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Abstract

Climate change will alter the inflows into the dam in the future; thus, the balance
between water supply and water availability will directly impact the water levels and
indirectly affects dam safety. Therefore, estimating the future inflows and reservoir water
content can help the operators. In this study, a machine learning Wavelet-MultiLayer
Perceptron (W-MLP) method is applied to estimate monthly future projections (2016-
2100) of the inflows into the reservoir. The methodology is tested for one of the main
water supply reservoirs in Ankara, which distributes annual 142 hm?® water. The EURO-
CORDEX database is used to obtain Regional Climate Model (RCM) simulations of RCA4
(12.5 km) from two different Global Circulation Models (GCMs), MPI-ESM-LR and IPSL-
CM5A-MR, under two Representative Concentration Pathways (RCPs) (RCP 4.5 and RCP
8.5) scenarios. The monthly W-MLP models are independently trained and tested for
each data set (observed data and GCM outputs). The GCM scenario results indicate a
shift in monthly hydrographs for both RCPs projections with a reduction in inflows which
will directly change the operation of the reservoir. The daily HEC-ResSim model mimics
future water content and releases. According to the results, the annual reduction
expected in the future inflows scenarios varies between -3 % to -13% under the RCPs,
and the effects on annual reservoir water content are much higher (between -21 % and
-37 %). These findings can be used in different risk assessment metrics (reliability,
resilience, and vulnerability) to estimate the future effects of dam safety.

1. Introduction

Water supply systems consist of many decision

variables, natural and regulated flows,
interconnected water elements, independent
variables, etc. Decision makers such as

analysts/operators at water structure utilities apply
operational simulation/optimization tools to derive
rational decisions from available information.
However, climate change exacerbates the
precipitation intensity and temperature [1], directly
affecting these structures’ operation and decision.
The capacities of these structures are calculated

with present criteria and historical data sets. From
one aspect, some research mainly focused on the
change in extremes like droughts and flood
conditions [2-7]. On the other hand, spatial and
temporal variation of the hydrograph and its effects
on the existing water structures due to climate
change is still a research question. Climate change
is expected to alter the streamflow pattern, so the
operation of the current water structures will be
modified [8-9]. Therefore, their assessment for
future changes is an essential issue to increase
preparedness  for availability,
management, and dam safety [10-11].

water disaster
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The most widely used approach is conducting
the daily or sub-daily simulation of hydrological
processes via a validated hydrological model
(physical, conceptual or data-driven) using Global
Circulation Model (GCM) based climate
projections. The accuracy of GCMs directly affects
the hydrological model results, but their uncertainty
is massive, especially due to the low accuracy of
precipitation. Despite  their  significant
uncertainties, GCMs are still the most reliable
technique [12]. In most cases, GCM projections
cannot be used directly because their spatial
resolution is too coarse to model hydrological
processes at the required regional or local scale.
Thus, they must be downscaled and eventually bias-
corrected [13].

Rainfall-runoff models are used to estimate the
rainfall-runoff relationship for future hydrological
projections. Machine learning methods provide
valuable alternatives to setting up nonlinear
mapping. Hybrid systems are gaining popularity by
merging advantageous parts of different
approaches. For example, Humphrey et al. [14]
apply a hybrid monthly streamflow simulation
model by taking the Bayesian Artificial Neural
Network (ANN) for producing 1-month ahead
streamflow forecasts at three key locations in the
South East of South Australia into account. Tongal
and Booij [15] separate streamflow into different
components like baseflow and surface flow and
apply different machine learning techniques. Fan et
al. [16] employ a machine learning method based
on climate reconstruction to generate runoff for the
data-scarce mountainous basin. Yazdandoost and
Moradian [17] use CMIPS5 (Coupled Model
Intercomparison Project Phase5) data sets and
downscaled them with the Aurtificial Neural
Network (ANN) technique.

The assessment of the performances of water
systems under climate change is an urgent issue for
better adaptation studies. There is still limited study
in the literature about this problem. For example;
Ehsani et al. [10] emphasize that existing reservoirs
in the Northeastern United State will be inadequate
in forming drought/flood resiliency. Ehteram et al.
[18] investigate reservoir operation using different

heuristic optimization approaches under climate
change using various climate change models for
irrigation demand for the Dez basin in Iran.
Sharifinejad et al. [19] evaluate water system
vulnerability under changing climate from the
outputs of 19 climate models under two RCPs by
coupling the four hydrological models with HEC-
ResSim (Hydrologic Engineering Centre-Reservoir
Simulation Model) model on a headwater water
resources system in Alberta, Canada.

The consequences of climate change are also
depending on the selected region. This study aims
to integrate a machine learning-based Wavelet-
Multi-Layer Perceptron (W-MLP) rainfall-runoff
model that employs two different GCM outputs of
precipitation and temperature. Two RCPs mimic
future monthly inflows into the dam reservoir, with
a daily reservoir simulation model which estimates
the effects on dam operations using USACE HEC-
ResSim. The application reservoir is selected from
one of the main water supply recourses of the
capital city of Turkey, Ankara that distributes the
annual 142 hm?®/year of water. The future inflow
projections are generated using EURO-CORDEX
(Coordinated Regional Climate Downscaling
Experiment) of RCA4 (Rossby Centre Regional
Atmospheric Model) regional outputs (12.5 km).
They are derived from two different GCMs i.e.
MPI-ESM-LR and IPSL-CM5A-MR under two
Representative Concentration Pathways (RCPs)
(RCP 4.5 and RCP 8.5) scenarios. The simulation
model results are also compared with a benchmark
model having no change in inflows into the dam
reservoir.

2. Methods and data

The study consists of two parts. First, inflows into
the dam reservoir that is operated for only water
supply purposes, the meteorological observations
(precipitation and temperature) provided from a
nearby station together with climate projection data
are obtained. These data are used in developing of
the rainfall-runoff model to produce reference and
future projections. Compared to the reference
period, the changes in the future years have been
determined, and a synthetic future hydrograph is
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derived. In the second part of the study, a reservoir
simulation model is set to simulate the effects of
future inflows on operational conditions. To that
end, physical and operational data sets are provided

and integrated with the synthetic future hydrograph
and expected water demand. The study flow chart
is presented in Fig. 1.
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2.1. Machine learning inflow simulation model
Physical and conceptual models may necessitate a
complex and rich data network to properly calibrate
model parameters. Machine learning
methods provide powerful nonlinear relationship
capabilities to relate meteorological variables and
hydrological responses [20-22]. The MLP model is
a feedforward network with linked neurons
systematized into three layers: an input layer, a
hidden layer, and an output layer [23]. The model is
feedforward and the number of input and output
nodes varies according to the problem type and data
sets. Eq. (1) demonstrates the output of node j, Q;.

Q= f(x-W; ~by) (1
X=Xy os Xiy s X))
Wi = (Wyj, oo, Wi, oo, W)

where X is information from previous nodes, w;;

various

represents the connection weight from the i node
in the preceding layer to this node, where b; is bias,
and f'is the activation function.

Most of the studies are conducted using lagged
observed discharge in their model inputs [24].
However, this is not possible in climate change
assessment studies, since the future projections are
mainly obtained using meteorological outputs.
Moreover, wavelet-based seasonal models
outperform only Autoregressive models (i.e., ANN
and Adaptive Neuro-Fuzzy Inference System,
ANFIS) in order to increase their performances
[25]. Hence, in this study, previous flow values are
not provided in the model setup and the Wavelet-
based MLP (W-MLP) model is configured with the
best performance combination inputs as shown in

Eq. (2).
In = f(Pr{lr PnD: Pn' Pn—ll Pn—2: Pn—3: Tn—l: Tn—z) (2)

where f, P, T, and n represent the neural network
model, total precipitation, average air temperature,
and time step. A and D represent components of 1-
D wavelet decomposition, so they are decomposed
into two sub-signals. The target time series are
provided as monthly total observed inflows in
hm?/month. The model is coded using MATLAB
version 2022a software (License number:
40994073).

The model parameters (weights and biases) are
optimized with Levenberg-Marquardt (LM)
backpropagation algorithm, since it provides fast
and robust solutions. This is a second order quasi-
Newton method which updates the weights with
Jacobian matrix for finding an optimal solution as
shown in Eq. (3):

Wipr =W — [J7T +ul]™*J"e (3)
where w1 and wy are weights during (k+1)" & k™
epoch, J is the Jacobian matrix that contains the
first derivatives of the network errors with respect
to the weights and biases, u is the learning rate and
¢ is a vector of network errors.

2.2. Reservoir operation simulation model
HEC-ResSim developed by USACE (United States
Army Corps of Engineers Hydrologic Engineering
Center) is selected to accomplish the reservoir
simulations. HEC-ResSim 3.1 version is used in the
study [26]. The computer program applies
hydrologic and hydraulics of reservoir system
simulation models. It is used in water resources
management studies to simulate water systems and
operational alternatives [27-30].
Software and documents are free and can be
downloaded from the developer’s internet page
[31]. Multi-purpose and multi-reservoir systems are
simulated by employing unique algorithms
developed for particular purposes. So that,
alternative operations can be generated and
simulated.

Simulation of the water resource system is
based on water accounting procedures associated
with mass conservation. Since water is a constant

test various

density fluid for most reservoir/river system
analysis applications, conservation of mass implies
conservation of volume as well. In a general form,
the mass balance or quantity equation for reservoirs
can be formulated in Eq. (4) as:

S,=S,,+I,—R'—R*—R}—E (4)

where; S is the reservoir storage, [ is the total
volume of inflow into the dam reservoir; R? is the
total volume of water supply flow, R? is the total
volume of spillway release, R® is the total volume
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of environmental flow through downstream, E is
the volume of evaporation and t is the time index.

The model is configured daily in this study
using monthly inflows. HEC-ResSim applies a
simple linear interpolation to convert monthly data
into daily. The decisions are taken according to the
Guide Curve (GC) definition. Operations, rules,
and alternatives are defined to simulate the
operation of the system. The rules are prioritized
depending on their descriptions. In this study, the
HEC-ResSim model simulation model is conducted
on a daily time period.

2.3. Data sets

2.3.1. Study area and hydro-meteorological
data
The developed model is applied to the Camlidere
Dam Basin (753.4 km?), which supplies most of the
municipal water to Ankara, the capital of Turkey
(Fig. 2). Camlidere dam which is a rock-filled dam
has been operating since 1987. The annual water
withdrawal was planned for about 142 hm?®/year
considering annual water availability of 161 hm?>.
The reservoir volume was designed to accumulate
a more significant flow considering further water
diversions from other basins. However, in this study
we only focus on the water availability of the

20T RWIE

Camlidere Basin, and the water transfers from other
systems are not considered within the scope.

The data used in the study are total monthly
precipitation (P), average monthly air temperature
(T), monthly total net evaporation (E) and monthly
inflow volumes into the reservoir (Q). The inflows
into the dam reservoir are calculated between 1960
and 2016 by the State Hydraulic Works (DSI). The
1970 — 2005 period is selected as the application
range considering the reference period data range of
the EURO-CORDEX database [32]. There are 6
rain gauges called Kizilcahamam, Nallihan,
Beypazari, Esenboga, Kegioren and Polatli in
Ankara and around the basin. The highest
correlation with observed inflows is detected with
precipitation data of Kizilcahamam station, the
nearest station to the dam lake. Hence, we use
Kizilcahamam gauge station data and the climate
data is also extracted from the closest node to the
station. For the W-MLP model configuration, the
first 252 months (between January 1970 and
December 1990) are used for the training period,
while the remaining data (177 months) that are not
used in any part of the training (between January
1991 and September 2005) are split for testing the
model.
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The physical characteristics of the dam reservoir
(elevation-storage-area curve), and the elements of
the dam such as spillways, intake structures,
sluiceways, etc. with their capacity curves are
defined in the HEC-ResSim model. The main
characteristics of the dam and the reservoir are
briefly given in Table 1. The delivered amount for
water supply purposes is assumed as 163.3
hm3/year (15% increased amount of the planned
demand) according to the expected increase in
demands due to the population growth [33]. The
discharged amounts of environmental and
additional purposes to the downstream regions are
taken as 19 hm¥/year, and 6 hm?/year, respectively
[33]. The dam reservoir is designed to handle a
larger capacity than its total volume considering
further inter-basin water transfers; thus, the initial
reservoir content in the reservoir simulations is
assumed to be 1/3 of the total conservation pool
which equals 356.7 hm? (almost double the annual
total inflows). Evaporation data is assumed to be
constant in the reference and future periods. The
reservoir is divided into three zones: dead (inactive)
volume, conservation volume, and flood control
volume. The top of each pool elevation is defined
as different zone partitioning with information in
Table 1. Water withdrawals are defined as constant
rules from intakes. Since there are no flood control
purposes, the conservation volume (maximum
operation level of the dam) is defined as the GC.

2.3.2. Climate projections
GCM is run for the reference (historical) period and
projection period. In this study, the reference and

Table 1. Physical characteristics of Camlidere Dam

future projections of precipitation and temperature
are provided from the EURO-CORDEX data of
CMIP5 which is freely available to all users [32].
There are different GCM and RCA in the system,
and we select two GCMs that are appropriate for the
Turkey region in the literature. MPI-ESM-LR and
IPSL-CM5A-MR under two RCPs (RCP 4.5 and
RCP 8.5) recommended by the IPCC
(Intergovernmental Panel on Climate Change). We
use downscaled versions of GCM data derived from
the RCA4 Regional Climate Model to provide a
range of high-resolution (12.5 km
resolution). Due to data-driven modeling, no further
error correction is performed for precipitation and

inputs

temperature datasets. The reference period has a
range of 1970-2005 whilst the future projection has
a range of 2016-2100. RCP 4.5 is a radiative
forcing path equivalent to 4.5 Wm—2 (equivalent to
650 ppm CO; concentration) and RCP 8.5 is
equivalent to 8.5 Wm—2 (equivalent to 1370 ppm
CO; concentration). It is a radiative forcing path
that rises up until 2010 [34]. Therefore, RCPS8.5
represents a future worst-case scenario compared to
the RCP4.5 scenario.

2.4. Performance metrics

The performance of the inflow simulations is tested
with observed inflows using the square of
correlation coefficient (R) called the coefficient of
determination  (R?),  Nash-Sutcliffe ~ Model
Efficiency (NSE) and Percent-Bias (P-Bias) in Egs.
5-17.

Elevation, AMSL* (m)

Reservoir Storage (hm?)

Flood control 999.70
Maximum operation 995.00
Minimum operation 942.14
Spillway crest 995.00
Sluiceway 897.75
Minimum intake 942.14

1337.06
1220.38
150.06

150.06

* Above mean sea level
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n t
t=1X0

where X£, is modeled flow, X’ is observed flow, X,

is the average of the modeled inflows, X, is average
observed flows, n is the number of data sets and t
is the time index.

3. Results

3.1. W-MLP model results for the reference
period

The reference period of the climate data sets (1970-
2005) is configured as the hydrological model
configuration period. The W-MLP-based monthly
inflow model results are presented in terms of water
volume (hm*month) in Figs. 3-5 for the whole
period (the training period from 1970 to 1990 and
the testing period from 1991 to 2005). Each model
is trained and tested separately. The final model
parameters (the weights and the biases) of each W-
MLPs are selected from the best run of various
independent trials applying the trial-and-error
procedure. The station data-based W-MLP model
experiment demonstrates the best capability of the
machine learning W-MLP technique applied in this
study under perfect input (forcings) conditions. The
findings indicate that the developed W-MLP
configuration gives satisfactory performance
metrics (R?> and NSE>0.65 and >0.50 for the
training and testing, respectively). The R? and NSE

performances of both climate data set-based W-
MLP models are lower than station-based
modeling. However, monthly P-Biases
satisfactory  values with less than 12%
overestimations which shows the convenience of
the model performances (Table 2).

show

3.2. W-MLP model results for future
projections under GCM scenarios

The future inflow projections under RCP4.5 and
RCP8.5 concentration scenarios are conducted
between 2016 to 2100 using two monthly different
climate data sets through previously developed and
tested W-MLP models. The monthly average future
simulation inflows are presented in comparison
with the monthly average reference model inflows
from October to September. The water year concept
is used in the Northern hemisphere (Fig. 6). The
peak of the monthly inflows into the dam reservoir
during the spring seasons is expected to drastically
decrease while early inflows during fall and winter
slightly increase. The worst-case scenario (RCP
8.5) based inflows are lower than RCP 4.5 scenario-
based inflows. The total percent reduction in mean
future annual total inflows (2016-2100) with
respect to their annual reference mean total values
are approximately -7 % and -3 % in RCP4.5 and -
14% and -5% in RCP 8.5 for MPI and IPSL,
respectively.

The projection inflows cannot be directly used
in the reservoir operation study, hence the percent
changes of the future projections with respect to the
reference period are calculated for each month and
climate change-based inflow hydrographs are
derived by multiplying with observed values. The
final form of the one annual water year cycle
hydrograph is shown in Fig. 7.

Table 2. Comparative performances of the W-MLP model for simulating inflows into the dam reservoir

R2

NSE P-Bias (%)

Station MPI IPSL

Station MPI IPSL

Station MPI IPSL

Training Period 0.66 0.65 0.67
Testing Period 0.51 0.33 0.12

0.65 0.67 7.2 5.7 6.0
0.30 0.12 11.1 5.8 11.9
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3.3. Reservoir simulation-based dam
operation model results under climate
change

The daily simulation models are accomplished with

different expected inflow scenarios under the HEC-

ResSim model with derived hydrographs under the

same physical, operational, and demand data. Water

demands are increased in the simulation model with
the expected values in the future. Since the
hydrograph is derived for one annual cycle, the
simulation period is extended to discard the initial
water level by sequentially providing the same
scenario hydrograph. In order to make a
comparison, a benchmark reservoir simulation
model is also employed with monthly average
observed inflow values. The benchmark model also
enables the determination of the time horizon of the
simulation. According to the benchmark model
findings a sequential ten-year time horizon is

sufficient without any water shortage. The results
(reservoir water level and total releases from the
reservoir for different purposes) are presented for
RCP 4.5 and RCP 8.5 concentration scenarios of
two climate data in Fig. 8 and Fig. 9, respectively.
HEC-ResSim  model conducting the
simulation time step in daily or lower (hourly) time
resolution. Since the study is based on assessing the
performance of a water-supply reservoir regardless
of the flood control purpose, thus the extreme cases

allows

in inflows are not reflected in a monthly model.
However, monthly extremes (such as March and
April) are properly reflected in the HEC-ResSim
model through the filling of the reservoir.
Considering the reservoir capacity, there are no
spillway discharges in the simulations. RCP4.5-
based simulations provide less water shortage
compared to RCP8.5 simulation results.
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Fig. 9. Reservoir simulation results under RCP 8.5 scenario (arbitrary 10 years)

The durations for reaching the inactive zone for the
first time that also shows the alarm situation due to
water shortage are 7.8 years, 6.9 years, 6.8 years,
4.8 years for MPI-RCP4.5, IPSL-RCP4.5, MPI-
RCP8.5, and IPSL-RCPS.5, respectively. Although
the change in total annual water availability is less
in W-MLP-based future flows in IPSL, however, it
shows the worst case in the reservoir simulation
model in terms of operation. This is mainly due to
the change in the shape of the inflow hydrograph
timing and the effects of the total reduction in
inflows for the IPSL scenario, thus they have direct
effect on water availability in the reservoir.

4, Discussion of the results

Generally, the W-MLP monthly rainfall-runoff
model performances of each data set (station and
climate) are satisfactory, especially in terms of

monthly P-Bias values. The lower relationships for
the climate-based models are expected considering
the lower spatial resolution of climate data and
uncertainties associated with global atmosphere
models. Compared to daily modeling, the
application of monthly modeling is more
challenging in the literature. However, in this study,
the lower NSE values compared to R? and the
mismatches of the peak values might be attributed
to no lagged inflow data set in the modeling
scheme. Considering two climate models and RCP
scenarios, the total reduction in future inflows
(2016-2100) is expected to be between -13 % and -
3 %. However, a large variation in months and
seasons affects the reservoir simulation results.
This also shows the importance of accounting for
future inflows in a water-budget-based reservoir
simulation model. Finally, a summary chart (Fig.



Journal of Construction Engineering, Management & Innovation 204

10) depicts the annual average water availability in
the reservoir and the annual average total releases
obtained from the reservoir simulation model under
the effects of climate change. The worst and the
best cases are detected for IPSL-RCP 8.5 and MPI-
RCP 4.5, respectively. Percent changes are given in
Table 3 compared to the benchmark model which
assumes no change in the historical inflows in the
future. According to the study results, it is
remarkable to notice that climate change affects the
operation of the Camlidere dam by decreasing -37
% of the total reservoir storage in the future which
is a much more significant impact compared to the
worst-case -13 % reduction in annual inflows into
the dam reservoir.

5. Conclusions and outlook

The hydrological processes are complex, and
various factors affect the performances (i.e. the
uncertainties of the model structure,
variables, conditions, etc.).
hydrological models provide valuable information

forcing

initial However,

about the responses of the atmospheric variations
within a catchment. One of the biggest challenges
of the current era is human-induced climate change.
New approaches [35-37] and their integration with
management of water structures are still needed for
better adaptation to these challenges. This study
proposes an application scheme to operate the
existing water structures under changing climates.
Even though the GCM model includes larger
uncertainties, they still offer advantageous
information about future conditions. The study
demonstrates a useful scheme for integrating
reservoir simulation models with inflow estimation,
which might reveal valuable results for the dam
operators, modelers, and decision-makers. The
conclusions and future recommendations
briefly defined as:
= The developed W-MLP models are capable of
simulating monthly rainfall-runoff nonlinear
relationships. Training GCMs-based forcings
(precipitation and temperature) separately in the
modeling scheme provides to estimate future
projections.
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Fig. 10. Summary of the reservoir performance under the future projection in comparison with the benchmark model

Table 3. Changes in inflows and dam storage due to climate change

Change in the inflows (%)

Change in the dam storage (%)

GCM RCP4.5 RCP8.5 RCP4.5 RCP8.5
MPI-ESM-LR -T% -13% 21 % -29 %
IPSL-CM5A-MR 3% -5 % -30% -37%
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= Considering two GCMs (MPI-ESM-LR and
IPSL-CMS5A-MR) under RCP4.5 and RCP8.5
concentration scenarios, the total reduction in
future inflows (2016-2100) is expected to be
between -14 % and -3 %.

= The impact of the future variability expected in
inflows is much higher since the reservoir
storage content varies between -37 % and -21 %
indicating water shortages in the future
conditions according to the reservoir simulation
model. This might be attributed to the change in
the inflow hydrograph timing, the effects of the
total reduction in inflows for a longer time
horizon, and the relative effects of the
increments in water demand amounts in the
future.

= In further studies, rather than a single synthetic
hydrograph for the future variability, the
monthly scenario inflows can be also generated
by updating with monthly correction factors
obtained between observed inflows and the
reference climate inflows and provided to
reservoir simulation. This can help to reveal
variations in reservoir water content and
releases for various time horizons (e.g. 2016-
2049, 2050-2075, 2076-2100).

= The obtained results might be engaged with
different risk assessment metrics (reliability,
resilience, and vulnerability) to determine the
future condition of dam safety. The developed
scheme can be applied to other reservoirs and
regions, also accounting for other multi-purpose
targets such as flood control and energy
production. The precautions for future cases
such as adaptation are vital for secure water
management and dam safety.
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