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The total heating cost of residential buildings corresponds to a significant part of the
energy consumption of countries. Designing cost-efficient residential buildings in terms
of energy gains importance. In the current study, it is targeted to take a beneficial step
that will contribute to this issue. In this respect, the decisive components for the
calculation of the total heating cost of insulated buildings (i.e. the fuel type, insulation
material, and insulation thickness) are determined optimally. For this aim, an
optimization model is utilized in which the total heating cost based on life cycle cost
analysis is considered as the objective function. The design variables are selected from
both continuous and discrete spaces and they are dependent on each other. For solving
the problem with such a complex search domain, different well-established non-gradient
and population-based optimization techniques are utilized. These methods do not require
the information of the objective functions so they can be used widely in solving different
optimization problems. In addition, multivariable thermo-economic optimization for
minimizing the total heating cost of the insulated building with the selected methods
presents the effect and power of the population-based methods in solving different
engineering optimization problems. The considered methods are tested on unconstrained
mathematical functions and thermo-economic optimization of five distinct locations in
the Aegean region of Turkey. The comparative assessments are reported and discussed
in detail. Different analyses are employed for evaluating the performance of the
optimization techniques. According to the archived outcomes, the utilized optimization
techniques present acceptable performance in handling both discrete and continuous
design variables.
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1. Introduction

The unsustainable energy sources are going to
expire. Finding more efficient ways for saving
energy and using renewable energies gained more
significance in recent years. A considerable portion
of the energy is utilized in heating residential
buildings. In this respect using the most proper fuel

and insulating system for a cost-efficient design is
necessary. In residential buildings, a considerable
part of heat losses occurs from the exterior walls of
the buildings. For reducing these losses, applying
an insulating system to the exterior walls is a
practical remedy [1, 2]. Determining the thickness
of the insulation material is an optimization
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problem with a single variable. There are several
studies those are applied gradient-based techniques
for solving the mentioned optimization problem [3-
11]. In these studies for thermal modeling of the
insulated building, the Degree-Day (DD) values of
the geographic location are considered. For
economic modeling of the system, the Life Cycle
Cost Analyze (LCCA) technique is employed.
Consequently, the total heating cost of the insulated
building is considered the objective function of the
optimization problem. In a more recent study, a
simultaneous multivariable approach is employed
[12]. Besides the insulation thickness, the type of
the fuel and the type of the insulation material are
considered simultaneously as the design variables
of the optimization problem. For solving the
optimization problem, a non-gradient and
population-based optimization technique are
utilized. For saving more energy and cost in
buildings, carrying out studies with more effective
optimization techniques for solving these kinds of
problems acquires more importance.

Optimization techniques are divided into two
main groups; gradient-based and non-gradient-
based techniques. Non-gradient methods do not
require the gradient information of the objective
function [13]. Also, they are not sensitive to the
initial condition of the searching process and step
sizes. They can start from any arbitrary or improper
position and without easily trapping to the local
optima [14, 15]. There are two search patterns for
scanning the search domain during the optimization
process; Local search and Global search. In
optimization methods, making a balance between
two strategies is vital and this affects the search
performance of the optimization algorithm [16, 17].
There are different internal parameters and
algorithms for providing a more effective search
capability in different methods. There are main
categories for the classification of non-gradient
techniques. These categories are evolutionary-
based, physics-based, nature-inspired, and social-
based techniques. In the current study, for giving an
exhaustive point of view for the readers, different
methods are selected from these categories [18-20].

The selected optimization techniques are;
Differential Evolution (DE), Ions Motion
Optimization (IMO), Integrated Particle Swarm
Optimization (iPSO), Harris Hawks Optimization
(HHO), and Interactive Search Algorithm (ISA).

The thermo-economic optimization for the
insulated building is studied for a single variable
(i.e. insulation thickness) and the conventional
gradient-based approach is utilized for solving it [3,
5, 11, 21, 22]. Considering the fuel type and the
insulation material type gives a realistic dimension
to the problem. In addition, utilizing recently
developed non-gradient population-based methods
as the optimizer tool contributes to the technical
literature. For this target, in the current study,
minimizing the total heating cost of the insulated
building with simultaneous multi-variables is
investigated. For minimizing the total heating cost
of insulated residential buildings six different non-
gradient and population-based optimization
methods are utilized. In the case studies, five
different locations from the Aegean region of
Turkey are selected. Also, for giving a more
comprehensive range of view for the researchers six
distinct mathematical functions selected from
CEC2017 with different properties are tested. The
performance of these methods is tested and
compared via accuracy and stability, convergence
behavior, complexity, and non-parametric
statistical analyses.

2. Optimization methods

In the current section, the selected optimization
algorithms are briefly described. All selected
algorithms are non-gradient and population-based
techniques. The selected optimization methods and
their descriptions are chronologically listed in
Table 1. These methods are not dependent on the
start point of the search process and the step sizes
are not determinative in these methods. It is not
necessary to define a continuous objective function
and its gradients. These advantages cause the
algorithms to not trap easily in any local optima and
the ineffective iterations decrease. Each agent is a
potential solution in these kinds of methods.
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Table 1. Parameter setting for the applied algorithms

Algorithm Year Parameter Description

DE [23] 1997 F €{0,2} Differentiation amplification factor (F)
M t fact ) (e

MO [24] 2015  @p,¢, = rand (—1,1) ovement factor (@1, ¢2)
Anion (4) , Cation (C)

iPSO [25] 2017 a=04,C=C=1,C,=2 Acceleration factors (C1,C2, C3,Cs)

HHO [26] A0 Ey = 2rand(0,1) — 1 The initia.l state of prey’s energy (Eo)

J =2(1—-rand(0,1)) Random jump strength (J)
ISA [27] 2019 =03 Tendency factor(t)
GTOA [28] 2020 F €{0,2} Teaching factor (F)

The agents initialize from any arbitrary location in
the search domain and their location is improved
gradually via evaluating the objective function
value in each iteration. These methods are
chronologically explained in the following sub-
sections.

2.1. Differential evolution (DE)

Differential Evolution (DE) method has two main
phases crossover and mutation. In the mutation
phase, a mutant vector, based on three randomly
considered agents, is generated for each agent.
However, in the crossover phase, each agent is
crossed over with its generated mutant vector [23].
Based on the given information the mutation and
crossover phases are mathematically formulated as
below:

Mutation phase:

tHly. =t + F - (X, — 'X,3), where, O
rl#=r2+#r3+i
Crossover phase:
Wij, ifrd<CRorr5=j
X = (2)
tx otherwise

ijs
rl, r2 and r3 are different integers randomly
selected from [1, PS], in which PS is the population
size. However, 4 and »5 have been randomly
selected from [0, 1] intervals. F is the
differentiation amplification factor and is
considered to be selected from [0, 2] interval as a
real scalar. X;; presents the jth component of the ith

agent. V;; is the jth component of the ith mutant
vector. In addition, CR is the crossover constant and
it shows whether the probability of mutation for the
current agent’s components is accepted or not. The
work scheme of the DE is presented in its pseudo-
code in Table 2.

2.2. Tons motion optimization (IMO)

The treats of the ions in nature, the repulsion and
attraction forces within the anions and cations
became inspiration sources for the Ions Motion
Optimization (IMO). The population size of the
algorithm at the inception of the search process
must be an even number because agents are divided
into two groups anions and cations. There are two
distinct search patterns such as liquid phase and
solid phase in this method. There are not any
random coefficients in the liquid phase of the IMO
algorithm, which makes this phase thoroughly non-
stochastic. In the solid phase of the algorithm, the
exploitation behavior of the algorithm is dominant
and the agents move toward the best solution during
the search process for preventing the algorithm
from trapping in local optima [24]. According to the
given information, the mathematical description of
the current method is formulated as below:

Liquid phase
Aij = Aij + AF;j x (Cbest; — A;j) €)
Cij = Cij + CF;; X (Abest]- - Cij)
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Table 2. The pseudo-code for DE

Initialize internal parameters and agents;

while (the termination criteria are not met)
if (the mutation is probable)
else if

t+1X" = tX
3]

end

ij

end

For each agent calculate the mutation vector from Eq. (1)

the mutant vector is the new agent based on Eq. (2)

Solid-phase

. CworstFit
/CbestFlt > T\
if and
. AworstFit
AbestFit > -

{Ai = A; + ®; X (Chest — 1) if rand() >05 (4)
A; = A; + &4 x (Cbest) if rand()<0.5

{Ci = C; + ®, X (Abest — 1) if rand() > 0.5
C; = C; + @, x (Abest) if rand() <0.5

Re — initialized A; and C; if

Abest, Chest, AbestFit and CbestFit indicate the
best anion, best cation, fitness value for the best

rand() < 0.05

anion and fitness value for the best cation,
respectively. @i, @, is uniformly selected from the
interval [-1, 1]. rand () is randomly selected from
[0, 1] interval. AF; and CF; are the force
coefficients between the ions and are determined as
below:

1
AFj = T—i7im;

1
CFy = T omoaeny ()
in which

Dy; = |A;j — Cbestj|,  CD;; = |Ci; — Abest;|

ADj; and CDy; are the distance between the ith agent
and best anion/cation, respectively. For giving a
more clear description of the IMO, the pseudo-code
of the method is given in Table 3.

2.3. Integrated particle swarm optimization
(iPSO)

The integrated Particle Swarm Optimization (iPSO)

is the enhanced version of the PSO technique via

employing a weighted agent to the algorithm for
preventing any local optima trapping. There are two
different search strategies for scanning the search
domain. In one of these strategies, the new agent
moves toward three other agents (X, X” and X").
In the other strategy, it moves just toward the
gravity center of the population (XW). The
algorithm working scheme is mathematically given
below [29]:

if randy; > a

My, = w X W + (@1 + @21 + 930 (X]

= 'X) + 92:(°X° - °X7)

+ @3 (XY — X7 .
if randy; < a ©)
o = 0 (XY = X))

Updated agent:

LHIYX, = X, + tHly,

in which

Qri = C X rand,; for k € {0,1,2,3,4}.

where rand,;is a random number selected from the
interval [0, 1]. The acceleration factors are
determined as C; = —(¢@,; + ¢3;),C, = 2,03 =1,
and C, = 2. The weighted agent (XV) is calculated

as below:
M

XV = Z o' X;p

i=

1
M
W __ AW AW
¢ = (Ci /Z C; )
i=1

@)
max (f(X5,)) - f(XD) +&
o = 1sf<M
L
max (F(x0,))— min (F(X,))+e
1<kwsM 1<kwsM
i=12,..,M
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Table 3. The pseudo-code for IMO

Initialize internal parameters and agents;
while (the termination criteria are not met)

Evaluating all agents

Perform solid-phase motion based on Eq. (4)
end

end

Determining the best and worst Anions and Cations and force coefficients using Eqs. (3-5)
Update locations of ions based on the liquid phase as given in Eq. (3)
if (Mean objective function value of worst ions is equal or smaller than the best ions)

M is the number of agents and f{.) presents the
objective function value of the current agent. ¢ is
defined as a tiny value (i.e. 1E-06) to prevent any
division by zero condition. For more clarification,
the pseudo-code of the iPSO is presented in Table
4.

2.4. Harris hawks optimization (HHO)

Harris Hawks Optimization (HHO) is a nature-
inspired optimization technique. It mimics the
behavior of an intelligent bird so-called
Harris’Hawks in hunting escaping prey. There are
three phases in this algorithm; (i) Exploration, (ii)
Transition from exploration to exploitation and (iii)
Exploitation. In HHO, each agent (Harris’ Hawks)
is a candidate solution. In the exploration phase, the
agents change their locations randomly then the
average location of agents is achieved. During the
location changings, the prey escapes from the
agents and their energy decreases. Due to this fact,
the transition phase occurs. Then in the exploitation
phase of the search process, the agent moves toward
the best location based on the attained information
from the transition phase [26]. Based on the given
information, the algorithm of HHO is
mathematically formulated as below:

Exploration phase:

Xttl =

{Xrtand - rlertand - Zert| q=0.5
(Xtrey — X5) —13(LB + 1, (UB — LB)) g < 0.5 (8)

1 N
Xg, = NZ Xt
i=1

The transition from exploration to exploitation:

£ =26, (1- %) ©)
Exploitation phase:

whenr > 0.5 and |E| = 0.5

Xt = AXE — E|JXfrey — XY

AXE = Xbrey
J=2(1-15)
whenr > 0.5 and |E| < 0.5

Xt = Xt — E|AX]

— Xt

whenr < 0.5 and |E| = 0.5

Y= ngrey - Eljxﬁrey _th

Z=Y+SxLF(D)
u X

LF(x) = 001 x ——
lv|F (10)

(1 + B) X sin (%) %

T(lzﬂ)xﬁxz(%)

XM:{Y if f(Y)<FXY)
Z if f(2)<FEXY

whenr < 0.5 and |E| < 0.5
Xt — {Y if f(OY)<FX"

VA if f(Z)<FXYH
Y= ngrey - El]X;grey - Xrtnl

Z=Y+SxLF(D)

where r1, 12, 13, 4, 15, and g are randomly selected
from (0, 1) interval. N is the population size. £ and
E\ designate the escaping energy and the initial
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Table 4. The pseudo-code for iPSO

Initialize agents
while (the termination criteria are not met)
Calculate the weighted agent X using Eq. (7)
for (each agent)
if (randoi < @)
Calculate the velocity vector applying Eq.(6)
Ise if (rando:> )
Calculate the velocity vector applying Eq.(6)
nd
Update the current agent
end
confirm weighted agent condition
fF&x") < (F&x9)
Set X6 =XV,
end

end

(whenever X" has the less objective function value replaced with X¢)

the energy of the prey, respectively. T and t are the
maximum number of iterations and the current
iteration, respectively. » indicates the chance of
prey in successfully escaping. LF is the levy flight
concept and is utilized to model the real zigzag
motions of prey during the escaping. For more
clarity, the pseudo-code of HHO is given in Table
5.

2.5. Interactive search algorithm (ISA)
Interactive Search Algorithm (ISA) is another
population-based optimization technique. There are
two different paradigms for scanning the search
domain of the problem, named tracking and
interacting search strategies. In the tracking and
interacting paradigms, the exploration and
exploitation search behaviors of the algorithm are
respectively dominant. There is a tendency factor
(1) for regulating the algorithm between these two
paradigms. This factor (t) is determined as 0.3
based on a series of sensitivity analyses [27]. Based
on the given information the ISA is mathematically
presented as below:

ifT > 0.3 (Trackin
FVi=w Vit e O (X = X) + @
©) (th _ tij) + s
o (% - %))

aradigm) :

(11)

if T < 0.3 (Interacting paradigm) :

TiVi=0a O (X —X;) , if f(X0)

< f(x)) (12)
t;ranL =9, 0O (txj - txi) ,if f(XY)

= f(X))
Updated agent: (13)
By = tx, 4ty
®, k = 1...4 is the acceleration factors and for ith
agent are selected uniformly from the interval [0,
11. X;, X%, X" and X" indicate an arbitrary agent,
the best agent, the best agent of the memory and the
weighted agent of the population, respectively. w is
the inertia weight and it is considered as 0.4 [27].
©is the sign of the Hadamard product. The
weighted agent is declared in Eq. (7) before. The
pseudo-code of the ISA is presented for more
illustration in Table 6.

2.6. Group teaching optimization algorithm
(GTOA)

Group Teaching Optimization algorithm (GTOA)
is inspired by group teaching approach. In the
GTOA, the whole class is considered to be in the
normal distribution. There are four phases such as
teacher allocation, ability grouping, teacher and
student phases. There are just two control
parameters as population size and stop criteria in
the algorithm [28].
mathematically presented as below:

These four phases are



51 M. Moloodpoor and A. Mortazavi

Table 5. The pseudo-code for HHO

Initialize agents and internal parameters
while (the termination criteria are not met)
Calculate the fitness value of agents
Set Xﬁrey as the best location
or (each agent)
Update Ep and J and E from Eq (9)
Utilize r and E values to decide the phase of the algorithm
Update the location vector using Eq. (10)
end

end

Table 6. The pseudo-code for ISA

Initialize agents
while (the termination criteria are not met)
Calculate the weighted agent XV using Eq. (7)
for (each agent)
if (t <0.3)
Calculate the velocity vector applying Eq.(12)
Ise if (7 > 0.3)
Calculate the velocity vector applying Eq.(11)
end

Update the current agent

end

end

Teacher allocation phase:

t t t
Xfirer T X + Xy
first second third
x[t‘irst f(x/first) = f( 3 )
Tt = t t t t t t
xfirst + Xsecond + Xthird t xfirst + Xsecond + Xthird
3 f(xfirst) > f 3
Ability grouping phase:
1 —(x—u)?
f(x) = e 252
4140
Teacher phase I:

Xoacners = X{ +ax (T* = F x (b x M* + ¢ X x{))

(13)

(14)

(15)
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Teacher phase II:

t+1

Xteacher,i = xit +2xdx (Tt _xit)
t+1 t+1 t
x”l _ xt:ache‘rt f(xt:acher,i) < f(xi)
teacher.t xit f(xtt:alcher,i ) 2 f(xlt)
Student phase:
t+1
xstudentt

t+1 t+1 t+1
_ {xteacherl +eX (xteacher,i - xteacher,j) + g X (x

t+1 e X (xt+1 _ yttl

xteacher i teacher,i

1 1 1
t+1 _ {xtt:acher,i f(xtte_'-acher,i) < f(xsg:z—;dent,i)
i =

X
x;:‘uldent,i f(xtte_'-alcher,i) = f(xﬁguldent,i)

In the teacher allocation phase of the algorithm,
Xfirsts Xeeconar Xtnira are the first, second and third
best students, respectively. In the ability grouping
phase, the normal distribution of the class is
presented. In which ¢ is the standard deviation, x is
the value of the normal distribution function and u
indicates the average knowledge of the whole class.
In the teacher phase of the algorithm, a student
learns from the teacher. In this phase, N is the
number of students. ¢ designates the current
iteration and x{ is the ith student at the time ¢ T*
and M*¢ are the teacher and the mean of the students
at the time ¢, respectively. a, b, ¢ and d are randomly
selected from [0, 1] intervals. F is the teaching

Table 7. The pseudo-code for GTOA

teacher,j) + g X (x

(15)

1 1 1
tt:acher,i - xlt) f(xtte_'-acher,i) < f(xtt:acher,j

1 1 1
tt:acher,i - xlt) f(xtte_'-acher,i) 2 f(xtt:acher,j) (16)

factor which can be either 1 or 2 [30]. In the student
phase, also, the e and g are randomly selected from
[0, 1] intervals. For more clarity, the steps of the
GTOA are given in pseudo-code form in Table 7.

3. Thermo-Economic optimization model
of the exterior wall of the building

The thermal part of the thermo-economic model of
the exterior wall of a residential building is carried
out using a thermal resistance approach. In this
respect, the wall is considered as a thermal element.
As presented in Fig. 1 the layers of the wall are
assumed as resistances. For a unit wall surface the
heat losses via conduction are calculated as below:

Initialize agents

while (the termination criteria are not met)

determining the first three best and calculating 7" from Eq. (13)

dividing the population into two groups according to Eq. (14)
for (each group)

implementing the teacher phase for the groups by Eq. (15)

implementing the student phase for the groups by Eq. (16)

end

ff{-rr?r:rr's*rl} = f{xsmdﬂ'rl}

t+1 _
X 'rl.‘PEL'r‘P?'I

else if

t+1 _
Xi _xsmdﬂ"tl

end

end
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Bricks
Insulation

Internal plaster
I External plaster

Fig. 1. External wall structure

; dT
__ar 17
qx d.x ( )

where £ is the coefficient of thermal conductivity of
the corresponding material.

For each layer of the wall thermal resistance is
calculated as below [31]:

R _ X layer
layer —

(18)

klayer

in which x designates the layer thickness. The
overall heat transfer coefficient for a multilayer
wall is attained as below:

1

U=
Ry + Ry + R, + Ry

(19)

The heating degree-day value is utilized for
calculating the annual heating load and energy
demand of a building per unit area of the exterior
wall as the following [8]:

Qqn = 24 X 3600 X HDD X U (20)
86400 X HDD x U 1)
ah = 1

where #n shows the efficiency of the fuel type
utilized for heating. The Life Cycle Cost Analysis
(LCCA) technique is applied for developing the
economic part of the thermo-economic model. For
the unit surface area of the wall the annual heating
load is calculated as below:

E,nC
Ca,h — a,)]l-hfuel (22)

where Hu is the heat value of the utilized fuel. The
required Present Worth Factor (PWF) in the LCCA
technique is calculated as below:

(-9 .
( (1+T)N—1 T—1+ 1>g
PWF = ————— g
AQ+nrVxr L9l 23)
1+ 9
PWF =1 i=g

where, g and i designate the inflation and interest
rates, respectively. N shows the lifetime for the
economic assessment. In the current study g=7.91
%, i=8.25 %, and N=10 years [32].

The insulation cost of the wall is the
investment cost and is calculated as below:

Cins. =X Cm (24)

Consequently, according to the given information
the total heating cost of an insulated building based
on the LCCA approach is mathematically presented
as below:

Ct,h = PWF Ca,h + Cins. (25)

It is targeted to minimize the total heating cost
of insulated buildings using different optimization
algorithms. The objective function of the
considered optimization problem is mathematically
declared as below:

f(X) = minimize (C,) (26)

where the X is the vector of the design variables
including continuous and discrete components. In
the current problem, the design variables are
considered as the fuel type, insulation material and
insulation thickness.

4. Numerical tests and discussion

In the -current section, for evaluating the
performance of the selected methods six
unconstrained mathematical functions and thermo-
economic optimization problems for five cases are
solved.

4.1. Unconstrained mathematical functions

For investigating the performance of the selected
methods more comprehensively, six different
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benchmark mathematical functions are tested for
the optimization problem. The functions are
selected from CEC 2017 in different categories for
challenging the methods from different aspects
[33]. The properties of the functions, their
formulations and 2D plots are given in Table 8. All
selected functions are initiated in [-100, 100]°,

Table 8. Properties of the selected benchmark functions

where D is the problem’s dimension which is
considered as 30 for all functions.

Different analyses such as accuracy and
stability, convergence behavior, complexity, and
no-parametric statistical analysis are performed for
comparing the performance of the optimization
techniques.

No. Function name 2D Plot Formulation™ fimin
><1010
4 D
— 42 6 2
F1 UM,NS,SNR 2 ey =il le 100
i=
100 f(x) = L(M(x—0)) + 100
il 100
-100 -100
D D 2 D 4
LX) = Z x? + ( O.Sxi> + (Z O.Sxi)
F2 MM, NS =1 i=1 i=1 300
fX) = L(M(x—0)) + 300
D-1
LX) = Z (100(x? = x141)” + G = 1)?)
F3 MM, NS, LOH =1 400
X) =L(M 2048~ 0} L 1) 4 400
f&) = 100
-100 -100
D
_ 2 _ .
F4 UM, NS, SNR LX) = Z(xl 10 cos(2mx;) + 10) 09
=
fX) = L(M(x — 0)) + 500
L(x) =
(z2 — 10cos(2mz;) + 10) —
940 )
Z 20 exp
F5 MM,NS 870 = 800
h 1v
?88 v —exp —Z cos(2mx;) | +20+e
: 100 D&
-100 100 =L 5.12(x — o) + 800
fe = 100
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Table 8. Cont'd

No. Function name 2D Plot

. ok *
Formulation fmin

2500

2000
F6 MM, NS, LOH 4500

100

-100 -100

D
L(x) = 418.9829 X D — Z 9(z)
i=1 1000

1000(x—o
( )> + 1000

f@ =1 (T

*: UM: Uni-Modal, MM: Multi-Modal, NS: Non-Separable, LOH: Local optima’s number is huge, A: Asymmetrical, SP:

Separable, SNR: Smooth but narrow ridge

**: Operators of 0, z, and M are given in detail in the CEC2017 database in: https://github.com/P-N-Suganthan/CEC2017-

BoundContrained [33]

4.1.1. Accuracy and stability analysis

The accuracy and stability solutions for the selected
functions attained using different optimization
methods are reported comparatively in the current
section. The achieved results for this analysis are
presented in Table 9. Based on the reported optimal
outcomes, ISA obtained promising results in both
accuracy and stability aspects for all cases. iPSO
comes in the second position after ISA. The reason
for this observation is that the ISA utilizes both
local and global search behaviors during the
optimization process and this prevents the
algorithm from trapping in any local optima.

4.1.2. Convergence behavior analysis

For observing the search performance of the
selected methods more accurately, the convergence
rate diagrams for the selected test functions are
plotted in Fig. 2. According to the illustrated
diagrams, the ISA technique presented the fastest
convergence rate than the other methods in
achieving the optimal result. This fact designates
that the ISA utilizing the interacting and tracking
search behaviors simultaneously during the
optimization process reduces the
iterations, expedites the convergence rate of the
algorithm, and improves the performance of the
algorithm.

ineffective

4.1.3. Complexity analysis
In the current section, the complexity of the selected
optimization methods is tested and reported. For

this aim, four periodic terms (i.e. Ty, 71, T2 and Tz)
are calculated [34]. Ty is the required time for
running following code:

for i=1:1000000
x=5.55 (x is double);
X=X + X;
X=X./2;
X=X¥X; (27)
x=sqrt(x);
x=In(x);
x=exp(x);
y=X/X;
end

T is the required time for 200000 evaluation of
the desired function [34]; 7, is the total time
required for optimizing the selected function with
distinct dimensions (which are taken as D=30 and

D=50); T, is defined as the average of all obtained
T2 values for the current function and dimension.
The F6 because of its complexity is selected for the
current analysis. The acquired results are presented
in Table 10 and Table 11. According to the given
outcomes for dimension 30, DE comes before ISA.
This fact is due to ISA’s search behavior balancing
process; although it is less time-consuming than
other selected methods. Considering the
performance of the ISA from accuracy, stability and
convergence rate aspects, this little difference will
be negligible. For dimension 50, ISA exceeds other
methods.


https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
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Table 9. Optimal results for selected test functions

Function Value DE IMO iPSO HHO ISA GTOA
F1 Mean 4.12E+03 8.91E+04 3.91E+03 6.14E+06 5.19E+02 7.41E+04
Std. 2.25E+02 7.20E+03 5.01E+01 7.68E+04 3.45E+01 8.21E+03
F2 Mean 8.33E+04 5.13E+03 4.55E+03 5.89E+03 3.76E+03 4.99E+03
Std. 2.91E+04 6.00E+02 7.19E+01 4.51E+02 6.21E+01 5.88E+02
F3 Mean 4.96E+02 4.90E+02 4.65E+02 5.01E+02 4.51E+02 4.79E+02
Std. 4 48E+01 5.39E+01 2.01E+01 1.22E+02 5.25E+00 2.71E+01
F4 Mean 6.66E+02 6.15E+02 5.71E+02 6.00E+02 5.51E+02 5.80E+02
Std. 6.51E+01 5.01E+01 2.11E+01 4 41E+01 1.81E+01 3.37E+01
F5 Mean 9.77E+02 9.17E+02 8.41E+02 8.68E+02 8.39E+02 9.01E+02
Std. 4.74E+01 3.91E+01 2.69E+01 4.51E+01 2.03E+01 3.66E+01
F6 Mean 5.45E+03 5.47E+03 4.99E+03 5.35E+03 4.12E+03 4.28E+03
Std. 4.78E+02 5.11E+02 4.16E+02 7.45E+02 2.98E+02 4.86E+02
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Fig.2. Convergence rate diagrams for selected functions
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Table 10. Complexity analysis result for selected algorithms for D=30 (F6)
Algorithm T T T (T2-T)/To Rank
DE 1.40E-01 1.91E-01 4.54E+02 3.24E+03 1
MO 1.40E-01 1.91E-01 6.40E+02 4.57E+03 6
iPSO 1.40E-01 1.91E-01 4.59E+02 3.28E+03 3
HHO 1.40E-01 1.91E-01 5.08E+02 3.63E+03 4
ISA 1.40E-01 1.91E-01 4.58E+02 3.27E+03 2
GTOA 1.40E-01 1.91E-01 6.05E+02 4.32E+03 5
Table 11. Complexity analysis result for selected algorithms for D=50 (F6)
Algorithm To Ti T, ( 7T, 1)/To Rank
DE 1.40E-01 3.06E-01 5.11E+02 3.65E+03 2
IMO 1.40E-01 3.06E-01 6.71E+02 4.79E+03 6
iPSO 1.40E-01 3.06E-01 5.19E+02 3.70E+03 3
HHO 1.40E-01 3.06E-01 6.44E+02 4.60E+03 4
ISA 1.40E-01 3.06E-01 5.07E+02 3.62E+03 1
GTOA 1.40E-01 3.06E-01 6.60E+02 4.71E+03 5
4.1.4. Non-parametric statistical tests for

unconstrained mathematical functions
In the current section, to give an exhaustive view of
the performance of the selected methods, a non-
parametric statistical test (Friedman rank test) is
implemented over the mean and standard deviation
values. The achieved results are given in Table 12.
Presented results indicate that ISA outperforms
other methods in terms of stability and accuracy.

4.2. Case studies for thermo-economic
optimization
In the current section, the mentioned six well-
established optimization methods are employed for
thermo-economic optimization for residential
buildings. For this aim, five different cities from the
Aegean geographic location of Turkey, as shown in
Fig. 3, are selected.
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Table 12. The Friedman rank test for mean and std values for unconstrained functions
Test for the optimal mean value Test for optimal Std. value
Method  Friedman value = Normalized value ~ Rank Friedman value Normalized value Rank
DE 22 0.181818 6 19 0.210526 4.5
IMO 20 0.200000 5 19 0.210526 4.5
iPSO 9 0.444444 2 8 0.5 2
HHO 17 0.235294 4 21 0.190476 6
ISA 4 1.000000 1 4 1 1
GTOA 12 0.333333 3 13 0.307692 3
o
Manisa w
4 0l

.: \'/,._1 k-\’\x
R : /MW
R \\'/\.ﬂ

e Vv

Fig. 3. Selected locations from Turkey

The heating degree-day values of these locations
are considered in the thermal modeling of the
system. The total heating cost of the insulated
building is considered as the objective function of
the optimization problem. The design variables of
the optimization problem are from both continuous
and discrete variable sets, which increases the
complexity of the search space. The design
variables, as presented in Table 13, are the fuel
type, insulation material type and the thickness of
the insulation layer. It should be mentioned that the
monetary properties of the fuels and insulation
material are taken from the government data series
of 2016 [32]. In addition, the optimization process
is run with 20 particles in 50 iterations (i.e. 1000

Objective Function Evaluations (OFEs)) for all
optimization methods in all cases.

The optimal results obtained using different
optimization  techniques comparatively

presented in Table 14. To demonstrate the

are

performance of the methods in solving the current
optimization problem the convergence rate
diagrams of the optimization process are given in
Fig. 4. It is observed from the achieved results that
the population-based optimization methods provide
acceptable performance in solving the current
problem for all cases. As seen from the convergence
diagrams the ISA technique is more rapid than other
techniques.
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Table 13. Design variables of the optimization problem

Design  Var. Properties
variable type No. Type Hu n Chiel
1 Natural gas 34485000 (J/m?) 0.90 0.385 ($/m>)
2 2 2 Col 25080000 (J/kg)  0.65 0.273 ($/kg)
% = 3 3 Fuel-oil 40546000 (J/kg) 0.80 0.766 ($/kg)
= 8 4 LPG 45980000 (J/kg) 0.88 1.921 ($/kg)
5 Diesel 42911104 (J/kg)  0.84 1.614 ($/kg)
k (W/mK) Cm ($/m?)
1 Extruded polystyrene (XPS) 0.031 180
g = g 2 Expanded polystyrene (EPS) 0.039 120
€8x 5 3 Glasswool 0.040 75
£ E 2 4 Rock wool 0.040 80
5 Polyurethane 0.024 260
Interval (m)
SEx & - [0.0001,1.0]
2= s
—_— O
Table 14. Optimal results obtained by different optimization methods
5 Optimal resits Usak Mugla Denizli Manisa [zmir
=P HDD=2414  HDD=1879  HDD=1627  HDD=1535  HDD=1118
Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool
iy Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
A Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591
THC ($/m2) 15.9608 13.9038 12.8331 12.4217 10.3798
Insulation material Glass wool Glass wool Rock wool Glass wool Rock wool
O Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
E Opt. ins. thickness (m) 0.1062 0.0726 0.0739 0.0924 0.1035
THC ($/m?) 16.0335 13.9846 13.2046 12.6787 12.0904
Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool
8 Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
2 Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591
THC ($/m?) 15.9608 13.9038 12.8331 12.4217 10.3798
Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool
O Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
a:: Opt. ins. thickness (m) 0.1082 0.0671 0.0744 0.0601 0.0758
THC ($/m?) 16.0435 14.1117 12.8340 12.5716 10.5980
Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool
<« Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
Z Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591
THC ($/m?) 15.9608 13.9038 12.8331 12.4217 10.3798
Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool
g‘ Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas
S Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591
THC ($/m?) 15.9608 13.9038 12.8331 12.4217 10.3798




Journal of Construction Engineering, Management & Innovation

60

24

16

14

THC ($/m?)

1 DE 229 DE
~ - IMO ~ - IMO
| - -iPsO - - -iPsO
- g — IO 204 - — IO
Kk = =[SA I - =[SA
- —GTOA — ! - = GTOA
- i £ 184
h' S = e
! - &) i
1 | = 16| |
) =
i1 L Jr'__ = o
b — '- — L __,' — —_—
- _L_.'_._.=._.|: P ——— 144 A - == =
I I I 1 1 12 I I I 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
OFEs OFEs
Usak Mugla
20 DE 20 DE
~ - IMO ~ - IMO
-_1 . - -iPSO - =iPSO
| - — 1Mo B — 10
184 A - =ISA 13'_| - =1ISA
I - — GTOA — i ~ — GTOA
|- = iy
(11, & .
[ e T e ~ 16411
1 Q |
T ey
T = I 1|
1 I - — 1 i
8 T 14+ I: |
By : fomain ,‘ S [H l .
- bigiiec b et onls [ mom peasnamns soue
12 1 I I I 1 12 1 I I 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
OFEs OFEs
Denizli Manisa
20 DE
- - IMO
- -iPSO
184 — 1Mo
- - =ISA
—~ : - —GTOA
g 1694,
e |
U ) a
T o4 0
k- 14 : ]
L34
12':e13 i i
L
10 . — . .
0 200 400 600 800 1000
OFEs
izmir

Fig 4. Convergence rate for different methods during the optimization process
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5. Conclusion

In the current study, the performance of the
population-based and non-gradient optimization
techniques in solving the thermo-economic
optimization model is investigated. For this aim,
Differential Evolution (DE), Ions Motion
Optimization (IMO), Integrated Particle Swarm
Optimization (iPSO), Harris Hawks Optimization
(HHO), Interactive Search Algorithm (ISA), and
Group Teaching Optimization Algorithm (GTOA)
are selected. Notably, testing the performance of the
population-based techniques in solving the thermo-
economic optimization model clarifies the effective
feature of these methods and their applicability in
different engineering optimization problems. In
addition, to give a wide aspect for the researchers,
the performance of the selected methods is also

assessed in solving mathematical function
problems with different properties. Distinct
analyses such as accuracy and stability,
convergence behavior, complexity, and non-

parametric statistical tests are implemented on the
obtained optimal results. According to the achieved
outcomes, the performance of the ISA method due
to its search paradigms outperforms the other
techniques. The performance of ISA method is
followed by the iPSO and DE methods.

Also, a thermo-economic optimization model is
carried out for the exterior wall of the residential
buildings. The total heating cost of the insulated
building is minimized as the objective function of
the model. The optimal values for the design
variables (i.e. fuel type, insulation material, and
insulation thickness) are obtained using the selected
optimization methods. It should be noted that the
inflation rate is assumed to represent the rate of
increase in fuel prices. However, the rate of
increase in fuel prices could be slightly different
from the inflation rate. In the study cases, five
different cities in the Aegean region of Turkey are
considered. All selected techniques put forward an
acceptable performance in solving the proposed
thermo-economic optimization model. Particularly,
ISA, iPSO, and DE present superior performance in
comparison with other techniques in terms of
accuracy and convergence rate. The optimal results

for the selected case studies mostly are determined
glass wool and natural gas as the insulation material
type and fuel type, respectively. In the future, the
performance of the different optimization methods
would be tested on more real-world optimization
problems and the design of zero-energy buildings.
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