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Climate change will alter the inflows into the dam in the future; thus, the balance 
between water supply and water availability will directly impact the water levels and 
indirectly affects dam safety. Therefore, estimating the future inflows and reservoir water 
content can help the operators. In this study, a machine learning Wavelet-MultiLayer 
Perceptron (W-MLP) method is applied to estimate monthly future projections (2016-
2100) of the inflows into the reservoir. The methodology is tested for one of the main 
water supply reservoirs in Ankara, which distributes annual 142 hm3 water. The EURO-
CORDEX database is used to obtain Regional Climate Model (RCM) simulations of RCA4 
(12.5 km) from two different Global Circulation Models (GCMs), MPI-ESM-LR and IPSL-
CM5A-MR, under two Representative Concentration Pathways (RCPs) (RCP 4.5 and RCP 
8.5) scenarios. The monthly W-MLP models are independently trained and tested for 
each data set (observed data and GCM outputs). The GCM scenario results indicate a 
shift in monthly hydrographs for both RCPs projections with a reduction in inflows which 
will directly change the operation of the reservoir. The daily HEC-ResSim model mimics 
future water content and releases. According to the results, the annual reduction 
expected in the future inflows scenarios varies between -3 % to -13% under the RCPs, 
and the effects on annual reservoir water content are much higher (between -21 % and 
-37 %). These findings can be used in different risk assessment metrics (reliability, 
resilience, and vulnerability) to estimate the future effects of dam safety. 
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1. Introduction 
Water supply systems consist of many decision 
variables, natural and regulated flows, 
interconnected water elements, independent 
variables, etc. Decision makers such as 
analysts/operators at water structure utilities apply 
operational simulation/optimization tools to derive 
rational decisions from available information. 
However, climate change exacerbates the 
precipitation intensity and temperature [1], directly 
affecting these structures’ operation and decision. 
The capacities of these structures are calculated 

with present criteria and historical data sets. From 
one aspect, some research mainly focused on the 
change in extremes like droughts and flood 
conditions [2-7]. On the other hand, spatial and 
temporal variation of the hydrograph and its effects 
on the existing water structures due to climate 
change is still a research question. Climate change 
is expected to alter the streamflow pattern, so the 
operation of the current water structures will be 
modified [8-9]. Therefore, their assessment for 
future changes is an essential issue to increase 
preparedness for water availability, disaster 
management, and dam safety [10-11]. 
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 The most widely used approach is conducting 
the daily or sub-daily simulation of hydrological 
processes via a validated hydrological model 
(physical, conceptual or data-driven) using Global 
Circulation Model (GCM) based climate 
projections. The accuracy of GCMs directly affects 
the hydrological model results, but their uncertainty 
is massive, especially due to the low accuracy of 
precipitation.  Despite their significant 
uncertainties, GCMs are still the most reliable 
technique [12]. In most cases, GCM projections 
cannot be used directly because their spatial 
resolution is too coarse to model hydrological 
processes at the required regional or local scale. 
Thus, they must be downscaled and eventually bias-
corrected [13]. 
 Rainfall-runoff models are used to estimate the 
rainfall-runoff relationship for future hydrological 
projections. Machine learning methods provide 
valuable alternatives to setting up nonlinear 
mapping. Hybrid systems are gaining popularity by 
merging advantageous parts of different 
approaches.  For example, Humphrey et al. [14] 
apply a hybrid monthly streamflow simulation 
model by taking the Bayesian Artificial Neural 
Network (ANN) for producing 1-month ahead 
streamflow forecasts at three key locations in the 
South East of South Australia into account. Tongal 
and Booij [15] separate streamflow into different 
components like baseflow and surface flow and 
apply different machine learning techniques. Fan et 
al. [16] employ a machine learning method based 
on climate reconstruction to generate runoff for the 
data-scarce mountainous basin. Yazdandoost and 
Moradian [17] use CMIP5 (Coupled Model 
Intercomparison Project Phase5) data sets and 
downscaled them with the Artificial Neural 
Network (ANN) technique.  
 The assessment of the performances of water 
systems under climate change is an urgent issue for 
better adaptation studies. There is still limited study 
in the literature about this problem. For example; 
Ehsani et al. [10] emphasize that existing reservoirs 
in the Northeastern United State will be inadequate 
in forming drought/flood resiliency. Ehteram et al. 
[18] investigate reservoir operation using different 

heuristic optimization approaches under climate 
change using various climate change models for 
irrigation demand for the Dez basin in Iran. 
Sharifinejad et al. [19] evaluate water system 
vulnerability under changing climate from the 
outputs of 19 climate models under two RCPs by 
coupling the four hydrological models with HEC-
ResSim (Hydrologic Engineering Centre-Reservoir 
Simulation Model) model on a headwater water 
resources system in Alberta, Canada.  
 The consequences of climate change are also 
depending on the selected region. This study aims 
to integrate a machine learning-based Wavelet-
Multi-Layer Perceptron (W-MLP) rainfall-runoff 
model that employs two different GCM outputs of 
precipitation and temperature. Two RCPs mimic 
future monthly inflows into the dam reservoir, with 
a daily reservoir simulation model which estimates 
the effects on dam operations using USACE HEC-
ResSim. The application reservoir is selected from 
one of the main water supply recourses of the 
capital city of Turkey, Ankara that distributes the 
annual 142 hm3/year of water. The future inflow 
projections are generated using EURO-CORDEX 
(Coordinated Regional Climate Downscaling 
Experiment) of RCA4 (Rossby Centre Regional 
Atmospheric Model) regional outputs (12.5 km). 
They are derived from two different GCMs i.e. 
MPI-ESM-LR and IPSL-CM5A-MR under two 
Representative Concentration Pathways (RCPs) 
(RCP 4.5 and RCP 8.5) scenarios. The simulation 
model results are also compared with a benchmark 
model having no change in inflows into the dam 
reservoir. 
 
2. Methods and data 
The study consists of two parts. First, inflows into 
the dam reservoir that is operated for only water 
supply purposes, the meteorological observations 
(precipitation and temperature) provided from a 
nearby station together with climate projection data 
are obtained. These data are used in developing of 
the rainfall-runoff model to produce reference and 
future projections. Compared to the reference 
period, the changes in the future years have been 
determined, and a synthetic future hydrograph is 
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derived. In the second part of the study, a reservoir 
simulation model is set to simulate the effects of 
future inflows on operational conditions. To that 
end, physical and operational data sets are provided 

and integrated with the synthetic future hydrograph 
and expected water demand. The study flow chart 
is presented in Fig. 1.

 

 
Fig. 1. The flowchart of the study
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2.1. Machine learning inflow simulation model 
Physical and conceptual models may necessitate a 
complex and rich data network to properly calibrate 
various model parameters. Machine learning 
methods provide powerful nonlinear relationship 
capabilities to relate meteorological variables and 
hydrological responses [20-22]. The MLP model is 
a feedforward network with linked neurons 
systematized into three layers: an input layer, a 
hidden layer, and an output layer [23]. The model is 
feedforward and the number of input and output 
nodes varies according to the problem type and data 
sets. Eq. (1) demonstrates the output of node 𝑗𝑗, 𝑄𝑄𝑗𝑗 . 

𝑄𝑄𝑗𝑗 = 𝑓𝑓�𝑋𝑋.𝑊𝑊𝑗𝑗 − 𝑏𝑏𝑗𝑗� (1) 

𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑛𝑛) 
𝑊𝑊𝑗𝑗 = �𝑊𝑊1𝑗𝑗 , … ,𝑊𝑊𝑖𝑖𝑖𝑖 , … ,𝑊𝑊𝑛𝑛𝑛𝑛� 

 

where 𝑋𝑋 is information from previous nodes, 𝑤𝑤𝑖𝑖𝑖𝑖 
represents the connection weight from the ith node 
in the preceding layer to this node, where bj is bias, 
and f is the activation function. 
 Most of the studies are conducted using lagged 
observed discharge in their model inputs [24]. 
However, this is not possible in climate change 
assessment studies, since the future projections are 
mainly obtained using meteorological outputs. 
Moreover, wavelet-based seasonal models 
outperform only Autoregressive models (i.e., ANN 
and Adaptive Neuro-Fuzzy Inference System, 
ANFIS) in order to increase their performances 
[25]. Hence, in this study, previous flow values are 
not provided in the model setup and the Wavelet-
based MLP (W-MLP) model is configured with the 
best performance combination inputs as shown in 
Eq. (2). 

𝐼𝐼𝑛𝑛 = 𝑓𝑓(𝑃𝑃𝑛𝑛𝐴𝐴 ,𝑃𝑃𝑛𝑛𝐷𝐷 ,𝑃𝑃𝑛𝑛 ,𝑃𝑃𝑛𝑛−1,𝑃𝑃𝑛𝑛−2,𝑃𝑃𝑛𝑛−3,𝑇𝑇𝑛𝑛−1,𝑇𝑇𝑛𝑛−2) (2) 

where 𝑓𝑓, 𝑃𝑃, 𝑇𝑇, and 𝑛𝑛 represent the neural network 
model, total precipitation, average air temperature, 
and time step. 𝐴𝐴 and 𝐷𝐷 represent components of 1-
D wavelet decomposition, so they are decomposed 
into two sub-signals. The target time series are 
provided as monthly total observed inflows in 
hm3/month. The model is coded using MATLAB 
version 2022a software (License number: 
40994073). 

 The model parameters (weights and biases) are 
optimized with Levenberg-Marquardt (LM) 
backpropagation algorithm, since it provides fast 
and robust solutions. This is a second order quasi-
Newton method which updates the weights with 
Jacobian matrix for finding an optimal solution as 
shown in Eq. (3): 

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − [𝒥𝒥𝑇𝑇𝒥𝒥 + 𝜇𝜇𝜇𝜇]−1𝒥𝒥𝑇𝑇𝜀𝜀 (3) 

where wk+1 and wk are weights during (k+1)th & kth 
epoch, 𝒥𝒥 is the Jacobian matrix that contains the 
first derivatives of the network errors with respect 
to the weights and biases, µ is the learning rate and 
ε is a vector of network errors. 

2.2. Reservoir operation simulation model 
HEC-ResSim developed by USACE (United States 
Army Corps of Engineers Hydrologic Engineering 
Center) is selected to accomplish the reservoir 
simulations. HEC-ResSim 3.1 version is used in the 
study [26]. The computer program applies 
hydrologic and hydraulics of reservoir system 
simulation models. It is used in water resources 
management studies to simulate water systems and 
test various operational alternatives [27-30]. 
Software and documents are free and can be 
downloaded from the developer’s internet page 
[31]. Multi-purpose and multi-reservoir systems are 
simulated by employing unique algorithms 
developed for particular purposes. So that, 
alternative operations can be generated and 
simulated. 
 Simulation of the water resource system is 
based on water accounting procedures associated 
with mass conservation. Since water is a constant 
density fluid for most reservoir/river system 
analysis applications, conservation of mass implies 
conservation of volume as well. In a general form, 
the mass balance or quantity equation for reservoirs 
can be formulated in Eq. (4) as: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 − 𝑅𝑅𝑡𝑡1 − 𝑅𝑅𝑡𝑡2 − 𝑅𝑅𝑡𝑡3 − 𝐸𝐸 (4) 

where; 𝑆𝑆 is the reservoir storage, 𝐼𝐼 is the total 
volume of inflow into the dam reservoir; 𝑅𝑅1 is the 
total volume of water supply flow, 𝑅𝑅2 is the total 
volume of spillway release, 𝑅𝑅3 is the total volume 
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of environmental flow through downstream, 𝐸𝐸 is 
the volume of evaporation and 𝑡𝑡 is the time index. 
 The model is configured daily in this study 
using monthly inflows. HEC-ResSim applies a 
simple linear interpolation to convert monthly data 
into daily. The decisions are taken according to the 
Guide Curve (GC) definition. Operations, rules, 
and alternatives are defined to simulate the 
operation of the system. The rules are prioritized 
depending on their descriptions. In this study, the 
HEC-ResSim model simulation model is conducted 
on a daily time period. 

2.3. Data sets 
2.3.1. Study area and hydro-meteorological 

data 
The developed model is applied to the Çamlıdere 
Dam Basin (753.4 km2), which supplies most of the 
municipal water to Ankara, the capital of Turkey 
(Fig. 2). Çamlıdere dam which is a rock-filled dam 
has been operating since 1987. The annual water 
withdrawal was planned for about 142 hm3/year 
considering annual water availability of 161 hm3. 
The reservoir volume was designed to accumulate 
a more significant flow considering further water 
diversions from other basins. However, in this study 
we only focus on the water availability of the 

Çamlıdere Basin, and the water transfers from other 
systems are not considered within the scope. 
 The data used in the study are total monthly 
precipitation (P), average monthly air temperature 
(T), monthly total net evaporation (E) and monthly 
inflow volumes into the reservoir (Q). The inflows 
into the dam reservoir are calculated between 1960 
and 2016 by the State Hydraulic Works (DSI). The 
1970 – 2005 period is selected as the application 
range considering the reference period data range of 
the EURO-CORDEX database [32]. There are 6 
rain gauges called Kızılcahamam, Nallıhan, 
Beypazarı, Esenboğa, Keçiören and Polatlı in 
Ankara and around the basin. The highest 
correlation with observed inflows is detected with 
precipitation data of Kızılcahamam station, the 
nearest station to the dam lake. Hence, we use 
Kızılcahamam gauge station data and the climate 
data is also extracted from the closest node to the 
station. For the W-MLP model configuration, the 
first 252 months (between January 1970 and 
December 1990) are used for the training period, 
while the remaining data (177 months) that are not 
used in any part of the training (between January 
1991 and September 2005) are split for testing the 
model.

 
Fig. 2. Location and topography of the study area with station network
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The physical characteristics of the dam reservoir 
(elevation-storage-area curve), and the elements of 
the dam such as spillways, intake structures, 
sluiceways, etc. with their capacity curves are 
defined in the HEC-ResSim model. The main 
characteristics of the dam and the reservoir are 
briefly given in Table 1. The delivered amount for 
water supply purposes is assumed as 163.3 
hm3/year (15% increased amount of the planned 
demand) according to the expected increase in 
demands due to the population growth [33]. The 
discharged amounts of environmental and 
additional purposes to the downstream regions are 
taken as 19 hm3/year, and 6 hm3/year, respectively 
[33]. The dam reservoir is designed to handle a 
larger capacity than its total volume considering 
further inter-basin water transfers; thus, the initial 
reservoir content in the reservoir simulations is 
assumed to be 1/3 of the total conservation pool 
which equals 356.7 hm3 (almost double the annual 
total inflows). Evaporation data is assumed to be 
constant in the reference and future periods. The 
reservoir is divided into three zones: dead (inactive) 
volume, conservation volume, and flood control 
volume. The top of each pool elevation is defined 
as different zone partitioning with information in 
Table 1. Water withdrawals are defined as constant 
rules from intakes. Since there are no flood control 
purposes, the conservation volume (maximum 
operation level of the dam) is defined as the GC. 

2.3.2. Climate projections 
GCM is run for the reference (historical) period and 
projection period. In this study, the reference and 

future projections of precipitation and temperature 
are provided from the EURO-CORDEX data of 
CMIP5 which is freely available to all users [32]. 
There are different GCM and RCA in the system, 
and we select two GCMs that are appropriate for the 
Turkey region in the literature. MPI-ESM-LR and 
IPSL-CM5A-MR under two RCPs (RCP 4.5 and 
RCP 8.5) recommended by the IPCC 
(Intergovernmental Panel on Climate Change). We 
use downscaled versions of GCM data derived from 
the RCA4 Regional Climate Model to provide a 
range of high-resolution inputs (12.5 km 
resolution). Due to data-driven modeling, no further 
error correction is performed for precipitation and 
temperature datasets. The reference period has a 
range of 1970–2005 whilst the future projection has 
a range of 2016–2100. RCP 4.5 is a radiative 
forcing path equivalent to 4.5 Wm−2 (equivalent to 
650 ppm CO2 concentration) and RCP 8.5 is 
equivalent to 8.5 Wm−2 (equivalent to 1370 ppm 
CO2 concentration). It is a radiative forcing path 
that rises up until 2010 [34]. Therefore, RCP8.5 
represents a future worst-case scenario compared to 
the RCP4.5 scenario. 

2.4. Performance metrics 
The performance of the inflow simulations is tested 
with observed inflows using the square of 
correlation coefficient (R) called the coefficient of 
determination (R2), Nash-Sutcliffe Model 
Efficiency (NSE) and Percent-Bias (P-Bias) in Eqs. 
5 - 7. 

 
Table 1. Physical characteristics of Çamlıdere Dam 

 Elevation, AMSL* (m) Reservoir Storage (hm3) 

Flood control 999.70 1337.06 

Maximum operation 995.00 1220.38 

Minimum operation 942.14 150.06 

Spillway crest 995.00 - 

Sluiceway 897.75 - 

Minimum intake 942.14 150.06 
* Above mean sea level 



Journal of Construction Engineering, Management & Innovation 200 

 

𝑅𝑅 =
∑ (𝑋𝑋𝑚𝑚𝑡𝑡 − 𝑋𝑋𝑚𝑚)(𝑋𝑋𝑜𝑜𝑡𝑡 − 𝑋𝑋𝑜𝑜)𝑛𝑛
𝑡𝑡=1

�∑ (𝑋𝑋𝑚𝑚𝑡𝑡 − 𝑋𝑋𝑚𝑚)2𝑛𝑛
𝑡𝑡=1 �∑ (𝑋𝑋𝑜𝑜𝑡𝑡 − 𝑋𝑋𝑜𝑜)2𝑛𝑛

𝑡𝑡=1

 (5) 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑋𝑋𝑜𝑜𝑡𝑡 − 𝑋𝑋𝑚𝑚𝑡𝑡 )2𝑛𝑛
𝑡𝑡=1

∑ �𝑋𝑋𝑜𝑜𝑡𝑡 − 𝑋𝑋𝑜𝑜�
2𝑛𝑛

𝑡𝑡=1

 (6) 

𝑃𝑃 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ (𝑋𝑋𝑚𝑚𝑡𝑡 − 𝑋𝑋𝑜𝑜𝑡𝑡)𝑛𝑛
𝑡𝑡=1

∑ 𝑋𝑋𝑜𝑜𝑡𝑡𝑛𝑛
𝑡𝑡=1

 (7) 

where 𝑋𝑋𝑚𝑚𝑡𝑡  is modeled flow, 𝑋𝑋𝑜𝑜𝑡𝑡 is observed flow, 𝑋𝑋𝑚𝑚 
is the average of the modeled inflows, 𝑋𝑋𝑜𝑜 is average 
observed flows, 𝑛𝑛 is the number of data sets and 𝑡𝑡 
is the time index. 
 
3. Results 

3.1. W-MLP model results for the reference 
period 

The reference period of the climate data sets (1970-
2005) is configured as the hydrological model 
configuration period. The W-MLP-based monthly 
inflow model results are presented in terms of water 
volume (hm3/month) in Figs. 3-5 for the whole 
period (the training period from 1970 to 1990 and 
the testing period from 1991 to 2005). Each model 
is trained and tested separately. The final model 
parameters (the weights and the biases) of each W-
MLPs are selected from the best run of various 
independent trials applying the trial-and-error 
procedure. The station data-based W-MLP model 
experiment demonstrates the best capability of the 
machine learning W-MLP technique applied in this 
study under perfect input (forcings) conditions. The 
findings indicate that the developed W-MLP 
configuration gives satisfactory performance 
metrics (R2 and NSE>0.65 and >0.50 for the 
training and testing, respectively). The R2 and NSE 

performances of both climate data set-based W-
MLP models are lower than station-based 
modeling. However, monthly P-Biases show 
satisfactory values with less than 12% 
overestimations which shows the convenience of 
the model performances (Table 2). 

3.2. W-MLP model results for future 
projections under GCM scenarios 

The future inflow projections under RCP4.5 and 
RCP8.5 concentration scenarios are conducted 
between 2016 to 2100 using two monthly different 
climate data sets through previously developed and 
tested W-MLP models. The monthly average future 
simulation inflows are presented in comparison 
with the monthly average reference model inflows 
from October to September. The water year concept 
is used in the Northern hemisphere (Fig. 6). The 
peak of the monthly inflows into the dam reservoir 
during the spring seasons is expected to drastically 
decrease while early inflows during fall and winter 
slightly increase. The worst-case scenario (RCP 
8.5) based inflows are lower than RCP 4.5 scenario-
based inflows. The total percent reduction in mean 
future annual total inflows (2016-2100) with 
respect to their annual reference mean total values 
are approximately -7 % and -3 % in RCP4.5 and -
14% and -5% in RCP 8.5 for MPI and IPSL, 
respectively. 
 The projection inflows cannot be directly used 
in the reservoir operation study, hence the percent 
changes of the future projections with respect to the 
reference period are calculated for each month and 
climate change-based inflow hydrographs are 
derived by multiplying with observed values. The 
final form of the one annual water year cycle 
hydrograph is shown in Fig. 7. 

 
Table 2. Comparative performances of the W-MLP model for simulating inflows into the dam reservoir 

 R2 NSE P-Bias (%) 

 Station MPI IPSL Station MPI IPSL Station MPI IPSL 

Training Period 0.66 0.65 0.67 0.65 0.65 0.67 7.2 5.7 6.0 

Testing Period 0.51 0.33 0.12 0.50 0.30 0.12 11.1 5.8 11.9 
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Fig. 3. W-MLP modeling results using observed station data sets 

 

 
Fig. 4 W-MLP modeling results using MPI-ESM-LR reference climate data sets 

 

 
Fig. 5. W-MLP modeling results using IPSL-CM5A-MR reference climate data sets 
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Fig. 6. Variation of monthly inflows in comparison with reference period (a) MPI (b) IPSL 

 

 
Fig. 7. Climate change-based scenario hydrographs 

 
3.3. Reservoir simulation-based dam 

operation model results under climate 
change 

The daily simulation models are accomplished with 
different expected inflow scenarios under the HEC-
ResSim model with derived hydrographs under the 
same physical, operational, and demand data. Water 
demands are increased in the simulation model with 
the expected values in the future. Since the 
hydrograph is derived for one annual cycle, the 
simulation period is extended to discard the initial 
water level by sequentially providing the same 
scenario hydrograph. In order to make a 
comparison, a benchmark reservoir simulation 
model is also employed with monthly average 
observed inflow values. The benchmark model also 
enables the determination of the time horizon of the 
simulation. According to the benchmark model 
findings a sequential ten-year time horizon is 

sufficient without any water shortage. The results 
(reservoir water level and total releases from the 
reservoir for different purposes) are presented for 
RCP 4.5 and RCP 8.5 concentration scenarios of 
two climate data in Fig. 8 and Fig. 9, respectively. 
HEC-ResSim model allows conducting the 
simulation time step in daily or lower (hourly) time 
resolution. Since the study is based on assessing the 
performance of a water-supply reservoir regardless 
of the flood control purpose, thus the extreme cases 
in inflows are not reflected in a monthly model. 
However, monthly extremes (such as March and 
April) are properly reflected in the HEC-ResSim 
model through the filling of the reservoir. 
Considering the reservoir capacity, there are no 
spillway discharges in the simulations. RCP4.5-
based simulations provide less water shortage 
compared to RCP8.5 simulation results.  
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 a) Reservoir lake elevation  b) Release from the dam reservoir 

Fig. 8. Reservoir simulation results under RCP 4.5 scenario (arbitrary 10 years) 
 

 
 a) Reservoir lake elevation  b) Release from the dam reservoir 

Fig. 9. Reservoir simulation results under RCP 8.5 scenario (arbitrary 10 years)  
 
The durations for reaching the inactive zone for the 
first time that also shows the alarm situation due to 
water shortage are 7.8 years, 6.9 years, 6.8 years, 
4.8 years for MPI-RCP4.5, IPSL-RCP4.5, MPI-
RCP8.5, and IPSL-RCP8.5, respectively. Although 
the change in total annual water availability is less 
in W-MLP-based future flows in IPSL, however, it 
shows the worst case in the reservoir simulation 
model in terms of operation. This is mainly due to 
the change in the shape of the inflow hydrograph 
timing and the effects of the total reduction in 
inflows for the IPSL scenario, thus they have direct 
effect on water availability in the reservoir. 
 
4. Discussion of the results 
Generally, the W-MLP monthly rainfall-runoff 
model performances of each data set (station and 
climate) are satisfactory, especially in terms of 

monthly P-Bias values. The lower relationships for 
the climate-based models are expected considering 
the lower spatial resolution of climate data and 
uncertainties associated with global atmosphere 
models. Compared to daily modeling, the 
application of monthly modeling is more 
challenging in the literature. However, in this study, 
the lower NSE values compared to R2 and the 
mismatches of the peak values might be attributed 
to no lagged inflow data set in the modeling 
scheme.  Considering two climate models and RCP 
scenarios, the total reduction in future inflows 
(2016-2100) is expected to be between -13 % and -
3 %. However, a large variation in months and 
seasons affects the reservoir simulation results. 
This also shows the importance of accounting for 
future inflows in a water-budget-based reservoir 
simulation model. Finally, a summary chart (Fig. 
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10) depicts the annual average water availability in 
the reservoir and the annual average total releases 
obtained from the reservoir simulation model under 
the effects of climate change. The worst and the 
best cases are detected for IPSL-RCP 8.5 and MPI-
RCP 4.5, respectively. Percent changes are given in 
Table 3 compared to the benchmark model which 
assumes no change in the historical inflows in the 
future. According to the study results, it is 
remarkable to notice that climate change affects the 
operation of the Çamlıdere dam by decreasing -37 
% of the total reservoir storage in the future which 
is a much more significant impact compared to the 
worst-case -13 % reduction in annual inflows into 
the dam reservoir. 
 
5. Conclusions and outlook 
The hydrological processes are complex, and 
various factors affect the performances (i.e. the 
uncertainties of the model structure, forcing 
variables, initial conditions, etc.). However, 
hydrological models provide valuable information 

about the responses of the atmospheric variations 
within a catchment.  One of the biggest challenges 
of the current era is human-induced climate change. 
New approaches [35-37] and their integration with 
management of water structures are still needed for 
better adaptation to these challenges. This study 
proposes an application scheme to operate the 
existing water structures under changing climates. 
Even though the GCM model includes larger 
uncertainties, they still offer advantageous 
information about future conditions. The study 
demonstrates a useful scheme for integrating 
reservoir simulation models with inflow estimation, 
which might reveal valuable results for the dam 
operators, modelers, and decision-makers. The 
conclusions and future recommendations are 
briefly defined as: 
 The developed W-MLP models are capable of 

simulating monthly rainfall-runoff nonlinear 
relationships. Training GCMs-based forcings 
(precipitation and temperature) separately in the 
modeling scheme provides to estimate future 
projections. 

 

 
Fig. 10. Summary of the reservoir performance under the future projection in comparison with the benchmark model 

 
Table 3. Changes in inflows and dam storage due to climate change 

 Change in the inflows (%) Change in the dam storage (%) 

GCM RCP4.5 RCP8.5 RCP4.5 RCP8.5 

MPI-ESM-LR -7 % - 13 % -21 % -29 % 

IPSL-CM5A-MR -3 % -5 % -30% -37 % 
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 Considering two GCMs (MPI-ESM-LR and 
IPSL-CM5A-MR) under RCP4.5 and RCP8.5 
concentration scenarios, the total reduction in 
future inflows (2016-2100) is expected to be 
between -14 % and -3 %. 

 The impact of the future variability expected in 
inflows is much higher since the reservoir 
storage content varies between -37 % and -21 % 
indicating water shortages in the future 
conditions according to the reservoir simulation 
model. This might be attributed to the change in 
the inflow hydrograph timing, the effects of the 
total reduction in inflows for a longer time 
horizon, and the relative effects of the 
increments in water demand amounts in the 
future. 

 In further studies, rather than a single synthetic 
hydrograph for the future variability, the 
monthly scenario inflows can be also generated 
by updating with monthly correction factors 
obtained between observed inflows and the 
reference climate inflows and provided to 
reservoir simulation. This can help to reveal 
variations in reservoir water content and 
releases for various time horizons (e.g. 2016-
2049, 2050-2075, 2076-2100). 

 The obtained results might be engaged with 
different risk assessment metrics (reliability, 
resilience, and vulnerability) to determine the 
future condition of dam safety. The developed 
scheme can be applied to other reservoirs and 
regions, also accounting for other multi-purpose 
targets such as flood control and energy 
production. The precautions for future cases 
such as adaptation are vital for secure water 
management and dam safety. 
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