obtained from the construction site with the motion 
productivity. The concept of theoretical 
productivity pertains to a worker's ability to 
perform tasks based on their movements. In 
essence, enhancing worker productivity can be 
achieved by precisely gauging the work performed 
by workers and their theoretical productivity. This 
approach will enable us to identify the opportune 
time and method to augment worker productivity. 
Through this, we can optimize worker productivity 
at construction sites and guarantee more 
streamlined and effective project management. In 
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this case, the theoretical and partial productivity 
calculations of the activities should be calculated on 
the basis of the workers working on the basis of the 
activity, which will lead to more realistic and 
applicable results. Since the productivity of each 
activity will vary depending on the worker, it is 
clear that the productivity of which activity can be 
increased or not can vary. As a result, making an 
automatic productivity calculation based on the 
worker will have a significant positive effect on 
productivity. This study only collected data from a 

single worker, focusing solely on plastering activity 
over the course of an 8-hour workday with 
measurements taken every 2 hours. In future 
studies, it would be beneficial to evaluate the entire 
team working on an activity rather than just one 
worker. This methodology can also be applied to 
other activities on construction sites. Furthermore, 
data collection and analysis could be conducted 
throughout the activity rather than just for one day, 
allowing for more effective and automated 
productivity analysis in project management. 
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