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The study aims to propose a suitable prediction model to deliver the full heating season’s 
thermal performance dataset by using short-term measured data during the system 
operation period. Two machine learning-based models, BackPropagation Artificial Neural 
Network and Adaptive Neuro-Fuzzy Inference System are compared by utilizing the 
measured data of indoor temperature and relative humidity. The independent variables 
of the prediction are obtained from the weather data, in addition to the building energy 
simulation model. Conversely, the data of the dependent variable are obtained from the 
real measurements from inside of the building for 31,5 days of the heating season, 
starting from February 22nd, which is called the first heating season. Moreover, the entire 
heating season of the building is evaluated between November 15th and March 21st, which 
is called the second heating season when the building’s monthly consumption exceeds 
14 kW/m2. The first prediction approach is the feed-forward Artificial Neural Network 
(ANN) with Back Propagation Learning System (BPS). Four ANN models are structured 
by input-output and one hidden layer is performed. The second prediction approach is 
the Adaptive Neuro-Fuzzy Inference System (ANFIS). The Sugeno ANFIS method is 
utilized in this prediction work. Eight ANFIS models are structured by 6 layers are 
performed to achieve the prediction. Besides, the main motivation for approaching ANFIS 
is to avoid the stochasticity of the measured temperature and humidity data. The 
prediction results are compared with the measured data of the second heating season. 
The comparison showed that the ANFIS model is more efficient since it achieved an 85% 
accuracy rate for the indoor temperature and 81% for the humidity prediction. While the 
ANN prediction accuracy is 81%, 80% relatively for the temperature and humidity. Then 
the comparison is scaled by selecting the most ordinary period in the measured data to 
be the data sample that will be used in the comparison. The second comparison showed 
that the ANFIS model is once again better than the ANN model since the ANFIS prediction 
accuracy becomes 88% for temperature and 90% for humidity, while the ANN prediction 
accuracy becomes 83% for temperature and 87% for humidity. Nevertheless, the 
stochasticity of the measured affected the prediction results in accuracy rates. Hence, 
according to the achieved accuracy rates, both the ANFIS and ANN approaches are highly 
validated in this type of prediction. 
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1. Introduction 
Providing satisfactory thermal comfort conditions 
have a significant impact on buildings' energy 
consumption since the cooling and heating 
consumption correspond to almost haft of the 
overall energy consumption of the buildings [1]. 
Therefore, research that focuses on indoor thermal 
conditions would have multiple objectives as 
improving the energy performance of the buildings 
relatedly reducing the emissions. 
 Further, the thermal environment quality is 
highly related to human health and productivity 
since it has a direct effect on physical and 
psychological conditions [2]. Henceforward, 
measurement and verification of the building's 
indoor thermal conditions such as temperature and 
humidity have been investigated extensively in the 
last decades to sustain the quality of the indoor 
environment. 
 Measurement and verification of the indoor 
thermal comfort conditions to evaluate the building 
energy performance might take up to 2 years to 
cover the whole heating and cooling seasons. It 
requires detailed data on hourly, daily, monthly, 
and seasonal based on the indoor thermal 
environment. This long period cause inefficiency in 
the measurement and verification process. 
Granting, examining the thermal environment of 
the building during the operation of the heating and 
cooling systems provides the opportunity to report 
and fix any problem that the poor system 
performance may cause.  
 Predicting the indoor thermal conditions of a 
building by using short-term measured data could 
be an efficient way of investigating the building’s 
thermal environment if the measurements were 
performed during the building system in operation. 
This predicted data could be a useful tool to support 
energy management in the building. 
 Artificial intelligence-based algorithms had 
been utilized widely in prediction works and 
studies. Machine learning could be effective since 
it doesn’t need special infrastructures to be 
performed. The Artificial Neural Network 
algorithm (ANN) is one of the most used machine 
learning algorithms. ANN mimics the human brain 

process to convert the information and experiences 
into decisions, it had been utilized widely in both 
classification and prediction studies because of its 
highly accurate results and its ability to correlate the 
non-linearity between the variables. 
 On the other hand, the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) is an algorithm that 
combines the Fuzzy approach and the ANN 
algorithm in order to perform better accurate 
results. Both ANFIS and ANN approaches have 
been used in both the classification and prediction 
studies in the literature. 
 The purpose of this work is to define the best 
effective model in terms of prediction accuracy 
rate. The focus persists on predicting the building’s 
heating performance by using short-term 
measurements. A big-scale residential building was 
employed for measuring and collecting the short-
term data along with developing the energy model 
for analyzing the heating season’s consumption. 
The prediction is performed by the application of 
both the ANN and ANFIS approaches. The 
predicted data of ANN and ANFIS models are also 
validated by comparing them with the measured 
datasets. 

1.1. Literature review 
Research on predicting data by utilizing machine 
learning and deep learning approaches is applied to 
the diverse fields that have different objectives from 
weather data forecasting to currencies changes' 
estimations. There are altered approaches that 
provide precisely evaluated predictions that have 
been widely applied. ANN and ANFIS two well-
known approaches were utilized to be tools to 
support the evaluation of diverse problems in 
literature.  
 For example, Piri et al. predicted the daily pan 
evaporation by developing two-hybrid models of 
the Cuckoo optimization algorithm (COA) with 
ANN and adaptive neuro-fuzzy inference system 
(ANFIS) with ANN. Further, their performances 
were compared with single ANN and ANFIS. The 
results didn’t give a noticeable enhancement of 
combining the COA with ANN and ANFIS 
techniques. Consequently, hybridizing the COA 
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with ANN and ANFIS cannot be a feasible option 
for estimating the daily evaporation. The ANN 
model provides better accuracy for the prediction of 
daily evaporation [3].  
 In another field, Golafshani et al. utilized both 
methods for predicting the compressive strength of 
normal and High-Performance Concretes. ANN 
and ANFIS techniques were hybridized by Grey 
Wolf Optimizer (GWO) for predicting the 
compressive strength (CS) of Normal Concrete 
(NC) and High-Performance Concrete (HPC). They 
concluded their study by indicating that the 
hybridization of the models with GWO improves 
the training and generalization capability of both 
ANN and ANFIS models [4]. 
 Hajiand and Payvandy applied ANN and 
ANFIS to assess the ability of these methods for 
predicting the color strength of plasma-treated wool 
yarns dyed with a natural colorant. As a result, 
ANFIS had higher accuracy based on the obtained 
correlation coefficients [5].  
 Shahrak et al. functioned in ANN and ANFIS 
modeling for predicting the efficiency of water 
vapor adsorption capacity in porous metal-organic 
framework materials (MOF). In the model, the 
input parameters were selected as the surface area, 
pore-volume, and pore diameters and the outputs 
were calculated as the water vapor adsorption 
capacities of MOFs. The results show that real 
experimental data entailed the advantage of the 
ANFIS and ANN models to predict the water vapor 
adsorption capacity into MOFs with a mean squared 
error (MSE) of 0.005 and 0.002. This reveals a great 
potential for the application of both ANN and 
ANFIS methods to quickly monitor the MOF’s 
suitability for water vapor adsorption [6]. 
 Similarly, Sahoo et al. on the other hand utilized 
both ANN and ANFIS to predict the green sand 
mold permeability. Even though, the predicted 
permeability by both models was found to be very 
close to experimental values; the predictability of 
the ANFIS model was better because the error 
percent was less [7]. 
 Respectively, there is some research just to 
compare the accuracy of multiple prediction 
models. Poul et al, have done a comparative study 

of multi-linear regression (MLR), K-nearest 
neighbors (KNN), ANN and ANFIS models. In the 
research, the prediction of the monthly flow in the 
St. Clair River was done by applying the MLR as a 
statistical method, ANN and ANFIS as non-linear 
ones, and KNN as a non-parametric regression. 
Results indicated that the implementations of three 
nonlinear models of ANN, ANFIS, and KNN are 
extremely convincing, the ANFIS model which 
benefits from the advantages of both fuzzy 
inference systems and neural networks was 
excellent. On the other hand, the MLR models that 
attempt to generate a linear relationship between the 
inputs and outputs were not successful to estimate 
the monthly flows accurately. KNN models were 
close to the ANN and ANFIS models, further, it 
consumes a simple structure and has an easy 
learning procedure [8]. 
 Likewise, Taşan and Demir compared MLR, 
ANN, and ANFIS models for predicting the field 
capacity and permanent wilting point for Bafra 
plain soils. In this study, the performance of MLR, 
ANN, and ANFIS methods with different input 
parameters in the prediction of field capacity and 
the permanent wilting point from easily obtained 
soil characteristics were compared. Validation 
results revealed that the ANN model with the 
greatest (Coefficient of determination) R2 and the 
lowest MAE and RMSE value exhibited better 
performance for the prediction of FC and PWP than 
the MLR and ANFIS models [9]. 
 Moosavi et al. comparatively used ANN-MLP, 
ANN-RBF, ANFIS, and GMDH methods to predict 
the thermal conductivity enhancement of 
nanofluids. In this work, four types of data mining 
methods, namely adaptive neuro-fuzzy inference 
system, artificial neural network—multilayer 
perceptron algorithm (ANN-MLP), artificial neural 
network—radial basis function algorithm (ANN-
RBF), and group method of data handling (GMDH) 
have been used to predict the enhancement of the 
relative thermal conductivity of a wide range of 
nanofluids with different base fluids and 
nanoparticles. The total number of experimental 
data used in this work is 483 from 18 different 
nanofluids. The input parameters are thermal 
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conductivity of base fluid and nanoparticles, 
volume fraction percent, the average size of 
nanoparticles, and temperature. Although the 
results showed that all four models are in relatively 
good agreement with experimental data, the ANFIS 
method is the best. Accordingly, the ANFIS method 
can able us to predict the relative thermal 
conductivity of new nanofluids in different 
conditions with good accuracy [10]. 
 To extend the research further on building 
energy consumption, ANN has been experimented 
with to predict indoor comfort conditions.  
Sozer and Sems took advantage of ANN by 
utilizing short-term monitored data to predict the 
whole heating season’s data to be used in a real-
time calibration process. The experiment was 
developed for a big-scale building and a detailed 
building energy model was developed. The results 
of the prediction were used as feedback data to 
improve simulation accuracy [11]. 
 Comparing the prediction results of both ANN 
and ANFIS models for indoor thermal data in terms 
of accuracy would be a sufficient method to 
understand the ability of these machine learning 
models to provide accurate predictions in a such 
study. Different comparative studies for ANN and 
ANFIS prediction accuracy also have been 
introduced in the literature. Masoudi et. al. 
developed ANN and ANFIS models to predict the 
temperature in order to understand the effect of 
machining process parameters on temperature 
change. They found that the ANFIS model results, 
when compared to experimental data, were more 
accurate with a 3.17% error rate than the ANN 
model results which had a 5.83% error rate [12].  
Riahi-Madvar and Seifi used 360 data points for 21 
parameters to develop ANN and ANFIS methods 
aiming to predict the bedload transport in gravel-
bed rivers. Their results showed that both ANFIS 
and ANN models are suitable for this kind of 
prediction and proved the superiority of the ANFIS 
model [13]. The same year, Soni published a 
comparison study between ANN and ANFIS 
predictive models developed to predict the turnover 
of the employees. The results of this study showed 
that the sensitivity of the ANN model is higher and 

it is more suitable for this prediction work since the 
RMSE of the ANN model was 0.1 for the training 
dataset and 0.4 for the unseen dataset while the 
RMSE for the ANFIS model were 0.19 for the 
training dataset and 0.5 for the unseen dataset [14]. 
In this study, ANN is compared with ANFIS to 
provide better accuracy in predicting the heating 
season indoor thermal comfort data. This prediction 
aims to provide a full heating season's thermal 
comfort dataset by using short-term measured data 
while the heating system is performing. Even 
though there are other comparative studies of ANN 
and ANFIS in the literature, their application of 
them to a building’s thermal performance, in which 
the accuracy of prediction is crucial, is not realized 
yet. Furthermore, both modeling results are 
compared by scaling their accuracy, which would 
be considered a valuable outcome of this study. 
 
2. Methodology 
The prediction of the indoor thermal temperature 
and humidity data is performed by two supervised 
machine-learning algorithms ANN and ANFIS. 
Both of the algorithms need a sufficient amount of 
historical data to be trained to provide an accurate 
prediction. In addition, the period of the data to be 
predicted must be clearly defined. Fig. 1 shows the 
Methodology's steps followed. 

2.1. Data gathering 
Data gathering is a deliberate cycle to gather and 
measure the required information of the factors to 
be utilized in the forecast model. For the supervised 
machine learning predictive models, the quality and 
quantity of the available data directly affect the 
result of the prediction. The available data in this 
study was gathered from three different sources 
measurements, simulation, and weather stations. 

2.2. Evaluating the heating season 
The heating season of the building is the time period 
during which the prediction models are performed. 
To be able to customize the heating season of the 
building this study depended on the simulation 
result of heat consumption by setting a value that 
the heating period starts when the heating 
consumption exceeds it. 
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Fig.1. Methodology flowchart 

2.3. Correlating the variables 
It is the process to discover the linear relationship 
between the input and targeted variables. It is 
important that the alterations in each input variable 
correlated to the alterations of each targeted 
variable in the correlation analysis. This correlation 
generates a coefficient to definite the dependency 
between those two variables. The coefficient value 
is between 1 and -1.  The relationship of the 
variables is direct when the coefficient value is 1, 
and it is reversed when the coefficient value is -1, 
and there is no relation when the coefficient value 
is 0. Since all of the gathered data are continuous 
the linear correlation, the coefficient formula in Eq. 
1 is applied for the correlation process. 

𝑟𝑟(𝑥𝑥𝑥𝑥)

=  
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
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𝑖𝑖=1 −  (∑ 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2
 (1) 

2.4. Data setting 
Data management is a crucial task to establish the 
base for the prediction model. The precision of the 
collected data leads to an accurate model. There are 
several constraints for preparing and unifying the 
gathered data such as initial time, frequency, unit, 
and structure. 
 Thenceforward, the considered data must be 
filtered to avoid or reduce the noises by un-using 
the instances which have unexpected values out of 
the range of the maximum and minimum values that 
are specified by the Eqs. 2-3: 

𝑀𝑀𝑀𝑀𝑥𝑥 =  µ + 1.5 ∗  σ (2) 

𝑀𝑀𝑀𝑀𝑛𝑛 =  µ − 1.5 ∗  σ (3) 

where: µ: the mean – σ: the standard deviation. 

2.5. ANN modeling 
ANN is a method, often employed in various fields 
to correlate data and variables that do not have a 
clear algorithm to solve or link to each other to 
predict their outputs. The ANN model possesses 
different types, as the most utilized one is the linear 
multi perceptron. Besides, the most introduced 
model in the prediction exertion is the Feedforward 
Backpropagation model. 
 The composition of the structure of the ANN is 
very important that must be defined by the setting 
of the various parameters: the number of the hidden 
layers and the order of the nodes in each layer in 
addition to the method of the loss index error, 
learning rate, and distributing the datasets for 
training and selection phases. 
 The ANN model has been organized for training 
by setting the number of iterations and defining the 
activation function between the layers, which 
defines the numerical calculations between the 
neurons of the network. The network calculations 
will depend on the sigmoid (logistic) activation 
function to avoid the non-linearity between the 
variables. Sigmoid activation function could be 
expressed by Eqs. 4-5: 

sigmoid(x) or sig(x) =  1/(1 + e^(−x)) (4) 

Zj =  sig(∑(xi ×  wij )  −  θ) (5) 
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where: Zj is the set that is received by the artificial 
neuron, xi is the input value, wij is the weight and θ 
is the use of a threshold. 
 Then, the assortment is the process of measuring 
the features and performance of the model. By a 
defined number of iterations, the ANN compares 
the selection data prediction results with its actual 
targeted data and calculates the losses of the model, 
then it improves the parameters of the model until 
it reaches the minimum losses. Then the final 
structure of the model would be defined and the last 
training performed would be iterated. 

2.6. ANFIS modeling 
Adaptive Neuro-Fuzzy Inference Systems 
interpolate between multi-linear equations in order 
to model an accurate nonlinear system. The ANFIS 
modeling has been done based on the Sugeno fuzzy 
inference [15] method since its computation 
process is more efficient and tighter than its 
counterpart Madami fuzzy inference [16] method. 
The Sugeno method has the ability to produce the 
best fuzzy modeling performance by customizing 
the membership functions through adaptive fuzzy 
model construction techniques. 
 To fuzzy, the data Takagi-Sugeno fuzzy if-then 
rules were used to perform a first-order Sugeno 
model. The ANFIS rules and its x and y inputs and 
f output are represented in Eqs. 6-7: 

Rule (1): If 𝑥𝑥 is A1 and 𝑥𝑥 is B1,  

 then f1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑥𝑥 + 𝑟𝑟1 (6) 

Rule (2): If 𝑥𝑥 is A2 then 𝑥𝑥 is B2  
 then f2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑥𝑥+ 𝑟𝑟2 (7) 

where 𝐴𝐴1 and 𝐴𝐴2 are the input membership functions 
(MFs) for the input layer, 𝐵𝐵1 and 𝐵𝐵2 are the input 
membership functions (MFs) of 𝑥𝑥. The output 
function parameters are 𝑝𝑝1, 𝑞𝑞1, 𝑟𝑟1, 𝑝𝑝2, 𝑞𝑞2, and 𝑟𝑟2. 
 The ANFIS model is structured by the following 
five layers: 
Layer 1: This layer produces the membership grade 
of the input variable in each node. Eq. 8 represents 
the membership functions values for each 𝑀𝑀 𝑡𝑡ℎ node: 

𝑄𝑄𝑀𝑀1 = µ𝐴𝐴𝑀𝑀 (𝑥𝑥)= 1

1+��𝑥𝑥−𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶 �
2

 �
𝑏𝑏𝐶𝐶 (8) 

where 𝑥𝑥 is the input to node 𝑀𝑀 and 𝐴𝐴𝑀𝑀 if the linguistic 
label associated with this node function, 𝑀𝑀𝑀𝑀,𝑏𝑏𝑀𝑀,𝑐𝑐𝑀𝑀 is 
the parameter set that changes the shapes of the 
membership function. 
Layer 2: In the second layer the value of each node 
multiplies by input weight, as shown by the Eq. 9: 

𝑄𝑄𝑀𝑀2 = 𝑤𝑤𝑀𝑀=µ𝐴𝐴𝑀𝑀 (𝑥𝑥) µ𝐴𝐴𝑀𝑀 (𝑥𝑥) × µ𝐵𝐵𝑀𝑀 (𝑥𝑥), 𝐼𝐼 = 1, 2… (9) 

Layer 3: This layer is responsible for the 
normalized firing strength for the membership 
values in node 𝑀𝑀 𝑡𝑡ℎ by Eq. 10: 

𝑄𝑄𝑀𝑀3 = 𝑤𝑤𝑀𝑀 =
 𝑤𝑤1

(𝑤𝑤1 + 𝑤𝑤2) 𝑀𝑀 = 1,2 … (10) 

Layer 4: This layer represents the input-output 
values model which is represented by the Eq. 11: 

𝑄𝑄𝑀𝑀4= 𝑤𝑤𝑀𝑀 (𝑝𝑝𝑀𝑀 𝑥𝑥 + 𝑞𝑞𝑀𝑀 𝑥𝑥 + 𝑟𝑟𝑀𝑀) (11) 

where 𝑤𝑤𝑀𝑀 is the output from layer 3 and 𝑝𝑝𝑀𝑀, 𝑞𝑞𝑀𝑀, and 
𝑟𝑟𝑀𝑀 are the design parameters that are determined 
during the training process. Parameters in this layer 
will be referred to as consequent parameters. 
Layer 5: The fifth layer unifies the output in a single 
node by summation of the incoming values from 
nodes in the previous layer by the Eq. 12: 

𝑄𝑄𝑀𝑀5 =
∑𝑀𝑀𝑤𝑤𝑀𝑀 𝑓𝑓𝑀𝑀  
∑𝑀𝑀𝑤𝑤𝑀𝑀

 (12) 

 The learning rule of ANFIS is the same as the 
back-propagation learning rule used in the common 
feed-forward neural networks. The optimization 
parameters are, 𝑏𝑏𝑀𝑀 ,𝑐𝑐𝑀𝑀 which are the premise 
parameters, while 𝑝𝑝𝑀𝑀 ,𝑞𝑞𝑀𝑀 ,𝑟𝑟𝑀𝑀 are the consequent 
parameters. A hybrid-learning rule was employed 
in this research, which involves gathering the 
gradient descent and the least-squares method in 
order to find the appropriate set of preceding and 
consequent parameters [17]. The advantage of 
using a hybrid-learning rule was that it also seemed 
to be significantly faster than the classical back-
propagation method [18]. Fig. 2 shows the structure 
of ANFIS. 
 The hybrid-learning procedure includes two 
passes, namely the forward pass and the backward 
pass. In the forward pass, the functional signals will 
go forward till layer 4 and the least-squares 
technique will identify the consequent parameters.  
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Fig. 2. Structure of ANFIS [19] 

 
In the backward pass, the error rates transmit 
backward and the gradient descent will update the 
premise parameters. While the values of the 
premise parameters are fixed, it’s possible to 
express the overall output as a linear combination 
of the consequent parameters [20]. 

2.7. Comparing the models 
The prediction accuracy between measured and 
predicted data of both the ANFIS and ANN models 
are evaluated. the comparison is scaled by selecting 
the most ordinary period of the measured data as a 
sample to be compared with the predicted data and 
then providing the accuracy based on the selected 
sample. 
 
3. Case study 
The case building is utilized as an elderly home and 
has 8 stories with an 18,108 m2 conditioned floor 
area, located in Kartal, Istanbul. Thermal comfort 
conditions were studied during the heating season. 
Fig. 3 demonstrates the image of the building. 

3.1. Data gathering 
The initial stage of the process is to define the 
accessible data sources. Because the prediction 
models are highly dependent on the quality and 
quantity of the available data. 

3.1.1. Measurements 
The measurements were the essential source of the 
data. In the building, four points were selected to 
measure the temperature and relative humidity for 
the period of a year to cover the dates between 
February 22nd of 2018 to February 29th of 2019. 
 Four sensors were allocated to the selected four 
points for measurements in the basement, on the 

third floor, in the lobby of the ground floor level, 
and on the first-floor levels. The sensors collected 
the data for every 15 minutes interval. Those four 
points are demonstrated in Fig.4. 

3.1.2. Weather data 
The targeted variables that are dependent, the 
temperature and humidity data were collected. 
Furthermore, prediction models need independent 
variables as input. The independent variables are 
available data, which are non-linearly correlated 
with dependent variables besides being available 
for the whole period to be predicted. The outside 
weather data is a prominent variable that has a great 
impact on the indoor thermal environment. 
Additionally, the outside dry-bulb temperature, 
outside dew-point temperature, wind speed, wind 
direction, atmospheric pressure, and solar azimuth 
could be obtained from the weather data. 

3.1.3. Energy performance simulation 
The heating system was operated during the 
measured period, therefore, heating consumption 
with related data sources was required to be 
included in the prediction model to provide a 
balance between the input datasets with the real 
case and to achieve better prediction in terms of 
accuracy. An energy performance simulation model 
was developed for the building by utilizing the 
DesignBuilder® software [21]. The simulation 
provides diverse categories of predicted results, one 
of those is the hourly heating consumption which 
can be used as an independent variable in the 
prediction model. 

3.2. Evaluating the heating season 
The scope of the prediction is to cover the indoor 
thermal data of the heating season.  As known, the 
heating season is distinctive for each region, 
besides presenting diversity based on the building 
characteristics. For the case building, the heating 
period was defined by tracking to building’s heating 
(gas) consumption as the period exceeds 14 kW/m2 
per month. As represented in Fig. 5, that is the point 
where the consumption raised dramatically. Thus, 
the heating period was defined roughly between the 
15th of November and the 31st of March (137 days)
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Fig. 3. Kartal elderly home 

 

 
Fig. 4. Measurements points: Basement point, 3rd-floor point, and lobby points 

 

 
Fig. 5. Monthly heating consumption graph from the building energy model 

 
3.3. Data setting 
3.3.1. Data preparation 
The measured and simulated data were collected 
within different structures and frequencies. The 
datasets had been unified in terms of frequency and 
prepared to be distributed in one datasheet in an 
appropriate form to be imported to the prediction 
models. 
 

3.3.2. Data correlation 
After collecting the available data and preparing it 
to be usable and comparable, the independent 
variables and dependent correlation were analyzed 
to discover the numerical impacts of the 
independent variables on the dependent outputs. 
Table1 represents the correlation factor of each of 
the independent variables with each of the 
dependent variables. The results of the correlation 
analysis showed that each of the selected variables 
was correlated to the dependent variables with an 
assorted effect that cannot be formulated linearly. 



127 S.S. Aldin and H. Sözer  

 

Table 1. Input-targeted variables correlation 

 
3.3.3. Data filtering 
The outstrip points in the measured data that make 
noise for the model were filtered respectively, 68 
data sets in the basement’s point, 88 data sets in the 
upper room, 138 data sets in the upper lobby, and 
178 data sets in the ground lobby. The considerable 
amount of data sets was reduced while accuracy 
was increased. 

3.4. ANN modeling 

3.4.1. ANN structure 
Four Artificial Neural Networks were operated to 
predict thermal comfort data. Each network was 
built to characterize one of the four points 
(Basement, Upper room, Upper lobby, and Ground 
lobby). Each network was structured to have three 
layers, the first layer is the input layer, which 
contains 7 neurons that represent the independent 
variables. The second layer is the hidden layer, 
which contains 3 neurons. The third layer is the 
output layer, which are 2 neurons representing the 
targeted data (Temperature and Relative humidity) 
for each point that was represented in Fig. 6. 

3.4.2. Training the artificial neural network 
To start with, the first process was to match the 
frequency of the hourly weather data with the 

heating consumption data where the measured data 
was prearranged and sorted in an hourly data 
format.  This process was, which was also 
minimized the amount of data to be trained.  As a 
result, only 753 measured datasets for each point in 
the heating season were able to be trained. 
Afterward, the obtained data were scaled by means 
of the Minimum-Maximum method to be utilized in 
the activation function.  Based on the short-term 
measured data, 85% of the datasets were used for 
the training phase, which used the Quasi-Newton 
algorithm and sigmoid activation function to go 
from the input to the hidden layer and linear 
function to move to the input layer. Python code 
was used to perform the ANN model. 

3.4.3. Selection 
In pursuit of training the ANN, 15% of the data was 
exploited into the selection method of 10 iterations 
to test the performance of the model and the 
parameters. The selection phase has changed the 
structure of the Network by increasing the hidden 
nodes to 8 nodes and minimizing the losses of the 
model. By using the selection phase's results, the 
model was trained for a second time to achieve the 
minimum losses as represented in Table 2. The final 
structure of the ANN model was represented in Fig. 
6. 

  Dependent variables (Outputs) 
  Basement room Upper room Upper Lobby Ground lobby 
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 Outside Dry-Bulb Temperature 0.057 0.0925 0.151 0.205 0.385 0.428 0.29 0.392 

Outside Dew-Point Temperature 0.239 0.251 0.437 0.456 0.461 0.542 0.416 0.57 

Wind Speed 0.0969 0.272 0.084 0.134 0.368 0.135 0.272 0.0419 

Wind Direction 0.0216 0.0469 0.0686 0.116 0.039 0.115 0.00865 0.0896 

Atmospheric Pressure 0.464 0.367 0.392 0.375 0.0288 0.0324 0.203 0.246 

Solar Azimuth 0.0265 0.0294 0.0252 0.039 0.00152 0.0377 0.0571 0.0916 

Heating (Gas) 0.0224 0.000904 0.00826 0.0189 0.0195 0.0506 0.006 0.0515 
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Table 2. Final losses 

 Basement room Upper room Upper Lobby Ground Lobby 

Final Losses 0.295 0.369 0.38 0.56 
 

 
Fig. 6. ANN final structure 

 
 The performed ANN showed that filtering the 
data reduced the obscured results of the model and 
improved the accuracy. Furthermore, the number of 
hidden layers, which altered through the selection 
analysis, had a significant effect on the final losses. 

3.5. ANFIS modeling 

3.5.1. ANFIS structure 
Eight adaptive neuro-fuzzy inference system 
models had been developed to predict the indoor 
temperature and the relative humidity of the 
building. Each model was used to predict one of the 
targeted parameters in one of the four points. Each 
of the utilized models is structured by six layers, the 
first layer is the input layer which includes 7 nodes 
each node representing one of the independent 
variables. The second layer is the input membership 
function layer, this layer contains 14 adaptive 
nodes, each pair of adaptive nodes receives the 

value of one of the independent variables to use as 
input in its function. The third layer includes fixed 
nodes that receive signals from the input layer, the 
output of this layer is the product of the received 
signals and it's called the firing strength of the rules. 
The fourth layer is the normalization layer, in the 
nodes of this layer the ratio of each rule's firing 
strength has been calculated. Layer 5 is the output 
membership function layer, and the last layer is the 
single output layer which is the temperature or 
relative humidity for each point. The ANFIS final 
structure is shown in Fig. 7. 

3.5.2. Training the adaptive neuro-fuzzy 
inference system 

The data set of the ANFIS is the same asthe ANN 
model, which means that the available datasets to 
be trained are 753 hourly datasets for the heating 
season. 
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Fig. 7. ANFIS final structure 

 
The ANFIS model utilized the Sugeno method 
which has output membership functions as 
explained in the methodology section in detail. The 
hybrid-learning algorithm’s feedforward 
backpropagation procedures had been used as a 
learning algorithm for the 20 iterations ANFIS 
model. The number of iterations was defined by the 
testing phase since the datasets were distributed in 
85% for the training phase and 15% for the testing 
phase. Matlab's ANFIS tool was used to perform 
the model. 

3.6. Comparing the models 
In this part, the ANFIS and ANN prediction results 
will be compared with the second-year heating 
season measurements. This comparison will show 
whether the approaches are applicable to predict the 
indoor thermal data, and which one is more 
appropriate in terms of accuracy. 
 Figs. 8-15 show that both the predicted data of 
ANN and ANFIS are relatively matching the 
measured data. For both temperature and humidity, 
The ANN predicted results' variation seems to be 
more realistic and closer to the measured data. 
While the ANFIS results seem to be more stable 
with fewer variations.  
 In Fig. 8, it is recognized that in the period 
between December 27th and January 1st the 
measured data seems to be far less than the average, 

in some points it went down less than 10 °C, which 
shows that the heating system wasn't properly 
performing. This deviation in some periods may 
cause mistakes in estimating the errors of the 
prediction work. It will decrease the accuracy of the 
prediction models since the errors were calculated 
by comparing the predicted data with the measured 
data. Therefore, the prediction model will carry 
responsibility for the heating system's bad 
performance. 
 Table 3, shows that the ANFIS model prediction 
of the temperature has less than the ANN model 
prediction in 3 points out of four. The ANFIS 
temperature prediction results’ RMSEs (Root Mean 
Square Error) are 4, 2.9, 2.7, and 1.4 respectively in 
the basement room, upper room, upper lobby, and 
ground lobby, while in the same order the ANN 
prediction errors are 5.2, 3.9, 3.8, and 1.5. 
 It is significant the small error of both of the 
models in the ground lobby. This can be explained 
by observing the measured temperature dataset in 
Fig. 16. The measured data at this point is more 
stable with fewer variations compared to other 
points. Even though the average measured 
temperature is 20.74°C, which is less than the 
comfort range, the stability of the measured data in 
the point shows that the heating system is 
performing properly in the lobby.  
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Fig. 8. Basement - Hourly predicted and measured temperature 

 

 
Fig. 9. Basement - Hourly predicted and measured humidity 

 

 
Fig. 10. Upper Room - Hourly predicted and measured temperature 
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Fig. 11. Upper Room - Hourly predicted and measured humidity 

 

 
Fig. 12. Upper Lobby - Hourly predicted and measured temperature 

 

 
Fig. 13. Upper Lobby - Hourly predicted and measured humidity 
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Fig. 14. Ground Lobby - Hourly predicted and measured temperature 

 

 
Fig. 15. Ground Lobby - Hourly predicted and measured humidity 

 
Table 3. Predicted and measured temperature parameters 

    Inside Temperature [°C] 

    Basement room Upper room Upper Lobby Ground Lobby 

Measured Average 18.5 20.4 20.6 20.7 

ANN 
Predicted 

Average 21.7 23.7 23.7 20.7 

RMSE 5.2 3.9 3.8 1.5 

Final RMSE 3.8 

ANFIS 
Predicted 

Average 20.4 22.8 22.4 20.1 

RMSE 4.0 2.9 2.7 1.4 

Final RMSE 2.9 
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However, these results show that the ANFIS 
prediction has better accuracy when it is compared 
with these stochastic measured data of the four 
points since the overall temperature prediction 
accuracy of the ANFIS model has been calculated 
to be 85%, on the other hand, the accuracy of the 
temperature ANN prediction was 81%. 
 According to Table 4, both the ANFIS and ANN 
predictions' errors are close to each other. The 
ANFIS humidity prediction results' RMSEs were 
10.4, 8.3, 5.8, and 7.9 respectively in the basement 
room, upper room, upper lobby, and ground lobby, 
while in the same order the ANN prediction errors 
were 10.5, 8.5, 6.8, and 9. The ANFIS prediction 
was better in the four points. However, for overall 
humidity prediction again the ANFIS model which 
had an 81% accuracy rate was slightly more 
accurate than the ANN model which had an 
accuracy rate of 81%. 

3.6.1. Scaling the comparison 
The irregular performance of the heating system 
produced stochastic measured data in some periods. 
This stochasticity affected the comparison between 
measured and predicted data and the prediction 
accuracy of both the ANFIS and ANN models. To 
avoid this effect, the comparison is scaled by 
selecting the most ordinary period of the measured 
data as a sample to be compared with the predicted 
data and then providing the accuracy based on the 
selected sample. 
 By observing Figs. 16-23, it is recognized that 
the most stable period for the measured data was the 
period between 10/12/2018 and 20/12/2018. The 
data of this period will be the sample that is used for 
the comparison scaling. 
 

 
Table 4. Predicted and measured humidity parameters 

    Inside Humidity Rate [%rH] 
    Basement room Upper room Upper Lobby Ground Lobby 

Measured Average 45.4 42.0 45.6 38.6 

ANN 
Predicted 

Average 44.1 36.5 41.3 43.7 
RMSE 10.5 8.5 6.8 9.0 
Final RMSE 8.8 

ANFIS 
Predicted 

Average 43.4 36.2 42.4 42.3 
RMSE 10.4 8.3 5.8 7.9 
Final RMSE 8.3 

 

 
Fig. 2. Basement temperature data sample 
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Fig. 17. Upper room temperature data sample 

 

 
Fig. 18. Upper lobby temperature data sample 

 

 
Fig. 19. Ground lobby temperature data sample 
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Fig. 20. Basement humidity data sample 

 

 
Fig. 21. Upper room humidity data sample 

 

 
Fig. 22. Upper lobby humidity data sample 
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Fig. 23. Ground lobby humidity data sample 

 
 Figs. 16-19, and Table 5 show that the 
temperature prediction error increased in the most 
stable sample of the measured data for both ANN 
and ANFIS prediction models. For ANN the 
accuracy rate after scaling increased from 81% to 
83%, but this increasing rate is still affected by the 
quality of the measured data, because even though 
the measured data is stable but it doesn't match the 
expected results, especially in the basement where 
the average of the measured data was less than 
18°C, which is far away under the comfort zone. So 
the more the measured data is closed to the comfort 
zone, the less prediction error is achieved. The 
ANN maximum RMSE was in the basement at 
around 4.1, while it was minimum in the ground 
lobby point which is around 1. For the ANFIS 
model, the temperature prediction accuracy after 
scaling was increased by 3%, again the accuracy 
rate was affected by the heating system 
performance, and the average error decreased when 
the measured temperature was closer to the 
temperature comfort zone. The accuracy of ANFIS 
prediction became 88% after scaling while the 
ANN prediction accuracy increased to 85% which 
make the ANFIS model more eligible in term of 
accuracy to perform the kind of prediction work. 
 Figs. 20-23, and Table 6 showed that the 
prediction accuracy of the humidity was improved 
after scaling for both ANN and ANFIS prediction 
models. For ANN results the final prediction 
accuracy was increased by 6% after scaling. For 

ANFIS results also the final prediction error was 
decreased and the accuracy rate increased. The final 
humidity prediction accuracy of ANN is 87% while 
it is 90% for ANFIS, which shows that the ANFIS 
model's accuracy is better than the accuracy of the 
ANN model in the whole cases in this study.  
 The results also showed that the point with the 
lowest average measured temperature had the 
highest temperature prediction errors for both ANN 
and ANFIS, while the same point had the best 
average measured humidity and least humidity 
prediction errors. In opposite, the point with the 
best average measured temperature which is the 
closest to the comfort level, had the least 
temperature prediction errors, the lowest average 
measured humidity, and the highest humidity 
prediction errors. 
 
4. Methodology 
The thermal environment is the main index of the 
building energy performance and efficiency since it 
is the most important factor to improve the comfort 
level of the building, the main mission of most 
applied systems in any building is to provide a 
comfortable indoor environment. Hence, most of 
the building energy consumption is for heating or 
cooling. Therefore, it is necessary to manage certain 
comfort conditions such as temperature and 
humidity to manage and sustain the indoor 
environment’s comfort level.
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Table 5. Data sample temperature parameters 

    Inside Temperature [°C] 

    Basement room Upper room Upper Lobby Ground Lobby 

Measured Average 17.7 20.0 20.2 20.3 

ANN 
Predicted 

Average 21.7 23.0 24.0 21.0 

RMSE 4.1 3.4 3.9 1.0 

Final RMSE 3.4 

ANFIS 
Predicted 

Average 20.2 22.3 22.9 20.2 

RMSE 2.6 2.5 2.7 0.8 

Final RMSE 2.3 
 
Table 6. Data sample humidity parameters 

    Inside Humidity Rate [%rH] 

    Basement room Upper room Upper Lobby Ground Lobby 

Measured Average 45.4 41.4 44.9 37.8 

ANN 
Predicted 

Average 47.5 37.9 41.1 42.8 

RMSE 5.7 4.8 4.8 6.0 

Final RMSE 5.3 

ANFIS 
Predicted 

Average 45.0 37.2 41.6 42.0 

RMSE 3.5 5.0 3.6 4.9 

Final RMSE 4.3 
 
 This study aims to compare two prediction 
models to provide better accuracy in predicting the 
heating season indoor thermal comfort data. This 
prediction aims to provide a full heating season's 
thermal comfort dataset by using short-term 
measured data while the heating system is 
performing. The heating season of the building was 
evaluated by defining a critical monthly heating 
consumption, which was 14 kW/m2 per month, and 
selecting the period when the building’s monthly 
consumption exceeds this value to be the heating 
season. Based on it the heating season was 
evaluated to be between November 15th and March 
21st. 
 The ANFIS and ANN approaches had been used 
as predictive models. The two approaches were 
trained based on the measured indoor temperature 
and relative humidity data. The measurements 
inside the building were taken for one year which 

started on the 22nd of February 2018. Therefore, 
short-term data were collected during the first 
heating season, and these data were used in the 
model’s training phase. While the data collected 
during the second heating season was used in 
validating the prediction results. In addition, the 
independent variables were obtained from the 
weather data and heating consumption simulated 
data. 
 The measurement and prediction works were 
done at four different points inside the building. The 
prediction results showed that the temperature 
averages should be in the comfort level for two 
points out of four, while the measured data showed 
that the four points are under the comfort condition. 
This was because of the poor performance of the 
heating system in some periods. This poor 
performance caused stochasticity in the measured 
data which affected the prediction results accuracy. 
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The ANN prediction errors for temperature varied 
between 1.5 and 5.2, and between 6.8 and 10.5 for 
humidity in the four points. The ANFIS prediction 
errors have recognized variations too since the 
temperature prediction errors were between 14 and 
4, and for the humidity, prediction errors were 
between 5.8 and 10.4. These results showed that the 
ANN and ANFIS models achieved the best 
prediction with a minimum error rate at the point 
where the measured data was more stable with 
fewer variations. 
 However, the ANFIS prediction was more 
accurate in general since its prediction final 
accuracy rate was 85% for temperature and 81% for 
humidity, while the ANN prediction’s final 
accuracy rates were 81% for temperature and 80% 
for humidity. 
 These results were significantly affected by the 
heating system's poor performance, in order to 
minimize this effect, the comparison was scaled by 
selecting the best measured period to be the data 
sample that will be used in the comparison. After 
scaling, the prediction accuracy was increased for 
both ANN and ANFIS models, to be 83% and 88%, 
respectively for temperature prediction. For 
humidity the accuracy rate of 87% for ANN and 
90% for ANFIS. According to the results, the 
ANFIS model was the best fit for all of these 
prediction work cases. Considering the measured 
data stochasticity, both the ANFIS and ANN 
approaches are highly validated in this type of 
prediction work. Since the building is an elderly 
home, these results can be an indicator to improve 
the thermal environment inside the building Taking 
into account its impact on the health and well-being 
of older persons. 
 The results of this study offer the opportunity to 
extend in different directions as further work. The 
results could support the monitoring system which 
could be implemented inside the building to 
perform real-time calibration besides reporting the 
unexpected results which could assist to improve 
the indoor comfort level. The prediction results 
could also be used as an index to calibrate and 
develop the accuracy of the energy performance 

simulation of the building by improving the set 
points. 
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