Journal of Construction Engineering, Management & Innovation

2024 7(4):281-290
DOI 10.31462/jcemi.2024.04281290

N\ golden light
.@' publishing®

RESEARCH ARTICLE

Calculation of the productivity of construction gypsum plaster worker
using support vector machine algorithm

ibrahim Karatas®, Abdulkadir Budak

Osmaniye Korkut Ata University, Department of Civil Engineering, Osmaniye, Tirkiye

Article History Abstract

Received 07 July 2024
Accepted 07 October 2024

Keywords

Construction technology
Worker activities
Support Vector Machine

Worker productivity
estimation

Artificial Intelligence

Calculating the productivity of workers in traditional construction projects can be a
daunting and time-consuming task. However, thanks to the advancements in technology
and scientific research, measuring worker productivity can be automated. Therefore, this
study aims to determine the productivity of gypsum plaster workers by collecting motion
data with a sensor on their arms and using the support vector machine algorithm for
analysis. Based on the estimation results, motion productivity is determined by
calculating the ratio of the worker's working time to the total time. On the other hand,
worker productivity is calculated by determining the ratio of the amount of work
completed to the product of the number of workers and the total working hours. Finally,
theoretical productivity is calculated by dividing motion productivity by the calculated
worker productivity. According to the results of the analysis, whether the worker is
working or not has been estimated correctly by 95.8%. On the other hand, the mean
daily theoretical productivity has been determined to be 10.20 m?/man-hour. In this way,
workers' activities can be automatically detected with a certain accuracy and their
productivity can be calculated. This helps in the effective management of the

construction site.

1. Introduction

The construction industry is a vital sector in the
global economy, but it often faces challenges such
as low productivity resulting in low quality, high
costs, and time overruns. Measuring and estimating
worker productivity in this industry can be
challenging due to the variability of worker
productivity depending on the labor force used.
This creates difficulties in accurately estimating the
worker productivity of the construction sector. In
construction planning and process, measuring and
estimating worker productivity is crucial.
Determining worker productivity status helps

manage the process effectively. Incorporating new
technologies and advanced methods to measure and
forecast worker productivity is crucial for
addressing concerns and  improving the
construction industry's efficiency and effectiveness.
The integration of modern technology is key to
enhancing worker productivity in construction, as
per various studies [1-3]. According to a study in
the USA, the construction sector has one of the
lowest scores on the digitalisation index [4]. Today,
with the convenience of digitalisation, scientific
integrate
technology into the construction industry [5-9, 21].

studies have been conducted to
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In 2018, McKinsey & Company published a report
stating that the construction industry will
increasingly rely on advanced technologies. These
technologies encompass digital twins, artificial
intelligence, the Internet of Things (IoT), 3D
printers, robotics, real-time monitoring and control
systems, document management, and 3D modelling
and BIM technologies [10]. The integration of
cutting-edge technologies such as artificial
intelligence, internet of things, real-time
monitoring, and control can serve as a catalyst for
automating the recognition of labor activities and
calculating worker productivity in the construction
sector. This advancement has the potential to
significantly streamline processes and increase
efficiency on construction sites.

In 2016, a study by Akhavian and Behzadan
explored the use of an artificial intelligence model
that could automatically detect worker movements
using data from smartphones. The study analysed
the effectiveness of various Al models, including
artificial neural network, decision trees, nearest
neighbour, logistic regression, and support vector
machines, in identifying the time spent on each
activity, including idle time. The findings suggest
that utilizing machine learning techniques to
analyse worker activity and time can be a valuable
tool in evaluating productivity. The models created
by the study can be directly applied to measure
productivity [11]. Sanhudo et al. (2021) conducted
a thorough study to assess the accuracy and
usability of accelerometer data and machine
learning algorithms in categorizing construction
workers' activities. To achieve this, a realistic
circuit was created to capture ten distinct activities
that occur during wall building in a controlled
laboratory environment. The workers were outfitted
with accelerometer sensors to collect data for each
activity. The data collected from the sensors were
used to train and compare 13 different machine
learning algorithms including decision tree, k
nearest neighbour, logistic regression, multilayer
perceptions, and support vector machines (SVM).
Additionally, ensemble  machine learning
algorithms such as random forest, extreme random
trees, adaptive boosting, and gradient boosting

machines were also employed for comparison. [ 12].
In Son's (2017) study, the author examined the
possibility of measuring worker productivity by
calculating the ratio of active working hours to total
working hours, based on data obtained from
workers. To enhance productivity in a construction
site setting, the author suggests that gathering
physical and location data every second can be
beneficial since productivity data can be difficult to
collect and measure in real-time. The study defines
worker productivity as the ratio of time spent on
direct work by a construction worker to total work
time. Furthermore, the study focuses on measuring
the individual productivity of each worker rather
than the project's overall productivity [13]. In their
study, Karatas and Budak (2021) [14] collected 3-
axis accelerometer, gyroscope, and magnetometer
data from workers using sensors to estimate the
activities involved in a construction job. The data
were then used to train and model basic machine
learning algorithms such as logistic regression,
Support Vector Classifier Decision tree, and K
Nearest Neighbours. The results showed that the
Support Vector Classifier algorithm provided the
best prediction with an accuracy rate of 90%. The
accuracy rates for the other algorithms were 87%
for K Nearest Neighbours, 80% for logistic
regression, and 80% for Decision tree.

The recognition of construction activities
involves the utilization of specialized equipment.
Specifically, the process entails the measurement of
acceleration, angular velocity, and gravitational
forces using a combination of three sensors -
accelerometer, gyroscope, and magnetometer. The
data obtained from these sensors are then analyzed
to identify the specific construction activities taking
place. It is worth noting that the accuracy of the
results is dependent on the quality of the equipment
used and the expertise of the personnel involved
[15]. Some studies have used only accelerometer
data for activity recognition in construction work
[12, 16, 17]. The inclusion of both accelerometer
sensors in the X, Y, and Z axes and gyroscope
sensors that measure angular velocity allows for the
recognition of construction activities. These sensors
can detect rolling, pitching, and yawing movements
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in the three axes, thereby expanding the range of
worker activity movement characteristics. As a
result, it becomes simpler to differentiate between
each activity [18]. Therefore, some studies have
used a combination of accelerometer and gyroscope
data for construction worker activity identification
analyses [11, 18, 19]. In addition [20] stated in their
study that gravitational force measurements data
collected with the magnetometer sensor would be
useful to be used with other sensors in the
recognition of labour activities. The aim of this
study is to examine the information collected from
employees through accelerometer, gyroscope, and
magnetometer sensors. Through the use of artificial

intelligence models, their movements and
behaviours will be identified, enabling the
computation of worker productivity to be
automated.

In previous studies, data was mostly collected in
laboratory settings using accelerometers or a
combination of accelerometers and gyroscopes.
These studies focused solely on identifying
workers' movements. However, our study collected
data from workers in a real construction site
environment, using accelerometers, gyroscopes,

and magnetometers to capture more detailed
movements. We not only calculated the workers'
movement efficiency but also their theoretical
efficiency. This approach sets our study apart from
previous literature.

2. Research Methodology

As technology advances, data collection systems
are becoming increasingly efficient at measuring
worker productivity. Compared to traditional
methods like direct observation or surveys, which
can be time-consuming, tedious, and prone to
errors, these automated systems offer a more
effective solution. In light of this, our study seeks
to utilize machine learning to analyze data collected
via sensors attached to workers' arms, providing
predictions of their activities and accurately
calculating productivity. This study employs the
support vector machine (SVM) machine learning
method to accurately predict the work status of a
Gypsum Plaster worker. To achieve this, we
followed a step-by-step approach illustrated in the
Fig. 1 flowchart.

Data Collection Data Labeling Statistical
and Make Ready > and P Standardization P Feature
to Model Segmentation Extraction
Y
Analysis of The | Train-Test Split ~ Support E;estwo;)Machme 10 fold Cross
Model " %80-%20 “ > idati
( ) Machine Learning Model Validation
Y
Evaluation of
Worker Activity N Confusion Accuracy and
Recognition d Matrix CV scores
Results
Y
Calculation of
Worker | Motion Labor Theoretical
Productivity o Productivity Productivity Productivity
Results

Fig. 1. Flowchart for the study



Journal of Construction Engineering, Management & Innovation 284

We began by collecting and categorizing raw data
from the worker at the construction site.
Subsequently, we meticulously processed, sorted,
and extracted its essential attributes to ensure the
data was model-ready. The initial step involves
dividing the data into two distinct sets: training and
test data. Subsequently, the training data will be
meticulously analysed to determine the success of
predictions in comparison with the test data. Once
this is accomplished, the prediction model will be
integrated with the data collected during the day to
forecast worker activities. Finally, the theoretical
efficiency will be calculated based on movement
efficiencies and worker efficiencies.

In this study, we gathered data on gypsum
plastering activities during the construction of a
reinforced concrete school. Fig. 2 shows a sensor
attached to the worker's arm with an armband. The
skilled worker plasterer in Fig. 3 wore this sensor,
and it recorded 3-axis acceleration, gyroscope, and
magnetometer data throughout the process. Data

was collected throughout the day at 2-hour intervals
between 8:00-10:00, 10:00-12:00, 13:00-15:00 and
15:00-17:00. To label the data according to the
activity it belonged to, the workers' work at the
construction site was observed and noted. The data
was gathered with the assistance of a data
acquisition device and subsequently analyzed
utilizing the Python programming language. To
elevate the predictive potential of the machine
learning models, the data underwent normalization
through the standardization method
subsequent to its collection. Based on the data
collected, the accelerometer, gyroscope, and
magnetometer sensors gather information at a rate
of 25 Hz, which means that 25 data points are
obtained per second. The accelerometer provides
data in gravitational acceleration (g) units, the
gyroscope sensor records values in degrees per
second (deg/s) related to angle, and the

Z-SCOore

magnetometer measures magnetic current density
in Tesla (T).
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Initially, the data will undergo separation and
feature extraction processes to obtain the necessary
features for prediction. The data obtained were
partitioned into windows of a specific duration, and
the statistical characteristics of the data within each
window were computed. For this study, a window
size of 4 seconds and an overlap rate of 75% were
chosen. The 4-second windows were then shifted,
as depicted in Fig. 4, and all windows were
computed with a 75% overlap. The new features
were calculated by analyzing the statistical
properties of the data within the specified windows.
These statistical features include the sum, median,
mean, length, standard deviation, variance, square
root (quadratic) mean, maximum and minimum of
the values in each window of the data in the x, y,
and z directions taken from the accelerometer,
gyroscope, and magnetometer sensors as shown in
Table 1. A total of 81 variables were created using
this method. After this process, the new data
obtained will be ready to be used for the model.

The data that was prepared for the model was
initially divided into 80% training data and 20% test
data. The training data was then analyzed, and
prediction accuracies were calculated by comparing
them with the test data. For this study, the machine
learning model used was the Support Vector
Machine (SVM) algorithm. After developing the
SVM model, we utilized the 10-fold cross-

validation technique to ensure the model was
unbiased and minimize data bias. This involved
dividing the training data into 10 layers and using
one layer as validation data while the remaining 9
layers were used as validation-training data. The
prediction accuracy values were averaged for each
layer to calculate the cross-validation prediction
values.

The aim of gypsum plastering is to gauge
worker productivity using state-of-the-art Artificial
Intelligence techniques. In order to achieve this,
data was gathered from accelerometers,
gyroscopes, and magnetometers along the x, y, and
z-axes over an 8-hour period. However, only the 2-
hour measurements were scrutinized. For the
remaining 6 hours, a Support Vector Machine
(SVM) learning algorithm was employed to predict
the measurements and create a model for analysis.
This model aims to classify whether a worker is
working based on their movement. Using this
trained classification model, we predicted the
working and non-working conditions of the worker
with the remaining 6 hours of working data. Then,
we calculated the times belonging to these classes.

The resulting model was then used to assess
overall productivity. In order to utilize the SVM
machine learning model to forecast construction
activities, it is essential to prepare the data collected
throughout the day in two-hour intervals.

Fig. 4. Data segmentation process

Table 1. Features and description created with statistical feature extraction

Statistical Features Names Description

Sum values
Median

Mean

Length

Standard deviation
Variance

Root mean score
Maximum
Minimum

Calculates the sum over the seperated windows values
Calculates the median the seperated windows values
Calculates the mean the seperated windows values

Calculates the length the seperated windows values

Calculates the standard deviation the seperated windows values
Calculates the variance the seperated windows values
Calculates the quadratic mean the seperated windows values
Calculates the maximum value the seperated windows values
Calculates the minimum value the seperated windows values
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Once the data is prepared, it is analysed each two-
hour measurement using the prediction model to
obtain anticipated activity times. These predicted
times will then be compared to the observed activity
times. To assess the effectiveness of each activity
during the 2-hour working periods, we will
calculate their motion productivity based on the
predicted and observed values. Motion productivity
will be calculated by dividing the working time of
each activity by the total time, which includes both
working time and waiting time. The formula for
calculating motion productivity is shown in
Equation 1.

Motion Productivity (%)
Working Time (sec
- g (5e9) & 100 0

Total Time (sec)
The workers' motions and the amount of work

done in 2-hour periods were measured at
construction sites. This is done to calculate worker
productivity values during these periods. Equation
2 is used to calculate worker productivity values.
o Total Output
Worker Productivity = ———
Total Input
After calculating motion and worker
productivities, the theoretical productivity values

that a worker would achieve if it were worked at full
capacity were calculated according to Equation 3.

Theoretical Productivity
Labor Productivity (3)

" Motion Productivity

3. Results and Discussions

A SVM machine learning model was designed to
accurately detect the working status of a gypsum
plaster at a construction site. The model was
meticulously scrutinized, and the resulting
confusion matrices have been conveniently
presented in Fig. 5. The analysis reveals that the
model was able to predict with 96% accuracy (704
out of 740) the total waiting activities. Furthermore,
the model accurately predicted 97% (622 out of
644) of the total gypsum activities.

Confusion matrices are a useful tool to
determine the predictive success of any activity in
SVM model. In this study, the predictive success of
the SVM model is presented in the Table 2,
considering the overall prediction success.

- 100

Confusion matrix

waiting

True label

gypsum

waiting

- 600

- 500

= 400

- 300

= 200

= 100

gypsum

Predicted label

Fig. 5. Confusion matrix of SVM model



287 1. Karatas and A. Budak

Table 2. Results of activity recognition

Training Accuracy

10-fold CV Accuracy Number of Data

SVM (C:100) 0.961

0.958 1384

Accuracy scores of the models were evaluated in
two ways. Firstly, the model was assessed using
training accuracy scores, and then accuracy values
were generated using the 10-fold cross-validation
(CV) technique, which is a more accurate and
robust method for evaluating models. Upon
thorough analysis of the results, it has been
determined that the CV accuracy value of the model
is considerably lower by a factor of 10.
Nonetheless, it has
evaluation based on these values would yield
greater accuracy and robustness. Consequently, it
has been observed that the SVM model boasts an
impressive accuracy rate of 95.8% in predicting the
working status of a plaster worker.

Once the prediction results of the SVM model
were deemed acceptable, the
throughout the day was prepared and fed into the
SVM model to obtain the prediction results. During
the data collection process from sensors, the system
also kept track of the time period in which the
master worked on a particular job and the amount
of work he accomplished. The aim is to calculate
workers' estimated productivity throughout the day
and compare it with their worker productivity. The

been discovered that an

data collected

Table 3. Results of motion productivity

results are presented in Table 3. It shows that the
observed and predicted working hours and motion
productivity are very similar in all working hours.
The estimated motion productivity during 8-10, 10-
12, 13-15, and 15-17 was approximately 47%, 79%,
88%, and 63%, respectively.

Theoretical productivities were calculated by
dividing measured worker productivity by
calculated motion productivity. Table 4 shows the
theoretical productivity of gypsum activity for each
time frame. Theoretical productivity indicate how
productive activities would be if they worked
continuously during the designated working hours,
without any waiting periods. Based on the results,
the theoretical productivities of the activities were
calculated to be 8.50, 11.33, 7.42, and 13.56,
respectively.

When the productivity calculations of the
gypsum plastering activity are analysed separately,
the theoretical productivity and partial productivity
of the construction activities in each time zone are
visually evaluated and how much the workers work
in proportion to their daily working capacity is
shown in Fig. 6.

Activity Working Hours Work Time (sec) Motion Productivity (%)
Predict Observed Predict Observed
Gypsum 8-10 Gypsum 3257 3231.1 47.05 4741
Plaster Waiting 3665 3583.69
10-12 Gypsum 5494 5430 79.44 79.74
Waiting 1422 1379.5
13-15 Gypsum 6036 5954.89 87.59 87.73
Waiting 855 833.048
15-17 Gypsum 4336 4282.88 62.68 62.88
Waiting 2582 2528.43
Table 4. Results of theoretical productivity
Activity Working Worker Productivity Motion Theoretical Unit
Hours (m?/1 man-hour) Productivity Productivity
Gypsum 8-10 4.00 0.4705 8.50 m?/man*hour
Plaster 10-12 9.00 0.7944 11.33
13-15 6.50 0.8759 7.42
15-17 8.50 0.6268 13.56
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Fig. 6. Daily productivity values of the worker

Based on the findings, the gypsum activity
demonstrated higher productivity during the 10-12
and 15-17 hour periods compared to other hours of
the day. When comparing productivity values
during these two periods, the worker productivity
were found to be almost equal. However, the
theoretical productivity between 15-17 hours is
quite high. In other words, it is seen that the laborer
works less in terms of working hours in this time
period. On the other hand, when the productivity
values between 8-10 and 13-15 hours are compared,
the theoretical productivity is almost the same in
these hours. It was found that the worker
productivity value was higher between 13-15 hours
of work. This means that although the worker's
working capacity was similar during these time
periods, they worked more in terms of working
hours between 13-15 hours. In consideration of the
daily productivity of a gypsum plaster worker, it is
observed that should the worker continue to work
without any breaks, the worker productivity can be
increased from 7 m%*man*hour per day to a
theoretical productivity of 10.20 m*/man*hour. In
light of the fact that laborers are required to take a
half-hour break prior to and following lunch over
the course of the day, the maximal theoretical
efficiency in gypsum plastering activity computes
to 8.93 m*/man*hour.

4. Conclusions

Automatically recognizing labor activities and
measuring productivity in real-time can have a
positive impact on increasing productivity and
aiding project managers in site control and
management. By using sensors to capture motion
data, the SVM algorithm analyse the data and
determine with 95.8% accuracy whether a worker
is present and working on the construction site. By
monitoring the workers in real-time, it becomes
possible to have better control over the construction
site. Automatic recognition of their activities also
allows for the calculation of their motion
productivity. The theoretical efficiency is
determined by comparing the worker productivity
obtained from the construction site with the motion
productivity. The concept of theoretical
productivity pertains to a worker's ability to
perform tasks based on their movements. In
essence, enhancing worker productivity can be
achieved by precisely gauging the work performed
by workers and their theoretical productivity. This
approach will enable us to identify the opportune
time and method to augment worker productivity.
Through this, we can optimize worker productivity
at construction sites and guarantee more
streamlined and effective project management. In
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this case, the theoretical and partial productivity
calculations of the activities should be calculated on
the basis of the workers working on the basis of the
activity, which will lead to more realistic and
applicable results. Since the productivity of each
activity will vary depending on the worker, it is
clear that the productivity of which activity can be
increased or not can vary. As a result, making an
automatic productivity calculation based on the
worker will have a significant positive effect on
productivity. This study only collected data from a
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single worker, focusing solely on plastering activity
over the course of an 8-hour workday with
measurements taken every 2 hours. In future
studies, it would be beneficial to evaluate the entire
team working on an activity rather than just one
worker. This methodology can also be applied to
other activities on construction sites. Furthermore,
data collection and analysis could be conducted
throughout the activity rather than just for one day,
allowing for more effective and automated
productivity analysis in project management.
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