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Potable water quality is crucial for society's well-being. Advanced devices and systems 
and a more specialized examination of quality parameters have improved the water 
quality in treatment plants. However, the property of the water may change for many 
reasons, such as pollution injection, water age, and system facility condition, and it may 
not have the same quality as the water released from the treatment plant. Due to the 
widespread nature of distribution networks, any contamination in water can quickly be 
distributed among consumers and cause irreparable damage. As a result, it is essential 
to preserve water quality until it reaches the final user. Leveraging new technologies and 
digitalization is the only solution to control and manage these massive and complex 
infrastructures. Digital twin (DT) is a trend word nowadays that is gaining more 
popularity. Digital Twin connects the physical infrastructure with the hydraulic model 
through two-way communication using numerous sensors installed inside the distribution 
network. Although previous studies have focused on the applicability of digital twin 
technology on water distribution network, they have failed to consider the potential 
impact of leveraging digital twin capabilities on water quality management. This article 
reveals the significance of integrating real-time demand data in hydraulic model to 
prevent water aging in the system by optimizing water level in tanks and pumps working 
hours based on network real demand and the role of digital twin for this approach. 
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1. Introduction 
Digital twin (DT) is a trend word nowadays that is 
gaining more popularity, and most of the industries 
have implemented it for their work scope, and the 
construction industry is one of them. Due to the fact 
that existing infrastructures are aging and start 
showing imperfections [1], DT in the construction 
sector, especially infrastructure, has to be used to 
promote the efficiency of the facilities. Water 
distribution networks (WDN) are among the most 

important infrastructures since public health is 
susceptible to possible diseases in the event of their 
failure. These networks are spread all over the city, 
and any contamination can be easily distributed 
between consumers. Moreover, consumer 
convenience is highly dependent on a fully 
operational WDN. Another reason that makes these 
infrastructures important is that most of the pipes 
are buried under the ground, and in case of failure, 
such as a pipe burst, the detection and repair process 
might be frustrating and time-consuming. With 
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population growth, resource scarcity, and 
increasing demand for potable water, distribution 
networks are getting more complex than they were 
before since these networks have to expand in 
alignment with the population growth and their 
required demand rate. All of these reasons make 
water infrastructure important and hard to manage 
[2]. 
 Leveraging new technologies such as DT is a 
solution for controlling and managing these 
complex infrastructures. Digital Twin connects the 
physical infrastructure with the hydraulic model 
through two-way communication using AMI 
(advanced metering infrastructure) and SCADA 
(supervisory control and data acquisition) data [3]. 
Through this connection, the virtual model will be 
updated continuously with any slight change in the 
physical counterpart, and the virtual replica could 
manage the physical network.  
 The greater part of the literature on DT in WDN 
is extensive and focuses particularly on enhancing 
the performance of the networks especially for 
operation and maintenance stages. A well-equipped 
digital twins can forecast the performance of water 
distribution networks by using simulations and 
historical data. This helps utilities handle important 
problems like localization and model-based leak 
detection, which reduces water waste and improves 
water quality across the network [4]. Conejos 
Fuertes et al. [5] propose DT model capabilities as 
follows: optimal design of the network elements, 
considering network expansion based on its future 
condition, leak detection, determining optimal daily 
operation parameters, and early response to 
warnings to take the best action. Another study 
done by Curl et al.[6] lists the benefits of DT for 
WDN as a best operator training tool in a simulation 
environment, simulating network performance 
under different conditions and scenarios, and 
incorporating different alarms. Additionally, 
Conejos Fuertes et al. [5] explored the idea of a DT 
for WDN in the Spanish city of Valencia. The 
digital twin continuously updates the condition of 
infrastructure components and junction water 
demand in distribution network using data from 

Advanced Metering Infrastructure (AMI) and 
Supervisory Control and Data Acquisition 
(SCADA). Brahmbhatt et al. [4] proposes 
conceptual digital twin framework, for real-time 
simulation of the hydraulic behavior as well as to 
predict water quality by using typical SCADA 
system that collects data (pressure, flow rates, and 
chlorine concentration data). 
 Although studies have recognized DT for the 
performance of the distribution network, research 
has yet to systematically investigate the effect of 
DT on preserving water quality in WDN. After 
leaving the treatment center, the water quality may 
change. For this reason, preserving its quality until 
it is consumed by the user is as important as efforts 
made in the treatment center. There are too many 
factors that can change the water properties during 
the transition phase when water is still in the 
distribution network. These factors can be 
intentional or unintentional. Intentional, such as 
pollution injection into the system, and 
unintentional, such as biofilm formation, water age, 
residual chlorine decay, etc. Water age, or water 
resident time, refers to the time that water waits in 
DN until it is consumed by users. 
 Water age is one of the factors that can change 
the quality of water [7-9]. As shown in Table 1, a 
study done by the U.S. Environmental Protection 
Agency [10] has categorized water quality 
problems associated with increased water age into 
three groups as; chemical, biological and physical 
issues. Moreover, it has been proven that water age 
affects the residual chlorine volume. Chlorine is the 
most common disinfectant for drinking water as it 
is cheap, effective, widely available, and easy to 
apply [11]. It can react with occurring organic and 
inorganic matter in treated water [11, 12]. To keep 
the treated water free of microbiological 
contamination as it moves through the network of 
pipes, an appropriate residual concentration of 
chlorine is usually maintained throughout the 
distribution system [13]. Research done by Wang et 
al. [14] indicated that the residual chlorine declined 
with the increase of water age. According to U.S. 
Environmental Protection Agency  
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Table 1. Water quality problems associated with water age (From U.S. Environmental Protection Agency [10]) 
Chemical issues Biological issues Physical issues 

Disinfection by product formation Disinfection by product Biodegradation Temperature increases 
Disinfectant decay Nitrification Sediment Deposition 
Corrosion control effectiveness Microbial regrowth/recovery/shielding Color 
Taste and odor Taste and odor  

 
[10], two main factors which greatly affects the 
water quality are; reaction within the bulk water 
itself, and the interaction between the pipe wall and 
the water. To solve the first issue, the only required 
volume of water have to exist in the tanks to prevent 
any interaction between large volume of water. 
 This consideration is crucial, particularly within 
distribution networks where tanks are often of 
significant scale. Any surplus water within the 
tanks not only compromises water quality but also 
leads to considerable wastage. Moreover, to prevent 
the interaction between pipe wall and water, water 
has to wait minimum possible duration inside the 
pipes and be consumed by users. As a result, in 
order to minimize the impact of these factors, water 
stagnation in both tanks and pipeline has to be 
minimized. 
 In order to reduce the water age, water has to be 
consumed as soon as it is injected into the network. 
To reach this paradigm, tank filling rates and pump 
working schedules have to be in alignment with 
real-time demand data from the network. These 
pumping schedules have to be set in such a way that 
water waits the minimum time in the system. The 
main problem is that, DNs are not limited to a single 
tank or reservoir. These networks usually consist of 
different zones, each of which is supported by 
different tanks and reservoirs and the consumption 
rates in these zones are neither constant nor similar.  
 With population growth, demand values for 
zones are changing. Residential zones of a city are 
usually more congested than industrial regions. 
Also, the functionality of zones has a tremendous 
impact on consumption rates. Research shows that 
there is a correlation between house surroundings 
and water demand [15]. Moreover, household size 
largely affects indoor water consumption rates [16-
18]. Also, the peak consumption hour in zones is 
quite different. The main cause of these differences, 

is the type of buildings located in the zones. 
Buildings can be categorized into different types, 
such as residential buildings, factories, restaurants, 
schools, commercial offices, hospitals, hotels and 
hostels, cinemas, etc. 
 One way of calculating the exact consumption 
of a building is by using its billing information. 
Authorized consumption can be domestic, 
industrial, or commercial [19] and it can be billed 
or unbilled by a managing entity [20]. By using the 
billing data of the houses and implementing 
machine learning algorithms such as linear 
regression, the real consumption amount of the city 
can be predicted. These algorithms are able to 
predict future demand for the network based on 
attributes such as season, number of houses 
connected to the junction, population of the 
household in the covered area, historical data 
gathered from bills, consumption hour, building 
type and its functionality, etc. Tinker et al. [21] use 
regression analysis to show the relation between 
housing characteristics and climate on water 
consumption.  
 One significant benefit of a distribution 
network's digital twin is its ability to simulate 
demands, registered consumption, and the actual 
behavior of the network. This simulation is based 
on data recorded by in-situ sensors about water 
levels, pressures, and flow calibration. This allows 
for the replication of all control operations within 
the network [6]. For instance, AMI is a new 
technology that collects real-time data on the 
infrastructure and sends it to the data center [22, 
23]. AMI data can be used to estimate demand for 
real-time hydraulic modeling to enhance the 
liability of the network.  
 Although there is a growing body of literature 
that recognizes the importance of digital twin for 
infrastructures such as water distribution networks, 
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previous studies have failed to consider the broader 
implications of DT over water quality. This 
includes its capability of involving real-time 
demand data from a DN in a hydraulic model. The 
aim of this research is to investigate the impact of 
leveraging real-time data on water age and residual 
chlorine amount, which is another water quality 
parameter. The research also aims to find the best 
hydraulic modeling step to involve digital twin 
technology. The present study utilizes two distinct 
scenarios with a difference in their demand data 
allocation for a hydraulic model of a city. Results 
obtained from water age comparison of the network 
for both scenarios indicate the importance of 
synchronizing the distribution network with real-
time demand data. Based on the findings, 
leveraging digital twin technology, especially in 
controlling water height in the tanks and pump 
working schedule, is crucial for improving network 
efficiency and preserving water quality. 
 
2. Methodology 
This study aims to explore the effects of utilizing 
real-time demand data on key water quality 
parameters, including water age and residual 
chlorine levels. For this reason, two distinct 
scenarios have generated that are only different in 
their demand values for comparison of the water 
age and chlorine tracking throughout the network. 
Oshnavieh city with a population of 45,000 is 
located in the West Azerbaijan province of Iran. 

The city is geographically divided into two 
sections: north and south. The hydraulic model for 
the north section, accommodating 21,000 residents, 
was developed using WaterGEMS [24] projecting a 
30-year operational span. As depicted in Fig 1, the 
network is partitioned into three distinct zones. 
Through demographic analysis, accounting for 
growth rates and employing geometric methods, the 
population for the final year was estimated at 
28,000. 
 Demand values of the distribution network is 
calculated based on networks; climatic region, 
domestic and public green area, per capita 
consumption, public consumption, unbilled 
consumption, and population mentioned in design 
criteria of urban and rural water supply and 
distribution systems [25]. For the first scenario, 
Total demand of the network is calculated based on 
Table 2 and using Equation 1. 

[(T × C1) + U] × Population (1) 
[(166 × 1.9) + 25] × 28000 = 9531200 L/day 
= 110 L/sec 
 The total calculated demand value must be 
distributed among 498 junctions within the 
network. In this study, demand allocation at each 
junction follows a methodology based on junction 
covered area. This approach utilizes Thiessen 
polygons, as illustrated in Fig 2. The rationale 
behind employing Thiessen polygons lies in the fact 
that each polygon encompasses a junction, and all 
consumers situated within that polygon are closer to 
that specific junction than any other junction.  

 
Fig. 1. Oshnavieh city partitioning 
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Table 2. Demand allocation parameters 
Parameter Definition Suggested value Unit Source (Code 

117-3) 

C1 Maximum daily 
consumption coefficient 

1.9  Unitless 
(Coefficient) 

Table:1-8 

D Domestic consumption 
per capita 

Based on population: 130 L/person/day Table:1-6 

IC Industerial and 
commercial 
consumption 

12% D=15.6 L/person/day Clause 1-4-2-3-4 

DG Domestic green area 
consumption per capita 

5 (based on network's climatic 
region) 

L/person/day Table:1-7 

PC Public consumption per 
capita 

12% D=15.6 L/person/day Clause 1-4-2-3-3 

T Total per capita 
consumption 

D+IC+DG+PC=130+15.6+5+15.6=
166 

L/person/day Clause 1-5-2-3-6 

U Unbilled consumption 15% T=15%166=25 L/person/day Clause 1-4-2-3-5 
 

 
Fig. 2. Thiessen polygon formation for demand allocation 

 
Consequently, this method ensures a balanced 
distribution of demands among junctions, 
promoting a more uniform allocation. 
 According to the design criteria of urban and 
rural water supply and distribution systems 
(Code117-3) [25], it is recommended that, under 
normal circumstances, the useful volume of tanks 
should fall within the range of 50% to 80% of the 
maximum expected daily consumption by the 
project's completion. In this study, where the 
maximum expected daily consumption is 110 liters 
per second, adhering to this guideline an assuming 

80% of the maximum expected daily consumption, 
a total required tank capacity volume is 9500 cubic 
meters. This network comprises three tanks 
distributed across each zone, with the total required 
capacity divided among them based on their 
respective covered area ratios. Tank capacities are 
designated as follows: T-1: 6500, T-2: 2500, and T-
3: 500 cubic meters. All tanks are situated in the 
northeast section of the city and operate 
independently without interconnection. These tanks 
are supported by two wells and two submerged 
BRTS 435/3 pumps, facilitating a supply of 110 
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liters per second and a head of 90 meters (The 
altitude within the system ranges from 1426 to 1543 
meters).  
 Consumption patterns vary throughout the day. 
With certain hours experiencing peak levels of 
demand, it is imperative for tanks to accommodate 
these fluctuations and effectively address the 
heightened demand. To address this issue, the 
network applies a maximum hourly demand 
coefficient, as illustrated in Fig 3, to ensure that 
system can respond to these spikes in demand 
effectively. 
 To effectively manage pump operation hours 
and scheduling, specific control parameters are 
established for each tank within the system. Each 
tank is characterized by three critical levels: the 
minimum level, designated for sedimentation 
purposes; the initial level, triggering pump 
activation when water falls equal to or below this 
threshold; and the maximum level, prompting 
pump deactivation when water reaches this height. 
Across all tanks, these levels are set at 0.5, 1.5, and 
3.8 meters, respectively. Pump operation hours can 
be tailored based on these defined parameters. In 
order to identify the most optimal pump schedules 
that prevent either overflows or depletion of tanks, 
various control strategies are evaluated. Ultimately, 
the most effective control strategy entails both 
pumps initiating operation when the water level in 
Tank 1 reaches or falls below 3.5 meters, and 
ceasing operation once the water level reaches 3.8 
meters. Furthermore, efforts have been made to 

regulate water levels in Tanks 2 and 3 through 
adjustments to the control settings of Pump 2. 
Consequently, Pump 2 is activated when the water 
level in Tanks 2 and 3 drops to or below 1.5 meters.  
 As introduced earlier in this section, distribution 
networks are typically designed to operate over a 
span of 20 to 30 years. However, during the initial 
years of operation, the demand values are lower due 
to the smaller population size. Consequently, in the 
second scenario, the total demand is computed 
using Equation 1 for a population of 21,500 
individuals. Based on this calculation required 
demand for second scenario is 84 L/sec. It's 
important to note that all other aspects and 
parameters of the two scenarios, including tank 
capacities, tank condition controls, and hourly 
demand coefficients, remain consistent.  
 At last, to assess the impact of scenarios on 
residual chlorine values throughout the network, 
chlorine tracking must be conducted. The 
recommended amount of free chlorine remaining 
after half an hour of contact in normal conditions 
should be at least 0.5–0.8 milligrams per liter at any 
point in the network and at least 0.2 milligrams per 
liter at the point of water consumption [26]. With 
this in mind, repetitive modeling of chlorine 
injection has been performed, testing different 
chlorine values to determine the sufficient injection 
amount. Finally, 1 milligram per liter of chlorine 
was found to be the optimum value to be injected 
from the inlet pipe of the tanks. 
 

 

 
Fig. 3. Hourly demand coefficients 
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 Demand value for second scenario: 
 [(166 × 1.9) + 25] × 21500 = 7318600 L/
day 
 = 84 L/sec 
 
3. Results 
For better understanding the impact of using real-
time demand data on water quality parameters, 
Water age and residual chlorine values of junctions 
have calculated for all three zones and results are 
shown in Fig 4 and Table 3. As it is shown in Fig 4, 
all zones start with a steep positive slope that means 
water age is increasing with a very fast rate. The 
reason is that water consumption rate of the 
network is lower than tanks filling rates and water 
continues accumulation for near 55 hours in the 
tank. Afterward tanks controller conditions start to 
work when water height reaches the numbers 
mentioned in methodology section. As a result, 
water age starts to fluctuate between ranges that are 
shown in Table 3.  According to a survey involving 
over 800 water supply networks in the USA, the 
average water age is 1.3 days, while the maximum 
is three days [27, 28] that indicates the similarity of 
our results to an actual network condition. 

 

4. Discussion 
According to the average water age comparison in 
the result section, all 3 zones have faced at least a 
7-hour drop between the two scenarios. Results 
indicate that water ages are higher in the second 
scenario. Based on results obtained from the 
comparison of both scenarios, there are two major 
factors that affect the water age in distribution 
networks. First is the total demand value of the 
junctions that can directly affect water age caused 
by stagnation in pipes. With higher demands, the 
network has to respond and start emptying pipes 
faster than usual, which reduces stagnation in pipes. 
The second factor is the tank capacity itself and 
water level inside it. Before being injected into the 
network, water has to wait inside the tank. Tank 
filling rate is based on certain control conditions set 
in the design phase of the network. Based on these 
controls, pumps start or stop working when water 
reaches a certain level in the tank. This process has 
a great effect on the water age inside the tanks with 
higher capacities. 

 

 
Fig. 4. Water age and residual chlorine values 
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Table 3. Water age and chlorine fluctuation ranges and averages 
 Zone-1 Zone-2 Zone-3 

Water-Age 
(Hour) 

Min-
Range 

Max-
Range 

Average Min-
Range 

Max-
Range 

Average Min-
Range 

Max-
Range 

Average 

First 
Scenario 

19 24 20 22 26 23 21 26 22 

Second 
Scenario 

25 32 27 29 36 31 26 33 28 

Residual-
Chlorine 
(mg/l) 

Min-
Range 

Max-
Range 

Average Min-
Range 

Max-
Range 

Average Min-
Range 

Max-
Range 

Average 

First 
Scenario 

0.71 0.9 0.82 0.69 0.88 0.81 0.72 0.89 0.82 

Second 
Scenario 

0.64 0.87 0.78 0.61 0.86 0.76 0.64 0.87 0.78 

 
 To find the factor with the highest impact on 
water age, the retention time of each tank is 
compared to its corresponding zone. The results of 
these studies are shown in Fig 5. The graph of the 
average water age of each zone is overlapping the 
age graph of its corresponding tank, and there is a 
slight difference between them. To be more precise, 
as shown in Table 4: Average water age comparison 
between zones and tanks, the average water age of 
each tank is calculated for both scenarios. This 
minor difference shows the significant role of tank 
filling rates on retention time. 
 Residual chlorine is another factor that has been 
analyzed in the results section to understand its 
correlation with real-time demand data. According 
to the data from the hydraulic model, the total 
difference between the average residual chlorine of 
two scenarios for zone 1, zone 2, and zone 3 is 
4.7%, 5.1%, and 4.2%, respectively. It is concluded 
from the numbers that there is no significant 
correlation between real-time demand data and 
residual chlorine amounts, and further investigation 
has to be taken. By correctly managing the tank 
filling percentage and planning the pumping 
system's working hours, water age can be reduced 
to the lowest possible level. To reach this paradigm, 
the network has to operate in a way to support only 
the required amount of water at the time. Otherwise, 
excessive water will accumulate in the tank and 
increase the network's water age. Demand data is an 

essential input for the design of the distribution 
network and vital for operating management. As a 
result, collecting real-time demand data is essential 
for quality monitoring. To keep water levels low in 
the tanks and prevent water stagnation as much as 
possible, model needs to have the real-time 
consumption amount of the network. 
 According to the literature there are lots of 
factors that have to be considered while 
determining the consumption rates of the water 
distribution networks. Variables such as the number 
of residents, type of household, household size, and 
appliance usage have been recognized as factors 
contributing to the diversity in household water 
consumption [29]. Water loss due to the leakage is 
approximately 30% of total water for urban usage 
[30], hence it has to be considered precisely in 
demand values. Another research by Ibrahim A et 
al. [31] indicates that seasonal fluctuations 
significantly influence per capita water usage. To 
achieve this, the structure of these systems needs to 
evolve towards intelligence by integrating more 
sophisticated elements such as advanced sensors, 
communication technologies, and real-time 
monitoring capabilities into devices and 
components. 
 Achieving this goal relies heavily on the 
utilization of smart home technologies, 
predominantly built upon the Internet of Things 
(IoT) [32]. 
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Fig. 5. Age comprison graph between zones and tanks 

 
Table 4. Average water age comparison between zones and tanks 

Average-Water-Age (Hour) Tank-1 Zone-1 Tank-2 Zone-2 Tank-3 Zone-3 

First Scenario 19 20 22 23 21 22 
Second Scenario 26 27 30 31 28 28 

 
This is essential because of their adaptability, 
efficiency, and ease of integration into smart grids, 
enabling effective management and balancing of 
resources across interconnected buildings within a 
shared grid network [33]. The Internet of Things 
(IoT) entails a group of interconnected objects 
identifiable across a digital network, remotely 
managed to enhance efficiency, precision, and 
economic advantages for end-users. IoT seamlessly 
integrates the physical and digital realms through 
sensors that observe the environment, gather data, 
and generate responses in line with the dynamics of 

the associated system [23]. Panjwani et al. [34] 
suggested an Internet of Things (IoT) framework 
designed to monitor individual users' water 
consumption. This system incorporates ultrasonic 
sensors for level monitoring and flow sensors to 
measure consumption. Afifi et al. [35] conducted 
trials on an Internet of Things (IoT) system tailored 
for detecting leaks and bursts in intermittent water 
distribution networks (WDN), using an adaptive 
version of Kalman filter algorithms [36]. AMI is 
another new technology that collects real-time data 
on the infrastructure and sends it to the data center 
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[22, 23]. AMI data can be used to estimate demand 
for real-time hydraulic modeling to enhance the 
liability of the network. With this real-time demand 
data from the network, the water height in the tanks 
can be controlled using SCADA systems. These 
systems can remotely control and monitor 
distribution network components such as pumps, 
tanks, and reservoirs [37]. To apply the mentioned 
technologies and methods in the model, each house 
block should be connected to its respective zone, as 
shown in Fig 6. The purpose of this connection is 
determining the accurate consumption and demand 
data and the required water level of tank in each 
zone. 
 As it is mentioned digital twin capabilities in 
WDN are not limited to demand allocation. Real-
world water distribution systems are subject to 
dynamic changes in demand, flow rates, pressure 
variations and other factors. Hydraulic models may 
not fully capture these dynamics, leading to 
differences in water height between the model and 
reality. As a result, twin technology has to be used 
for system calibration. Rao et al. [38] suggests an 
IoT framework which measures water level in tank 
using ultrasonic sensor. In another research by Raha 
et al. [39] the goal was to create an affordable and 
durable Internet of Things (IoT) system for 
monitoring water levels in a tank. The system 
triggers a warning buzzer and LED indicator when 
the water level falls below 5%. Leveraging these 
techniques are useful for controlling. In summary, 

through the strategic adoption of advanced 
technologies like IoT and real-time monitoring 
systems, DT can modernize water distribution 
networks, effectively minimizing water age and 
optimizing resource allocation. By embracing these 
innovations, it is possible to pave the path towards 
a more sustainable and resilient water 
infrastructure, ensuring the efficient management 
of this vital resource for the benefit of present and 
future generations. 
 
5. Conclusion 
The purpose of this study is to demonstrate the 
importance of using real-time demand data to 
preserve water quality in distribution networks. To 
achieve this, two distinct hydraulic scenarios were 
generated, and water age and residual chlorine, 
which are water quality parameters, were analyzed 
in both scenarios. The first scenario reflects the 
network condition in its last operating year, and the 
model was designed based on system demand data 
according to the design criteria of urban and rural 
water supply and distribution systems (Code117-3). 
The second scenario uses the same hydraulic 
model; however, this time demand data was based 
on the current population and needs of the network. 
A water age comparison of these scenarios indicates 
that hydraulic model adjustments based on system 
true demand data can significantly prevent water 
aging. 

 

 
Fig. 6. House block connection to junction 
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 This result leads the study to another 
comparison, this time between stagnation time 
inside the tanks and the average water age of the 
water inside the pipelines. The aim of this 
comparison is to find the root cause of water aging. 
Based on the findings, water aging caused by 
stagnation in tanks is more severe than the effect of 
water stagnation time in pipelines. Moreover, a 
chlorine comparison of two scenarios shows that 
the residual chlorine values of the two scenarios are 
nearly the same, and no correlation between water 
age and chlorine values has been found.  
 Although the current study is based on a small 
network and population, the purpose of this study 
was to highlight the significance of utilizing real-
time demand data for maintaining water quality in 
distribution networks. By comparing two distinct 
hydraulic scenarios, research aimed to demonstrate 
how adjustments based on true demand data can 
mitigate water aging and preserve water quality. 
These findings underscore the potential of digital 
twin (DT) technology in revolutionizing water 

quality management. The comparison between 
scenarios revealed that hydraulic model 
adjustments informed by real-time demand data 
significantly prevented water aging. This suggests 
that leveraging DT for accurate demand estimation 
and synchronizing tank operations accordingly 
could be instrumental in preventing water quality.  
 One of the limitations of this study is the 
uniform demand distribution between zones, which 
prevents this research from assessing the severity of 
water age in zones with different demands, 
consumer numbers, and total pipe length. The 
reason for this limitation is the lack of billing data 
and population congestion information. In terms of 
future work, it would be interesting to repeat the 
experiments described here using the capabilities of 
digital twins in real-time demand data collection on 
a bigger network with higher required demands and 
tank capacities to develop a deeper understanding 
of the digital twin impact on preserving water 
quality. 
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