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In this study, a new problem that aims to maximize the profit of housing contractors 
based on the limitations of the contractors is proposed. The budget and the available 
workforce of the contractor as well as market conditions and the existence of suitable 
locations can be given as examples of the limitations of the contractors. Formulation of 
the problem requires estimating the expected costs and the expected profits of the 
construction alternatives. The limitations on the budget of the contractor and the 
suitability of the subcontractors may prevent the execution of all the construction 
opportunities. This situation leads to the problem of selecting the most appropriate 
housing construction alternatives. The construction opportunities can be executed or not. 
This forms binary decision variables, and the problem can be solved by simplex or 
branch-and-bound methods. An additional construction alternative doubles the number 
of construction combinations that constitute the search domain of the problem. The 
number of construction opportunities is not expected to be excessive. For this reason, 
the problem can also be solved by complete enumeration. Three hypothetical housing 
contractor profit maximization problems are formulated and solved to measure both the 
computational demand and the ease of application of the simplex, branch-and-bound, 
and complete enumeration techniques. The comparison revealed that all the techniques 
provide the optimum result for the problem. Complete enumeration is the easiest 
technique to implement because of the small search domain of the problem. 
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1. Introduction 
Construction investments require important amount 
of capital and workforce. Therefore, satisfactory 
profits are expected in order to commence the 
construction of a facility. Development of 
information technologies in construction sector 
ease the cost estimation and scheduling 
computations and reduce the cost of the estimation 
phase. The quantity take-off of construction items 
can be computed effortlessly and accurately by 
developed applications [1] or Building Information 

Modeling software [2, 3]. In addition to this 
artificial intelligence tools such as artificial neural 
network models are used to estimate the price of the 
housing at certain regions [4]. Therefore, the 
contractors can consider many housing 
construction opportunities by spending small 
amount of time and effort.  
 Urban renewal projects provide important 
opportunities for the housing contractors [5]. On the 
other hand, urban renewal projects are very risky 
projects [6]. In addition to this, limitations on the 
resources of the contractors such as budget and 
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labor increase the risks of the housing projects. 
Many small and medium scale housing contractors 
do not utilize Enterprise Resource Planning systems 
or software [7]. Therefore their capabilities on the 
management of their resources are limited. The 
competition among the housing contractors is very 
tough that land owners’ share is sometimes higher 
than the contractors’ share. Construction sector 
requires stable economy to improve its 
competitiveness [8]. On the other hand, recently the 
contractors are affected seriously because of the 
economic situation and international relationships. 
Therefore, in order to protect their competitiveness 
effective decision support tools should be utilized 
during the decision making phase. This study aims 
to develop an assisting tool for the contractors for 
selecting the most suitable housing construction 
opportunities to maximize their profit. The 
restrictions on the budget and the resources are 
defined via additional variables. The most suitable 
construction opportunities are determined by 
simplex algorithm, branch-and-bound algorithm 
and complete enumeration. Implementation of the 
algorithms is explained in the methodology part, 
and the solution of the problem is presented in the 
case study part and the findings of the study are 
discussed in the last part. 
 
2. Methodology 
The housing contractor profit maximization 
problem is explained and the implementations of 
simplex, branch-and-bound and complete 
enumeration alternatives are briefly explained in 
the methodology part. 

2.1. Definition of the problem 
The examined problem aims to maximize the profit 
of the housing contractor who can execute at most 
n housing construction projects among the m 
housing construction opportunities. The objective 
function is expressed in Eq. 1. 

max f(X) = ∑
=

m

i
ii xp

1
 (1) 

where xi is the choice on the ith housing construction 
alternative which can be construct or do not 

construct, pi is the expected profit from the ith 
construction alternative. The decision variable xi 
can be 0 or 1 depending on the decision and it is 
expressed as in Eq. 2. 

{ }1,0∈ix  (2) 
 The limitation of construction of at most n 
facility is expressed as in Eq. 3. 
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m

i
i ≤∑
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 The limitation on the budget of the contractor is 
expressed in Eq. 4. 

( ) BDxC
m

i
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 In Eq. 4 Ci is the construction cost of the ith 
facility and BD is the total budget of the contractor. 
The objective function is maximized without 
violating the restrictions. The maximum value of 
the Eq. 1 obtained without violating the restrictions 
is the maximum obtainable profit of the contractor. 

2.2. Solution by simplex algorithm  
The problem is transformed to simplex form. The 
maximization of the objective function is 
transformed to minimization of the objective 
function by multiplying it by -1. Slack variables are 
defined for each constraint in order to convert the 
inequality expressions to equations. Solution starts 
with the slack variables. The decision variable with 
the highest profit/cost ratio is substituted with the 
corresponding slack variable. The simplex table is 
updated if a new design variable is introduced. The 
opportunity of improving the solution can be 
monitored by the coefficients of the excluded 
variables. The solution process stops if there is not 
any possibility of improving the value of the 
objective function [9]. 
 The construction opportunities are sorted 
descending with respect to their profit per cost ratio. 
The construction opportunity with the highest profit 
per cost ratio is included to the design variable set. 
If the restrictions are not violated, the next 
construction alternative is examined. If the 
examined activity requires execution of another 
alternative which is not currently in the design 
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variable set, the considered activity is skipped. If 
the conditional alternative is included then the 
ignored activity is re-considered for possible 
inclusion to the design variable set. The sequential 
search of the variables continues while the 
restrictions on the budget and the number of 
housing construction are not violated. The obtained 
final solution is reported as optimum or near-
optimum solution. 

2.3. Solution by branch and bound algorithm 
The branch-and-bound is a suitable algorithm for 
pruning out the improper solutions. This property 
avoids the local minimum of the search space and 
provides better solution. The problem is handled as 
a tree like structure as illustrated in Fig. 1. Each 
decision variable is considered at a separate level 
and at each level solution alternatives are branched. 
The solution strategy is to detect and eliminate 
infeasible branches to narrow the search domain. 
The decision variables are binary. Therefore, 
branches of the nodes contains the zero and one 
opportunities for the construction alternatives [10]. 
 The housing construction alternatives are sorted 
descending according to their profit to cost ratio. 
The initial solution contains the construction 
opportunities with the highest profit to cost ratio. If 
the restriction on the budget does not allow entrance 
of the construction opportunities, the restriction is 
relaxed and the first node is branched on the relaxed 
restriction. The alternative with the highest profit 
per cost which is not included to the design variable 
set is considered for the inclusion to the variable set. 
Among the included activities, the activity with the 
lowest profit per cost ratio is considered for 
possible removal from the design variable set. The 
search continues until the upper bounds of the 

examined nodes are less than the obtained current 
best solution. 

2.4. Solution by complete enumeration 
The examined problem can have m construction 
alternatives which can be only 0 or 1. Each 
construction alternative has 2 possible decisions 
and m construction alternative ends up with 2m 
combinations. All of the combinations may not be 
feasible since some of them might violate the 
restrictions. Complete enumeration does not 
execute a sophisticated search and also visit the 
infeasible solutions. Infeasible solutions violate the 
restrictions and can provide higher objective 
function value than feasible solutions. In order to 
prevent this situation penalty values are assigned 
for each violated restriction. The modified objective 
function is given in Eq. 5. 

max f(X) = ∑∑
==

+
m

i
ii

m

i
ii Oxp

11
α  (5) 

{ }1,0∈iα  (6) 
 In Eq. 5 and 6, αi is the state of the restriction 
which is 0 if the restriction is satisfied and 1 if the 
restriction is violated. O is the predefined negative 
penalty value for the violation of the restrictions 
and r is the number of restrictions. The values of the 
penalty functions are determined in order to ensure 
the elimination of infeasible solutions. All of the 
combinations are evaluated according the Eq. 5 and 
the obtained maximum objective function is 
recorded.  
 In this study, instead of implicit enumeration, 
complete enumeration is implemented. 
 

 

 
Fig. 1. Implementation of branch-and-bound algorithm for binary decision variables 
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 In implicit enumeration only the feasible 
solutions are evaluated and the infeasible solutions 
are eliminated. The execution of the implicit 
enumeration requires formation of nested if 
statements to detect the existence of any violation. 
The variables are certain to be non-negative, but the 
remaining restrictions should be checked by the 
nested if statements. Therefore, the number of 
nested if statements would be equal to the number 
of the restrictions of the problem. In order to 
simplify the code written for the evaluation of the 
whole search domain, penalty functions are 
implemented for the infeasible solutions. In this 
case the violations of the restrictions are queried by 
sole if statements. The penalty functions reduce the 
value of the objective function considerably and 
infeasible solutions have lower values than the 
feasible solutions. The max and index functions of 
the spreadsheet software find the best feasible 
solution. 
 
3. Case Studies 
In this study three contractor profit maximization 
problems are defined and solved by simplex, 
branch-and-bound and complete enumeration 
algorithms. The problems and their solutions are 
illustrated in this part. 

3.1. Case problem 1  
A contractor considers executing housing projects 
in Çöşnük, Fahri Kayhan, Bostanbaşı and 
Sıtmapınarı districts. The costs of these 
constructions will be 5, 8, 7 and 6 million $ 
respectively. The expected profits of the mentioned 
projects are 1, 1.5, 1.25 and 1.1 million $ 
respectively. If the contractor’s budget is 18 million 
$ and can execute at most three constructions what 
can be the highest profit? 
 Variables of the problem are represented as; x1 
Construct in Çöşnük or not (1 or 0), x2 Construct in 
Fahri Kayhan or not (1 or 0), x3 Construct in 
Bostanbaşı or not (1 or 0), x4 Construct in 
Sıtmapınarı or not (1 or 0). The problem is 
formulated as below. 
max F(X) = 1x1 + 1.5x2 + 1.25x3 + 1.1x4  

(objective function) 

 5x1 + 8x2 + 7x3 + 6x4  ≤ 18 
(restriction on the budget) 

 x1 + x2 + x3 + x4  ≤ 3  
(restriction on the number of constr.) 

 { }1,01 ∈x  (decision variable 1) 
 { }1,02 ∈x  (decision variable 2) 
 { }1,03 ∈x  (decision variable 3) 

 { }1,04 ∈x  (decision variable 4) 
 The variables and the restriction equations are 
normalized as following. 
min f(X) = -1x1 - 1.5x2 - 1.25x3 - 1.1x4 
min f(X) = -1x1 - 1.5x2 - 1.25x3 - 1.1x4 - f 
 5x1 + 8x2 + 7x3 + 6x4 + x5 =18 
 x1 + x2 + x3 + x4 + x6 =3 
 x1 + x7 =1 
 x2 + x8 =1 
 x3 + x9 =1 
 x4 + x10 =1 xj  ≥ 0 ,  j = {1,...,10} 
 The profit per cost ratios of the construction 
alternatives are given in Table 1. 

3.1.1. Solution of case problem 1 by simplex 
algorithm 

The solution begins with the starting point x1 = x2 = 
x3 = x4 = 0, this states that the available budget is x5  
= 18 and the available construction opportunities is 
x6  = 3. The slack variables are x7  = x8  = x9  = x10  
=  1. The profit is -f = 0. This situation is 
represented in Table 2. 
 The activity x1 has the highest profit per cost 
ratio and it is inserted to the design variable set. 
Maximum profit increase per unit cost is provided 
by including x1 and removing x7. The updated 
situation is represented in Table 3. The values of the 
variables are x2 = x3 = x4  = 0, x1 = 1, x5  = 13,  x6  
= 2, x7  = x9  = x10  =  1, x8  = 0, -f = 1. The parameter 
with the second highest profit per cost is x2. It is 
inserted by removing x8. 
 
Table 1. Profit per cost ratios of the housing construction 
alternatives. 
 x1 x2 x3 x4 
Profit 1 1.5 1.25 1.1 
Cost 5 8 7 6 
P/C 0.200 0.188 0.179 0.183 
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Table 2. Initial situation of the first case study problem. 

Basic 
Variables 

Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -f bi'' 

x5 5 8 7 6 1 0 0 0 0 0 0 18 18/5 

x6 1 1 1 1 0 1 0 0 0 0 0 3 3/1 

x7 1 0 0 0 0 0 1 0 0 0 0 1 1 

x8 0 1 0 0 0 0 0 1 0 0 0 1 X 

x9 0 0 1 0 0 0 0 0 1 0 0 1 X 

x10 0 0 0 1 0 0 0 0 0 1 0 1 X 

-f -1 -1.5 -1.25 -1.1 0 0 0 0 0 0 1 0  
 
Table 3. First variable is inserted for the first case study problem 

Basic 
Variables 

Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -f bi'' 

x5 0 8 7 6 1 0 -5 0 0 0 0 13 13/8 

x6 0 1 1 1 0 1 -1 0 0 0 0 2 2/1 

x1 1 0 0 0 0 0 1 0 0 0 0 1 X 

x8 0 1 0 0 0 0 0 1 0 0 0 1 1/1 

x9 0 0 1 0 0 0 0 0 1 0 0 1 X 

x10  0 0 0 1 0 0 0 0 0 1 0 1 X 

-f 0 -1.5 -1.25 -1.1 0 0 1 0 0 0 1 1 1 
 
 Obtained situation is represented in Table 4 
where x3 = x4  = 0, x1 = 1, x2 = 1,  x5 = 5,  x6 =1,     
x9  = x10  =  1, x8  = 0, x7  = 0,  -f = 2.5. 
 Table 4 represents that the remaining housing 
construction alternatives cannot be implemented 
because of the restriction on the budget. The red 
colored construction costs violate the budget. 
However, 5 million $ remaining budget indicate 
that there might be a better solution. Therefore, 
variable x2 is removed and the not included 
alternative with the maximum cost per profit ratio, 
x4 is entered to the design set. Table 3 can be used 
to check the state of the restrictions. 
 In Table 5  values of the variables are x2  = x3  = 
0, x1 = x4 = 1,  x5 = 7, x6 =1, x8  = x9  =  1, x7  = x10  
=  0,  -f = 2.1. In Table 5 insertion of variable x3 is 
also checked at the last column and it is seen that x3 
can also be inserted to the design variable set. 
 

 The variable x3 is also inserted to the design 
variable set and the obtained solution is shown in 
Table 6. The values of the parameters are listed as 
x1 = x3 = x4 = 1, x2  = 0 x5  = 0,  x6  = 0, x8  = 1,       
x7  = x9  = x10  =  0, -f = 3.35. Obtained solution 
cannot be improved because the housing 
construction alternatives with the highest profit per 
cost are implemented where possible. 

3.1.2. Solution of case problem 1 by branch-
and-bound algorithm 

The variables are sorted according to their profit to 
cost ratios as x1, x2, x4, and x3. The initial solution 
is obtained by executing x1 by spending 5 million $ 
and 13 million $ budget remains available. Decision 
variable x2 is executed by spending 8 million $, and 
5 million $ available budget remains. The variable 
x4 cannot be executed therefore the constraints are 
relaxed and it is executed 5/6 = 0.833 pieces.  
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Table 4. Second variable is inserted for the first case study problem 

Basic 
Variables 

Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -f bi'' 
x5 0 0 7 6 1 0 -5 -8 0 0 0 5 5/7  5/6 
x6 0 0 1 1 0 1 -1 -1 0 0 0 1 1/1 
x1 1 0 0 0 0 0 1 0 0 0 0 1 1/1 
x2 0 1 0 0 0 0 0 1 0 0 0 1 X 
x9 0 0 1 0 0 0 0 0 1 0 0 1 X 
x10 0 0 0 1 0 0 0 0 0 1 0 1 X 

-f 0 0 -1.25 -1.1 0 0 1 1.5 0 0 1 2.5  
 
Table 5. Selection of design variable x4 instead of x2 

Basic 
Variables 

Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -f bi'' 
x5 0 8 7 0 1 0 -5 0 0 -6 0 7 =7/7 
x6 0 1 1 0 0 1 -1 0 0 -1 0 1 1/1 
x1 1 0 0 0 0 0 1 0 0 0 0 1 X 
x8 0 1 0 0 0 0 0 1 0 0 0 1 X 
x9 0 0 1 0 0 0 0 0 1 0 0 1 1/1 
x4 0 0 0 1 0 0 0 0 0 1 0 1 X 

-f 0 -1.5 -1.25 0 0 0 1 0 0 1.1 1 2.1  
 
Table 6. Optimum solution of the first case study problem 

Basic 
Variables 

Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -f bi'' 
x5 0 8 0 0 1 0 -5 0 -7 -6 0 0 X 
x6 0 1 0 0 0 1 -1 0 -1 -1 0 0 X 
x1 1 0 0 0 0 0 1 0 0 0 0 1 X 
x8 0 1 0 0 0 0 0 1 0 0 0 1 X 
x3 0 0 1 0 0 0 0 0 1 0 0 1 X 
x4 0 0 0 1 0 0 0 0 0 1 0 1 X 

-f 0 -1.5 0 0 0 0 1 0 1.25 1.1 1 3.35  
 
 The initial starting point becomes X= [1; 1; 0; 
0.833] with 1*1 + 1* 1.5+ 0.833*1.1 = 3.542 
million $ profit. The relaxed solution provides the 
upper bound. The lower bound is obtained by 
rounding down the fractional part. The solution is 
not feasible therefore, the node is branched and the 
variable x4 is made feasible by assigning 1 or 0 for 
it. The initial branch of the first case problem is 
shown in Fig. 2. 

 Solution attempt with x4 = 0 leads to the 
execution of x1 and x2 with available 5 million $ 
budget. The relaxation of the restrictions provide 
execution of 5/7 = 0.714 pieces of x3 which 
provides 3.393 million $ profit. The examination of 
x3 is executed by branching the Node 1 which is 
illustrated in Fig. 3. 
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Fig. 2. Initial branch of the first case problem 

 

 
Fig. 3. Second branch of the first case problem 

 

 Node 2 does not violate any constraint and 
provides a feasible solution. The solution is a local 
maximum which executes x1 and x2 with 2.5 million 
$ profit. In node 3 execution of x3 is examined. This 
violates the budget constraints therefore the integer 
constraint on the alternative x2 is relaxed. Node 3 
given in Figure 3 involves execution of x2 0.75 
pieces with 3.375 million $ profit. The profit is 
higher than the local maximum therefore the node 
is investigated. The branching of the node 3 is 
shown in Fig. 4. 
 Nodes 4 and 5 are formed by the branches of the 
node 3. Node 4 does not execute x2 and executes x1 
and x3 together. The objective function becomes 
2.25 million $ which is worse than the present local 
maximum. Node 5 executes x2 and excludes x1 
because of the restrictions on the budget. The 
obtained profit becomes 2.75 million $ which 
becomes the current best solution. This situation 
investigates the all possible branches related with 
the x4 = 0 branch. Then x4 = 1 branch is investigated 
by entering Node 6 as shown in Fig. 5. 
 Node 6 relaxes the restriction on the x4 and 
executes the x2 7/8 piece. This relaxation ends up 
with 3.4125 million $ profit which is the upper 
bound of the node. The upper bound is more than 
the current best solution.  Therefore the Node 6 is 

investigated by forming nodes 7 and 8 as shown in 
Fig. 6. 
 Node 7 executes x2 and x4 which spends 14 
million $ and 4 million $ remains. In this situation 
the remaining x1 and x3 alternatives are not possible 
to be executed. Therefore the Node 7 is the final 
node. The objective function is 2.6 million $ in 
Node 7 which is worse than the current best 
solution. Node 8 executes x4 and does not execute 
x2. This situation leaves 12 million $ available 
budget which permits execution of both x1 and x3. 
This node does not violate any restrictions and there 
is no need to investigate further branches. The 
obtained objective function is 1*1 + 1*1.25 + 1*1.1 
= 3.35 million $ profit which is the current best. 
There is not any remaining branch therefore; the 
obtained solution is the optimum solution of the 
problem 

3.1.3. Solution of case problem 1 by complete 
enumeration 

In order to execute complete enumeration process a 
spreadsheet application is prepared. The four design 
variable makes 16 housing construction 
alternatives. In order to form the decision 
alternatives of the search domain, the equation 
given in Eq. 7 is implemented for each xi where i = 
{1,..,4}.  
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Fig. 4. Investigation of the branches of Node 3 

 

 
Fig. 5. Relaxing the constraint of the Node 6 

 

 
Fig. 6. Investigation of the branches of the Node 6 
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In Eq. 7    symbol is the round up operator. The 
equation is implemented for each 4 design variable 
for j = {1,...,16} and each possible decision 
combination is produced. Eq. 5 is implemented by 

the “=SUMPRODUCT($B$2:$E$2,B6:E6)-
IF(SUM(B6:E6)>3,50,0)-
IF(SUMPRODUCT($B$1:$E$1,B6:E6)>18,50,0)
” command. SUMPRODUCT function implements 
Eq. 1 by summing each pi*xi multiplication. The 
first if statement gives 50 million $ penalty if the 
number of housing construction is more than 3, and 
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the second if statement computes the summation of 
the executed construction alternatives and applies 
50 million $ penalty if the limitation on the budget 
is violated. The result is given as screenshot for 
representation in Fig. 7. Same solution is obtained 
in negligible computation time with 12 kB file size. 

3.2. Case problem 2  
A contractor considers executing housing projects 
in Çöşnük, Fahri Kayhan, Bostanbaşı, Sıtmapınarı 
and Tecde districts. The costs of these constructions 
will be 5, 8, 7, 6 and 9 million $ respectively. The 
expected profits of the mentioned projects are 1, 
1.5, 1.25, 1.1 and 1.7 million $ respectively. Tecde 
district is far from the city center and the 
construction at this region is preferable if the 
contractor has a nearby construction activity. The 
selection of Tecde district is possible if the 
contractor has a construction at Bostanbaşı. The 
contractor will not prefer construction at Tecde and 
Çöşnük together because of the long distance 
between the two regions. If the contractor’s budget 
is 25 million $ and can execute at most three 
constructions what is the highest profit that the 
contractor can achieve? 
 Variables of the problem are represented as; x1 
Construct in Çöşnük or not (1 or 0), x2 Construct in 
Fahri Kayhan or not (1 or 0), x3 Construct in 
Bostanbaşı or not (1 or 0), x4 Construct in 
Sıtmapınarı or not (1 or 0), x5 Construct in Tecde or 
not (1 or 0). The problem is expressed as below. 

max F(X) = 1x1 + 1.5x2 + 1.25x3 + 1.1x4 + 1.7x5 

(objective function) 
 5x1 + 8x2 + 7x3 + 6x4 + 9x5 ≤ 25 

(restriction on the budget) 
 x1 + x2 + x3 + x4 + x5 ≤ 3 

(restriction on the number of constr.) 
{ }1,01 ∈x  j = {1,…,5}  (decision variables are 0-1) 

x3 + x5 ≤0  (restriction of Bostanbaşı-Tecde) 
x1 + x5 ≤1  (restriction of Çöşnük-Tecde) 

 The variables and the restriction equations are 
normalized as following. 

min f(X) = -1x1 - 1.5x2 - 1.25x3 - 1.1x4 -  1.7x5 
min f(X) = -1x1 - 1.5x2 - 1.25x3 - 1.1x4 - 1.7x5 - f 

 
Fig. 7. Screenshot of the complete enumeration process 

 
 5x1 + 8x2 + 7x3 + 6x4 + 9x5 + x6 = 25 
 x1 + x2 + x3 + x4 + x5 + x7 =3 
 -x3 + x5 + x8 = 0 
 x1 + x5 + x9 =1 
 x1 + x10 =1  
 x2 + x11 =1 
 x3 + x12 =1 
 x4 + x13 =1 

 x5 + x14 =1     xj 0≥    j = {1,…,14} 

3.2.1. Solution of case problem 2 by simplex 
algorithm 

The simplex table illustrated in Table 7 is prepared 
according to the restrictions of the problem. The 
variable x5 is dependent on the x3 therefore it is 
skipped and the solution starts with executing the 
variable x2. 
 The next high profit providing construction 
alternative is x3, and it is also entered. The obtained 
situation is shown is Table 8. 
 In this case the variable x8 is removed and the 
variable x5 is entered. The budget is available and 
the solution provides 4.45 million $ profit. The 
obtained solution cannot be improved and the 
iteration stops. 
 
 



Journal of Construction Engineering, Management & Innovation 262 

 

Table 7. The initial situation of the second case study problem 

Basic 
Variables 

 Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 -f bi'' 
x6 5 8 7 6 9 1 0 0 0 0 0 0 0 0 0 25 25/8 
x7 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 3 3/1 
x8 0 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 0 X 
x9 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 X 
x10 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 X 
x11 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1/1 
x12 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 X 
x13 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 X 
x14 0 0  0  0  1 0 0 0 0 0 0 0 0 1 0 1 X 

-f -1 -1.5 -1.25 -1.1 -1.7 0 0 0 0 0 0 0 0 0 1 0  
 
Table 8. Execution of x2 and x3 of the second case study problem 

Basic 
Variables 

 Variables 

ij

i

a
b

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 -f bi'' 
x6 5 0 0 6 9 1 0 0 0 0 -8 -7 0 0 0 10 10/9 
x7 1 0 0 1 1 0 1 0 0 0 -1 -1 0 0 0 1 1/1 
x8 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1/1 
x9 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1/1 
x10 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 X 
x2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 X 
x3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 X 
x13 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 X 
x14 0 0  0  0  1 0 0 0 0 0 0 0 0 1 0 1 1/1 

-f -1 0 0 -1.1 -1.7 0 0 0 0 0 1.5 1.25 0 0 1 2.75  
 

3.2.2. Solution of case problem 2 by branch-
and-bound algorithm 

The variables are sorted according to their profit to 
cost ratios as x1, x5, x2, x4, and x3. Execution of x1 
prevents x5 and x3 for this reason x1 is not executed 
in the initial solution. The solution starts with 
executing x5, x2 and x3 leaving 1 million $ available 
budget. The restriction on the x4 is relaxed at the 
Node 0 and X = [0, 1, 1, 1/6, 1] initial solution is 
obtained. The relaxation makes the upper bound 
4.633. In Fig. 8 the relaxation process is 
investigated at the Nodes 1 and 2. 
 In Node 1 x4 is not executed. This solution does 
not violate any restriction and the node is not 
investigated further. The obtained solution provides 

4.45 million $ local maximum. In Node 2 execution 
of x4 is investigated by relaxing x2. The relaxation 
provides the solution X=[0, 3/8, 1, 1, 1] with 4.6125 
million $ profit which is higher than the current best 
solution. The violation of the restriction on x2 is 
investigated at Nodes 3 and 4. In Node 3, x2 = 0 case 
which provides 4.05 million $ profit is investigated. 
Obtained solution does not violate any restriction 
and the node 3 is not investigated further. 
 At Node 4, x2 and x4 have to be executed. The 
remaining budget is used for x5 and the restriction 
on the x3 is relaxed. The relaxation provides 4.6571 
million $ profit which is higher than the current best 
solution. In node 5, x3 = 0 case is examined which 
prevents the execution of x5 as well. 



263 Ö.H. Bettemir  

 

 
Fig. 8. Branch and bound schema of the second case study problem 

 
The solution provided 3.6 million $ profit which is 
worse than the current best and the node is not 
investigated further since there is not any violated 
restriction. In node 6 the execution of x1 should be 
examined since the objective function of the relaxed 
case is higher than the current best. Node 7 
investigates the case in which x1 is not executed. 
This situation provides 3.85 million $ profit which 
is worse than the current best. Node 8 investigates 
the case in which x1 is executed. However, this case 
violates the restrictions and the solution is not 
feasible. There is not any feasible solution 
alternatives and the obtained X= [0; 1; 1; 0; 1] 
solution with 4.45 million $ profit. 

3.2.3. Solution of case problem 2 by complete 
enumeration 

Complete enumeration examines 32 combinations 
by looping i = {1,…,5} and j = {1,…,32}. Global 
optimum solution is obtained within negligible 
computation time with 14kB file size. The 
evaluation function is computed by writing the 
given expression to the formula bar; 
“=SUMPRODUCT($B$2:$F$2,B5:F5)-
IF(SUM(B5:F5)>3,50,0)-
IF(SUMPRODUCT($B$1:$F$1,B5:F5)>25,50,0)-
IF(-D5+F5>0,50,0)-IF(B5+F5>1,50,0)”. The last 
two if statements are added when compared with 
the previous problem. The first if statement gives 
penalty if x5 is selected without executing x3. The 
last if statement gives penalty if x1 and x5 are 
executed together. Complete enumeration provides 

the same optimum solution which is provided by 
the simple and the branch-and-bound algorithms. 

3.3. Case problem 3  
A contractor considers executing housing projects 
in Yakınkent, Bostanbaşı, Fahri Kayahan, Çöşnük, 
Temelli, Station Junction, Old Malatya, Yeşilyurt, 
Paşaköşkü, Taştepe, Tecde, Orduzu, Yakınca and 
Kernek districts. The costs of these constructions 
will be 8.5, 10, 12, 8, 8.5, 11, 7.5, 10.5, 5, 4, 13, 6.5, 
7 and 6 million $ respectively. The expected profits 
of the mentioned projects are 1.75, 2, 2.5, 1.5, 1.75, 
2.1, 1.4, 2, 1, 1.25, 2.25, 0.9, 1 and 1.25 million $ 
respectively. The selection of Tecde district is 
possible if the contractor has a construction at 
Bostanbaşı. Yakınca and Çöşnük are mutually 
exclusive alternatives. If the contractor’s budget is 
50 million $ and can execute at most six housing 
constructions what is the highest profit that the 
contractor can achieve? 
 Variables of the problem are represented as; x1 
Construct in Yakınkent, x2 Construct in Bostanbaşı, 
x3 Construct in Fahri Kayahan, x4 Construct in 
Çöşnük, x5 Construct in Temelli, x6 Construct in 
Station Junction, x7 Construct in Old Malatya, x8 
Construct in Yeşilyurt, x9 Construct in Paşaköşkü, 
x10 Construct in Taştepe, x11 Construct in Tecde, x12 
Construct in Orduzu, x13 Construct in Yakınca and 
x14 Construct in Kernek. The problem is expressed 
as below. 
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max f(X) = 1.75x1 + 2x2 + 2.5x3 + 1.5x4 + 1.75x5 + 
2.1x6 + 1.4x7 + 2x8 + 1x9 + 1.25x10 + 2.25x11 + 
0.9x12 + 1x13 + 1.25x14  
subjected to: 
8.5x1 + 10x2 + 12x3 + 8x4 + 8.5x5 + 11x6 + 7.5x7 + 

10.5x8 + 5x9 + 4x10 + 13x11 + 6.5x12 +7x13+6x14≤50 
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 
+ x12 + x13 + x14 ≤ 6 
 { }1,0∈jx  j = {1,…,14}  

 -x2 + x12 ≤ 0 (restriction of Bostanbaşı-Tecde) 

 x4 + x13 ≤ 1 (restriction of Çöşnük-Tecde) 

 The variables and the restriction equations are 
normalized as following. 

min f(X) =-1.75x1 - 2x2 - 2.5x3 - 1.5x4 - 1.75x5 - 
2.1x6 - 1.4x7 - 2x8 - 1x9 - 1.25x10 - 2.25x11 - 0.9x12 - 
1x13 -1.25x14 – f 
subjected to: 

8.5x1 + 10x2 + 12x3 + 8x4 + 8.5x5 + 11x6 + 7.5x7 + 
10.5x8 + 5x9 + 4x10 + 13x11 + 6.5x12 + 7x13 + 6x14 + 
x15 = 50  
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 
+ x12 + x13 + x14+ x16 = 6 
-x2 + x12 + x17 = 0 
x4 + x13 + x18 =1 
xk + xk+18 =1 k = {1,…,14} 
xj ≥ 0 j = {1,…,32} 

 The profit to cost ratios of the construction 
alternatives are given in Table 9. 

3.3.1. Solution of case problem 3 by simplex 
algorithm 

The simplex table contains 32 columns therefore; 
the simplex tables cannot be presented. The 
problem starts with zero construction and zero 
profit case. The variables are included to the 
problems according to their profit per cost ratio. 
Variable x10 has the highest ratio and it is included 
first. The steps of the simplex problem are given in 
Table 10. 

 
Table 9. Maximum profit per cost ratios of the alternatives 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

Cost 8.5 10 12 8 8.5 11 7.5 10.5 5 4 13 6.5 7 6 

Profit 1.75 2 2.5 1.5 1.75 2.1 1.4 2 1 1.25 2.25 0.9 1 1.25 

P/C 0.2059 0.2000 0.2083 0.1875 0.2059 0.1909 0.1867 0.1905 0.2000 0.3125 0.1731 0.1385 0.1429 0.2083 

 
Table 10. Solution path of the simplex method. 

Step Change Profit Cost Total Const. 

initial N.A. 0 0 0 

1 Include x10 1.25 4 1 

2 Include x3 3.75 16 2 

3 Include x14 5 22 3 

4 Include x1 6.75 30.5 4 

5 Include x5 8.5 39 5 

6 Include x2 10.5 49 6 

7 Include x9 Exclude x2 9.5 44 6 

8 Include x6 Exclude x9 10.6 50 6 
 



265 Ö.H. Bettemir  

 

 The first 5 steps include the variable with the 
highest profit to cost ratio among the present 
variables which are not included to the design 
parameter set. In the sixth step the variable with the 
highest profit/cost ratio, x2, is included. This makes 
the number of total construction 6 and no additional 
construction opportunity exist. The remaining 
budget does not allow construction of an additional 
facility. The obtained solution might be improved 
since the remaining budget can be used for a more 
expensive alternative with a lower profit/cost ratio. 
Therefore x2 is included and x9 is included which 
reduces the total profit to 9.5 million $. The 
available 6 million $ budget and the restriction on 
the number of construction does not allow 
construction of an additional alternative. Then x9 is 
excluded and the alternative with the highest profit 
to cost ratio among the remaining alternatives, x6 is 
included. The obtained design variable set, uses up 
all of the budget and the number of construction 
alternatives. Therefore, the obtained solution is 
optimum and cannot be improved. 

3.3.2. Solution of case problem 3 by branch 
and bound algorithm 

The initial solution with branch and bound 
algorithm includes the variables with the highest 
profit to cost ratio in descending order. The initial 
variable set includes x1, x2, x3, x5, x10, x14 and 0.2x9 
when the restrictions are relaxed. The obtained 
solution provides 10.7 million $ and 10.5 million $ 
profit values as upper bound and lower bound 
respectively. The lower bound is obtained by 
rounding down the coefficient of x9. The situation 
of the x9 alternative is examined at nodes 1 and 2. 
In node 1 x9 is removed and the alternative with 
highest profit per cost ratio x6 is included by 
relaxation. The mentioned modification provides 
10.69 million $ upper bound and does not change 
the lower bound. In node 2 x9 is executed. To 
prevent violation of the restrictions the alternative 
with the lowest profit per cost ratio, x2, is removed 
from the parameter set. The relaxation provides 
10.70 million $ upper bound and 9.5 million $ lower 
bound. Node 2 has higher upper bound value than 
Node 1so the solution continues with this node. 

 Node 2 is bounded on x2. In Node 3 x2 is 
executed by relaxing the variable x1. Variables x1 
and x5 have the same profit to cost ratio and the 
selection among x1 and x5 is made randomly. 
Relaxation of x1 provides 10.68 million $ upper 
bound. In Node 4 x2 is removed and x6, the variable 
with the highest profit to cost ratio is relaxed. This 
provides 10.65 million $ upper bound. The solution 
continues from node 1 which has the highest upper 
bound. The variable x6 is removed at Node 5 and 
the variable x8 is included by relaxation which 
provides 10.69 million $ upper bound. Variable x6 
is executed at Node 6 by removing the alternative 
x2 which has the lowest cost to benefit ratio. In this 
case the budget and the number of construction 
alternative restrictions are active and no restriction 
is relaxed. The obtained solution is feasible and 
node 6 is not branched on further. The variable set 
provides 10.6 million $ profit. 
 The branching of node 5 provides the nodes 7 
and 8. In node 7 x8 is removed and variable x4 is 
included by relaxation. Upper bound of this node is 
computed as 10.69 million $. In node 8 the variable 
x8 is included and the variable x2 is removed. The 
upper bound of the relaxed case is lower than the 
current solution which means that branching on this 
node cannot improve the current best. The node 7 
have two branches due to the space limitations the 
branch with x4 = 1 is not shown. In order to examine 
this situation x5 is relaxed which provides 10.53 and 
10.25 million $ upper and lower bounds 
respectively. 
 Nodes 10, and 11 are formed by the branches of 
the node 3. The relaxation of the mentioned nodes 
does not improve the current best solution and the 
branch and bound provides 10.6 million $ profit. 
The branch-and-bound schema of the problem is 
shown in Fig. 9. 

3.3.3. Solution of case problem 3 by complete 
enumeration 

Complete enumeration examines 16384 
combinations by substituting i = {1,..,14} and j = 
{1,…,16384} to Eq. 7. Global optimum solution is 
obtained within less than 5 seconds of computation 
time with 1390 kB file size.  
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Fig. 9. Branch and bound schema of the third case study problem 

 
The evaluation function is computed by writing the 
given expression to the formula bar; 
“=SUMPRODUCT(B$2:O$2,B6:O6)-
IF(SUM(B6:O6)>6,50,0)-
IF(SUMPRODUCT(B$1:O$1,B6:O6)>50,50,0)-
IF(-C6+M6>0,50,0)-IF(E6+N6>1,50,0)”. The 
complete enumeration provides the optimum 
solution which is 10.6 million $. The 
implementation of complete enumeration is easier 
than the simplex and the branch-and-bound 
methods. On the other hand, complete enumeration 
may end up with too large file sizes and long 
computation duration if more construction 
alternatives exist. 
 
4. Discussion of results 
In this study housing contractor profit 
maximization problem is defined and solved by 
simplex algorithm, branch-and-bound algorithm 
and complete enumeration. The problem considers 
the limitations on the budget of the contractor, 
maximum number of housing project that the 
contractor can execute and the mutually exclusive 
cases between the housing projects. The decision 
variables are binary where they can have 0 or 1 
values which make the problem suitable to solve by 
simplex or branch-and-bound algorithms. 

 The complexity of the problem depends on the 
number of decision variables and the number of 
restrictions.  The first case study problem ends up 
with 10 variables when the problem is written in 
normal form. The formulation of the problem to 
solve by simplex or branch-and-bound algorithm 
requires normalization process which necessitates 
theoretical knowledge on the optimization 
algorithms. For this reason, the construction sector 
may not be eager to define and solve the examined 
problem. Therefore, the problem is also solved by 
complete enumeration to avoid the implementation 
of optimization algorithms. The search domain of 
the problem is very narrow when the memory and 
computational capacity of the computers are 
concerned. Therefore, the implementation of the 
complete enumeration can be possible for even 
larger search domains. Complete enumeration is 
implemented for the solution of small and medium 
scale resource leveling and resource constraint 
project scheduling problems [11-13]. However, in 
the literature optimization problems are also solved 
by meta-heuristic algorithms [14, 15]. The 
proposed housing contractor profit maximization 
problem is not very complex and the utilization of 
meta-heuristic algorithms is not compulsory. 
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 The largest case study problem contains 14 
design variables which makes 16384 different 
decision alternatives. The mentioned search domain 
can be enumerated within seconds by an average 
configured desktop computer. On the other hand, 
the problem can be more complicated for large-
scale housing contractors who make business at 
international scale. In this case, the number of 
housing construction opportunities can be 
significantly more than 14 and the size of the search 
domain may exceed millions of decision 
alternatives. In this case, complete enumeration 
with spreadsheet applications may not be applicable 
and implementation of simplex, branch-and-bound 
or meta-heuristic methods might be necessary. 
 The third case study problem became an 
indicator for the comparison of the solution 
methods. The branch-and-bound is the most 
difficult algorithm to implement. The automation of 
the branches is not straightforward because of the 
restrictions among the variables. In addition to this, 
the number of evaluations is higher than the 
simplex algorithm. The proposed profit 
maximization problem can be solved by simplex 
algorithm if complete enumeration will not be 
implemented. 
 The examined problem is 0-1 integer 
programming problem which has numerous 
applications in operations research. In this study, a 
new implementation of 0-1 integer programming is 
executed by analyzing the housing construction 
alternatives of a contractor. The analyzed problem 
can be modified and adopted for the situations of 
the other contractors such as highway or earthwork 
contractors. However, the construction 
opportunities of the aforementioned contractors 
cannot be as many as the construction opportunities 
of the housing contractors. Therefore, the best 
construction alternatives can be determined without 
implementing any optimization process. 
 In this study, the housing projects are 
considered as fixed and any possible design 
alternatives are not considered. The various design 
alternatives for a housing project located at a certain 
project can alter the cost and the profit. The design 
alternatives can be construction of detached houses, 

apartment, green certified building and many more. 
The inclusion of the mentioned effect would 
enlarge the search domain of the problem.  
 
5. Conclusion 
In this study, profit maximization problem for the 
housing contractors are formulated and solved by 
simplex, branch-and-bound and complete 
enumeration. All of the algorithms obtained global 
optimum of the problem. The implemented 
algorithms can also provide the global optimum for 
larger size of the problem. The contractors can 
define and solve the problem by examining the case 
study problems and maximize their profit by 
considering their financial situation and workforce 
condition. The solution of the defined problem can 
be beneficial for the housing contractors to 
maximize their profit. In addition to this, the 
defined problem can be utilized to illustrate the 
implementation of simplex and branch-and-bound 
algorithms at graduate construction management 
courses. 
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