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The total heating cost of residential buildings corresponds to a significant part of the 
energy consumption of countries. Designing cost-efficient residential buildings in terms 
of energy gains importance. In the current study, it is targeted to take a beneficial step 
that will contribute to this issue. In this respect, the decisive components for the 
calculation of the total heating cost of insulated buildings (i.e. the fuel type, insulation 
material, and insulation thickness) are determined optimally. For this aim, an 
optimization model is utilized in which the total heating cost based on life cycle cost 
analysis is considered as the objective function. The design variables are selected from 
both continuous and discrete spaces and they are dependent on each other. For solving 
the problem with such a complex search domain, different well-established non-gradient 
and population-based optimization techniques are utilized. These methods do not require 
the information of the objective functions so they can be used widely in solving different 
optimization problems. In addition, multivariable thermo-economic optimization for 
minimizing the total heating cost of the insulated building with the selected methods 
presents the effect and power of the population-based methods in solving different 
engineering optimization problems. The considered methods are tested on unconstrained 
mathematical functions and thermo-economic optimization of five distinct locations in 
the Aegean region of Turkey. The comparative assessments are reported and discussed 
in detail. Different analyses are employed for evaluating the performance of the 
optimization techniques. According to the archived outcomes, the utilized optimization 
techniques present acceptable performance in handling both discrete and continuous 
design variables. 
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1. Introduction 
The unsustainable energy sources are going to 
expire. Finding more efficient ways for saving 
energy and using renewable energies gained more 
significance in recent years. A considerable portion 
of the energy is utilized in heating residential 
buildings. In this respect using the most proper fuel 

and insulating system for a cost-efficient design is 
necessary. In residential buildings, a considerable 
part of heat losses occurs from the exterior walls of 
the buildings. For reducing these losses, applying 
an insulating system to the exterior walls is a 
practical remedy [1, 2]. Determining the thickness 
of the insulation material is an optimization 
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problem with a single variable. There are several 
studies those are applied gradient-based techniques 
for solving the mentioned optimization problem [3-
11]. In these studies for thermal modeling of the 
insulated building, the Degree-Day (DD) values of 
the geographic location are considered. For 
economic modeling of the system, the Life Cycle 
Cost Analyze (LCCA) technique is employed. 
Consequently, the total heating cost of the insulated 
building is considered the objective function of the 
optimization problem. In a more recent study, a 
simultaneous multivariable approach is employed 
[12]. Besides the insulation thickness, the type of 
the fuel and the type of the insulation material are 
considered simultaneously as the design variables 
of the optimization problem. For solving the 
optimization problem, a non-gradient and 
population-based optimization technique are 
utilized. For saving more energy and cost in 
buildings, carrying out studies with more effective 
optimization techniques for solving these kinds of 
problems acquires more importance. 
 Optimization techniques are divided into two 
main groups; gradient-based and non-gradient-
based techniques. Non-gradient methods do not 
require the gradient information of the objective 
function [13]. Also, they are not sensitive to the 
initial condition of the searching process and step 
sizes. They can start from any arbitrary or improper 
position and without easily trapping to the local 
optima [14, 15]. There are two search patterns for 
scanning the search domain during the optimization 
process; Local search and Global search. In 
optimization methods, making a balance between 
two strategies is vital and this affects the search 
performance of the optimization algorithm [16, 17]. 
There are different internal parameters and 
algorithms for providing a more effective search 
capability in different methods. There are main 
categories for the classification of non-gradient 
techniques. These categories are evolutionary-
based, physics-based, nature-inspired, and social-
based techniques. In the current study, for giving an 
exhaustive point of view for the readers, different 
methods are selected from these categories [18-20].  

The selected optimization techniques are; 
Differential Evolution (DE), Ions Motion 
Optimization (IMO), Integrated Particle Swarm 
Optimization (iPSO), Harris Hawks Optimization 
(HHO), and Interactive Search Algorithm (ISA). 
 The thermo-economic optimization for the 
insulated building is studied for a single variable 
(i.e. insulation thickness) and the conventional 
gradient-based approach is utilized for solving it [3, 
5, 11, 21, 22]. Considering the fuel type and the 
insulation material type gives a realistic dimension 
to the problem. In addition, utilizing recently 
developed non-gradient population-based methods 
as the optimizer tool contributes to the technical 
literature. For this target, in the current study, 
minimizing the total heating cost of the insulated 
building with simultaneous multi-variables is 
investigated. For minimizing the total heating cost 
of insulated residential buildings six different non-
gradient and population-based optimization 
methods are utilized. In the case studies, five 
different locations from the Aegean region of 
Turkey are selected. Also, for giving a more 
comprehensive range of view for the researchers six 
distinct mathematical functions selected from 
CEC2017 with different properties are tested. The 
performance of these methods is tested and 
compared via accuracy and stability, convergence 
behavior, complexity, and non-parametric 
statistical analyses. 
 
2. Optimization methods 
In the current section, the selected optimization 
algorithms are briefly described. All selected 
algorithms are non-gradient and population-based 
techniques. The selected optimization methods and 
their descriptions are chronologically listed in 
Table 1. These methods are not dependent on the 
start point of the search process and the step sizes 
are not determinative in these methods. It is not 
necessary to define a continuous objective function 
and its gradients. These advantages cause the 
algorithms to not trap easily in any local optima and 
the ineffective iterations decrease.  Each agent is a 
potential solution in these kinds of methods.  
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Table 1. Parameter setting for the applied algorithms 

Algorithm Year Parameter Description 

DE [23] 1997 𝐹𝐹 ∈ {0,2} Differentiation amplification factor (F) 

IMO [24] 2015 𝜑𝜑1,𝜑𝜑2 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (−1, 1) 
Movement factor ( ) 
Anion (A) , Cation (C) 

iPSO [25] 2017 𝛼𝛼 = 0.4,𝐶𝐶3 = 𝐶𝐶4 = 1,𝐶𝐶2 = 2 Acceleration factors (C1,C2, C3,C4) 

HHO [26] 2019 
𝐸𝐸0 = 2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) − 1 
𝐽𝐽 = 2(1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)) 

The initial state of prey’s energy (E0) 
Random jump strength (J) 

ISA [27] 2019 𝜏𝜏 = 0.3 Tendency factor( ) 

GTOA [28] 2020 𝐹𝐹 ∈ {0,2} Teaching factor (F) 
 
The agents initialize from any arbitrary location in 
the search domain and their location is improved 
gradually via evaluating the objective function 
value in each iteration. These methods are 
chronologically explained in the following sub-
sections. 

2.1. Differential evolution (DE) 
Differential Evolution (DE) method has two main 
phases crossover and mutation. In the mutation 
phase, a mutant vector, based on three randomly 
considered agents, is generated for each agent. 
However, in the crossover phase, each agent is 
crossed over with its generated mutant vector [23]. 
Based on the given information the mutation and 
crossover phases are mathematically formulated as 
below: 
Mutation phase: 

𝑉𝑉 𝑡𝑡+1
𝑖𝑖
 = 𝑋𝑋 𝑡𝑡 𝑟𝑟1 + 𝐹𝐹 ∙ ( 𝑋𝑋 𝑡𝑡 𝑟𝑟2 − 𝑋𝑋 𝑡𝑡 𝑟𝑟3),      𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

  𝑟𝑟1 ≠ 𝑟𝑟2 ≠ 𝑟𝑟3 ≠ 𝑖𝑖 
(1) 

Crossover phase: 

𝑋𝑋 𝑡𝑡+1
𝑖𝑖𝑖𝑖 = �

𝑉𝑉 𝑡𝑡 𝑖𝑖𝑖𝑖 ,           𝑖𝑖𝑖𝑖 𝑟𝑟4 ≤ 𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑟𝑟5 = 𝑗𝑗      
 

𝑋𝑋 𝑡𝑡 𝑖𝑖𝑖𝑖 ,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                           
 (2) 

r1, r2 and r3 are different integers randomly 
selected from [1, PS], in which PS is the population 
size. However, r4 and r5 have been randomly 
selected from [0, 1] intervals. F is the 
differentiation amplification factor and is 
considered to be selected from [0, 2] interval as a 
real scalar. 𝑋𝑋  𝑖𝑖𝑖𝑖  presents the jth component of the ith 

agent. 𝑉𝑉  𝑖𝑖𝑖𝑖  is the jth component of the ith mutant 
vector. In addition, CR is the crossover constant and 
it shows whether the probability of mutation for the 
current agent’s components is accepted or not. The 
work scheme of the DE is presented in its pseudo-
code in Table 2. 

2.2. Ions motion optimization (IMO) 
The treats of the ions in nature, the repulsion and 
attraction forces within the anions and cations 
became inspiration sources for the Ions Motion 
Optimization (IMO). The population size of the 
algorithm at the inception of the search process 
must be an even number because agents are divided 
into two groups anions and cations. There are two 
distinct search patterns such as liquid phase and 
solid phase in this method. There are not any 
random coefficients in the liquid phase of the IMO 
algorithm, which makes this phase thoroughly non-
stochastic. In the solid phase of the algorithm, the 
exploitation behavior of the algorithm is dominant 
and the agents move toward the best solution during 
the search process for preventing the algorithm 
from trapping in local optima [24]. According to the 
given information, the mathematical description of 
the current method is formulated as below: 
Liquid phase 

𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐹𝐹𝑖𝑖𝑖𝑖 × �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑖𝑖� 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑗𝑗 + 𝐶𝐶𝐹𝐹𝑖𝑖𝑖𝑖 × �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 − 𝐶𝐶𝑖𝑖𝑖𝑖� 
(3) 
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Table 2. The pseudo-code for DE 

Initialize internal parameters and agents; 
while (the termination criteria are not met) 
    For each agent calculate the mutation vector from Eq. (1) 
   if (the mutation is probable)  
       the mutant vector is the new agent based on Eq. (2) 
   else if 
         𝑋𝑋 𝑡𝑡+1

𝑖𝑖𝑖𝑖 = 𝑋𝑋 𝑡𝑡 𝑖𝑖𝑖𝑖 
   end 
end 

Solid-phase 

if 

⎝

⎜
⎛
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

2
𝑎𝑎𝑎𝑎𝑎𝑎 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
2 ⎠

⎟
⎞

 

�𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 + Φ1 × (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 1) if   𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) > 0.5
𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 + Φ1 × (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)         if    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) ≤ 0.5  

�𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖 + Φ2 × (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 1) if    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) > 0.5
𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖 + Φ2 × (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)         if     𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) ≤ 0.5 

𝑅𝑅𝑅𝑅 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 𝐴𝐴𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑖𝑖    if      𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) < 0.05 

(4) 

Abest, Cbest, AbestFit and CbestFit indicate the 
best anion, best cation, fitness value for the best 
anion and fitness value for the best cation, 
respectively. Φ1, Φ2 is uniformly selected from the 
interval [-1, 1]. rand () is randomly selected from 
[0, 1] interval. AFij and CFij are the force 
coefficients between the ions and are determined as 
below: 

𝐴𝐴𝐹𝐹𝑖𝑖𝑖𝑖 =
1

1 + 𝑒𝑒−0.1/𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖
 

𝐶𝐶𝐹𝐹𝑖𝑖𝑖𝑖 =
1

1 + 𝑒𝑒−0.1/𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖
 

in which 

𝐷𝐷𝑖𝑖𝑖𝑖 = �𝐴𝐴𝑖𝑖𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗� , 𝐶𝐶𝐷𝐷𝑖𝑖𝑖𝑖 = �𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗� 

(5) 

ADij and CDij are the distance between the ith agent 
and best anion/cation, respectively. For giving a 
more clear description of the IMO, the pseudo-code 
of the method is given in Table 3. 

2.3. Integrated particle swarm optimization 
(iPSO) 

The integrated Particle Swarm Optimization (iPSO) 
is the enhanced version of the PSO technique via 

employing a weighted agent to the algorithm for 
preventing any local optima trapping. There are two 
different search strategies for scanning the search 
domain. In one of these strategies, the new agent 
moves toward three other agents (XG, XP and XW). 
In the other strategy, it moves just toward the 
gravity center of the population (XW). The 
algorithm working scheme is mathematically given 
below [29]: 
𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0𝑖𝑖 > 𝛼𝛼 

𝒗𝒗𝑖𝑖 
𝑡𝑡+1 = 𝜔𝜔 × 𝒗𝒗𝑖𝑖 

𝑡𝑡 + (𝜑𝜑1𝑖𝑖 + 𝜑𝜑2𝑖𝑖 + 𝜑𝜑3𝑖𝑖)� 𝑿𝑿𝑗𝑗𝑃𝑃 
𝑡𝑡

− 𝑿𝑿𝑖𝑖 
𝑡𝑡 � + 𝜑𝜑2𝑖𝑖� 𝑿𝑿𝐺𝐺 

𝑡𝑡 − 𝑿𝑿𝑗𝑗𝑃𝑃 
𝑡𝑡 �

+ 𝜑𝜑3𝑖𝑖� 𝑿𝑿𝑤𝑤 
𝑡𝑡 − 𝑿𝑿𝑗𝑗𝑃𝑃 

𝑡𝑡 � 
𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0𝑖𝑖 ≤ 𝛼𝛼  

𝒗𝒗𝑖𝑖 
𝑡𝑡+1 = 𝜑𝜑4𝑖𝑖( 𝑿𝑿𝑤𝑤 

𝑡𝑡 − 𝑿𝑿𝑖𝑖 
𝑡𝑡 )           

Updated agent: 
𝐗𝐗𝑖𝑖 

𝑡𝑡+1 = 𝐗𝐗𝑖𝑖 
𝑡𝑡 + 𝐯𝐯𝑖𝑖 

𝑡𝑡+1  

(6) 

in which 
𝜑𝜑𝑘𝑘𝑘𝑘 = 𝐶𝐶𝑘𝑘 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑘𝑘 for 𝑘𝑘 ∈ {0,1,2,3,4}. 
where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑘𝑘is a random number selected from the 
interval [0, 1]. The acceleration factors are 
determined as 𝐶𝐶1 = −(𝜑𝜑2𝑖𝑖 + 𝜑𝜑3𝑖𝑖), 𝐶𝐶2 = 2, 𝐶𝐶3 = 1, 
and 𝐶𝐶4 = 2. The weighted agent (XW) is calculated 
as below: 

𝑿𝑿𝑤𝑤 = �𝑐𝑐𝑖̅𝑖𝑤𝑤𝑿𝑿𝑖𝑖𝑃𝑃
𝑀𝑀

𝑖𝑖=1

 

𝑐𝑐𝑖̅𝑖𝑤𝑤 = �𝑐̂𝑐𝑖𝑖𝑤𝑤 �𝑐̂𝑐𝑖𝑖𝑤𝑤
𝑀𝑀

𝑖𝑖=1

� � 

𝑐𝑐𝑖𝑖𝑤𝑤 =

𝑚𝑚𝑚𝑚𝑚𝑚�
1≤𝑓𝑓≤𝑀𝑀

�𝑓𝑓�𝑿𝑿𝑘𝑘𝑘𝑘𝑃𝑃 �� − 𝑓𝑓�𝑿𝑿𝑖𝑖𝑃𝑃� + 𝜀𝜀

𝑚𝑚𝑚𝑚𝑚𝑚�
1≤𝑘𝑘𝑘𝑘≤𝑀𝑀

�𝑓𝑓(𝑿𝑿𝑘𝑘𝑘𝑘𝑃𝑃 )� − 𝑚𝑚𝑚𝑚𝑚𝑚�
1≤𝑘𝑘𝑘𝑘≤𝑀𝑀

�𝑓𝑓(𝑿𝑿𝑘𝑘𝑘𝑘𝑃𝑃 )� + 𝜀𝜀
     

 , 𝑖𝑖 = 1,2, … ,𝑀𝑀  

(7) 
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Table 3. The pseudo-code for IMO 

Initialize internal parameters and agents; 
while (the termination criteria are not met) 
    Evaluating all agents  
    Determining the best and worst Anions and Cations and force coefficients using Eqs. (3-5) 
   Update locations of ions based on the liquid phase as given in Eq. (3) 
   if (Mean objective function value of worst ions is equal or smaller than the best ions)  
       Perform solid-phase motion based on Eq. (4) 
   end 
end 

M is the number of agents and f(.) presents the 
objective function value of the current agent. ε is 
defined as a tiny value (i.e. 1E-06) to prevent any 
division by zero condition. For more clarification, 
the pseudo-code of the iPSO is presented in Table 
4. 

2.4. Harris hawks optimization (HHO) 
Harris Hawks Optimization (HHO) is a nature-
inspired optimization technique. It mimics the 
behavior of an intelligent bird so-called 
Harris’Hawks in hunting escaping prey. There are 
three phases in this algorithm; (i) Exploration, (ii) 
Transition from exploration to exploitation and (iii) 
Exploitation. In HHO, each agent (Harris’ Hawks) 
is a candidate solution. In the exploration phase, the 
agents change their locations randomly then the 
average location of agents is achieved. During the 
location changings, the prey escapes from the 
agents and their energy decreases. Due to this fact, 
the transition phase occurs. Then in the exploitation 
phase of the search process, the agent moves toward 
the best location based on the attained information 
from the transition phase [26]. Based on the given 
information, the algorithm of HHO is 
mathematically formulated as below: 
Exploration phase: 

𝑋𝑋𝑡𝑡+1 = 

�
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 𝑟𝑟1�𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 2𝑟𝑟2𝑋𝑋𝑡𝑡�                         𝑞𝑞 ≥ 0.5
�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑋𝑋𝑚𝑚𝑡𝑡 � − 𝑟𝑟3�𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)� 𝑞𝑞 < 0.5

 

𝑋𝑋𝑚𝑚𝑡𝑡 =
1
𝑁𝑁�𝑋𝑋𝑖𝑖𝑡𝑡

𝑁𝑁

𝑖𝑖=1

 

(8) 

 

The transition from exploration to exploitation: 

𝐸𝐸 = 2𝐸𝐸0 �1 −
𝑡𝑡
𝑇𝑇� (9) 

Exploitation phase: 

when 𝑟𝑟 ≥ 0.5  𝑎𝑎𝑎𝑎𝑎𝑎  |𝐸𝐸| ≥ 0.5 

 𝑋𝑋𝑡𝑡+1 = ∆𝑋𝑋𝑡𝑡 − 𝐸𝐸�𝐽𝐽𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑋𝑋𝑡𝑡� 

∆𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑋𝑋𝑡𝑡 

𝐽𝐽 = 2(1 − 𝑟𝑟5) 

when 𝑟𝑟 ≥ 0.5  𝑎𝑎𝑎𝑎𝑎𝑎  |𝐸𝐸| < 0.5 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝐸𝐸|∆𝑋𝑋𝑡𝑡| 

when 𝑟𝑟 < 0.5  𝑎𝑎𝑎𝑎𝑎𝑎  |𝐸𝐸| ≥ 0.5 

𝑌𝑌 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝐸𝐸�𝐽𝐽𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑋𝑋𝑡𝑡�  

𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷) 

𝐿𝐿𝐿𝐿(𝑥𝑥) = 0.01 ×
𝑢𝑢 × 𝜎𝜎

|𝑣𝑣|
1
𝛽𝛽

     ,      

𝜎𝜎 =

⎝

⎛
𝜏𝜏(1 + 𝛽𝛽) × sin �𝜋𝜋𝜋𝜋2 �

𝜏𝜏 �1 + 𝛽𝛽
2 � × 𝛽𝛽 × 2�

𝛽𝛽−1
2 �

⎠

⎞

1
𝛽𝛽

 

𝑋𝑋𝑡𝑡+1 = �𝑌𝑌         𝑖𝑖𝑖𝑖    𝑓𝑓(𝑌𝑌) < 𝐹𝐹(𝑋𝑋𝑡𝑡)
𝑍𝑍         𝑖𝑖𝑖𝑖    𝑓𝑓(𝑍𝑍) < 𝐹𝐹(𝑋𝑋𝑡𝑡)

 

when 𝑟𝑟 < 0.5  𝑎𝑎𝑎𝑎𝑎𝑎  |𝐸𝐸| < 0.5 

𝑋𝑋𝑡𝑡+1 = �
𝑌𝑌         𝑖𝑖𝑖𝑖    𝑓𝑓(𝑌𝑌) < 𝐹𝐹(𝑋𝑋𝑡𝑡)
𝑍𝑍         𝑖𝑖𝑖𝑖    𝑓𝑓(𝑍𝑍) < 𝐹𝐹(𝑋𝑋𝑡𝑡)

 

𝑌𝑌 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝐸𝐸�𝐽𝐽𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑋𝑋𝑚𝑚𝑡𝑡 � 

𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷) 

(10) 

where r1, r2, r3, r4, r5, and q are randomly selected 
from (0, 1) interval. N is the population size. E and 
E0 designate the escaping energy and the initial 
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Table 4. The pseudo-code for iPSO 
Initialize agents 
while (the termination criteria are not met) 
   Calculate the weighted agent 𝐗𝐗w  using Eq. (7) 
      for (each agent) 
             if (rand0i ≤ α)  
                Calculate the velocity vector applying Eq.(6) 
             else if (rand0i > α) 
                Calculate the velocity vector applying Eq.(6)  
             end 
            Update the current agent 
      end 
   confirm weighted agent condition 

      if �𝑓𝑓(𝐗𝐗𝑤𝑤)� < �𝑓𝑓(𝐗𝐗𝐺𝐺)�  
            Set  𝐗𝐗𝐺𝐺 = 𝐗𝐗𝑤𝑤,     (whenever 𝐗𝐗𝑤𝑤 has the less objective function value replaced with 𝐗𝐗𝐺𝐺) 

      end 
end 

the energy of the prey, respectively. T and t are the 
maximum number of iterations and the current 
iteration, respectively. r indicates the chance of 
prey in successfully escaping. LF is the levy flight 
concept and is utilized to model the real zigzag 
motions of prey during the escaping. For more 
clarity, the pseudo-code of HHO is given in Table 
5. 

2.5. Interactive search algorithm (ISA) 
Interactive Search Algorithm (ISA) is another 
population-based optimization technique. There are 
two different paradigms for scanning the search 
domain of the problem, named tracking and 
interacting search strategies. In the tracking and 
interacting paradigms, the exploration and 
exploitation search behaviors of the algorithm are 
respectively dominant. There is a tendency factor 
(τ) for regulating the algorithm between these two 
paradigms. This factor (τ) is determined as 0.3 
based on a series of sensitivity analyses [27]. Based 
on the given information the ISA is mathematically 
presented as below: 
if 𝜏𝜏 ≥ 0.3 (Tracking paradigm) ∶ 

𝑉𝑉𝑖𝑖𝑇𝑇𝑇𝑇 
𝑡𝑡+1 = ω ∙ 𝑉𝑉𝑖𝑖 

𝑡𝑡 + φ1 ⊙ � X𝑗𝑗𝑃𝑃 
𝑡𝑡 − X𝑖𝑖  

𝑡𝑡 � +  φ2

⊙ � X 
𝐺𝐺

 
𝑡𝑡 − X𝑗𝑗𝑃𝑃 

𝑡𝑡 � + φ3

⊙ � X 
𝑊𝑊

 
𝑡𝑡 − X𝑗𝑗𝑃𝑃 

𝑡𝑡 � 
 
 

(11) 

if 𝜏𝜏 < 0.3 (Interacting paradigm) ∶ 
𝑉𝑉𝑖𝑖𝐼𝐼𝐼𝐼 

𝑡𝑡+1 = φ4 ⊙ � X𝑖𝑖  
𝑡𝑡 − X𝑗𝑗  

𝑡𝑡 �  ,    𝑖𝑖𝑖𝑖  𝑓𝑓(X𝑖𝑖)
<  𝑓𝑓�X𝑗𝑗� 

𝑉𝑉𝑖𝑖𝐼𝐼𝐼𝐼 
𝑡𝑡+1 = φ4 ⊙ � X𝑗𝑗  

𝑡𝑡 − X𝑖𝑖  
𝑡𝑡 �  ,    𝑖𝑖𝑖𝑖  𝑓𝑓(X𝑖𝑖)

≥  𝑓𝑓�X𝑗𝑗� 

(12) 

Updated agent: 
𝑋𝑋𝑖𝑖 

𝑡𝑡+1 = 𝑋𝑋𝑖𝑖 
𝑡𝑡 + 𝑉𝑉𝑖𝑖 

𝑡𝑡+1  
(13) 

φ𝑘𝑘 , 𝑘𝑘 = 1 … 4 is the acceleration factors and for ith 
agent are selected uniformly from the interval [0, 
1]. 𝐗𝐗𝑗𝑗 ,  𝐗𝐗𝐺𝐺, 𝐗𝐗𝑃𝑃 and  𝐗𝐗𝑊𝑊 indicate an arbitrary agent, 
the best agent, the best agent of the memory and the 
weighted agent of the population, respectively. ω is 
the inertia weight and it is considered as 0.4 [27]. 
⊙ is the sign of the Hadamard product. The 
weighted agent is declared in Eq. (7) before. The 
pseudo-code of the ISA is presented for more 
illustration in Table 6. 

2.6. Group teaching optimization algorithm 
(GTOA) 

Group Teaching Optimization algorithm (GTOA) 
is inspired by group teaching approach. In the 
GTOA, the whole class is considered to be in the 
normal distribution. There are four phases such as 
teacher allocation, ability grouping, teacher and 
student phases. There are just two control 
parameters as population size and stop criteria in 
the algorithm [28]. These four phases are 
mathematically presented as below:
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Table 5. The pseudo-code for HHO 

Initialize agents and internal parameters 
while (the termination criteria are not met) 
   Calculate the fitness value of agents 
   Set 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡  as the best location 
      for (each agent) 
             Update E0 and J and E from Eq (9) 
             Utilize r and E values to decide the phase of the algorithm 
             Update the location vector using Eq. (10) 
      end 
end 

 
Table 6. The pseudo-code for ISA 

Initialize agents 
while (the termination criteria are not met) 
   Calculate the weighted agent 𝐗𝐗𝑤𝑤  using Eq. (7) 
      for (each agent) 
             if (𝜏𝜏 < 0.3) 
                Calculate the velocity vector applying Eq.(12) 
             else if (𝜏𝜏 ≥ 0.3)  
                Calculate the velocity vector applying Eq.(11) 
             end 
            Update the current agent 
      end 
end 

 
Teacher allocation phase: 

𝑇𝑇𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡                                                 𝑓𝑓�𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 � ≤ 𝑓𝑓 �

𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑥𝑥𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

3
� 

𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 + 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑥𝑥𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

3
           𝑓𝑓�𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 � > 𝑓𝑓 �

𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡 + 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑥𝑥𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

3
�

 (13) 

Ability grouping phase: 

𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋𝛿𝛿
𝑒𝑒
−(𝑥𝑥−𝑢𝑢)2
2𝛿𝛿2  (14) 

Teacher phase I: 

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑎𝑎 × �𝑇𝑇𝑡𝑡 − 𝐹𝐹 × (𝑏𝑏 × 𝑀𝑀𝑡𝑡 + 𝑐𝑐 × 𝑥𝑥𝑖𝑖𝑡𝑡)� 

𝑀𝑀𝑡𝑡 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖𝑡𝑡
𝑁𝑁

𝑖𝑖=1

 

𝑏𝑏 + 𝑐𝑐 = 1 

(15) 
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Teacher phase II: 

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 2 × 𝑑𝑑 × (𝑇𝑇𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡) 

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 = �

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1          𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1  � < 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)
𝑥𝑥𝑖𝑖𝑡𝑡                       𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1  � ≥ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)
 

(15) 

Student phase: 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑡𝑡+1

= �
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 + 𝑒𝑒 × �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑗𝑗
𝑡𝑡+1 � + 𝑔𝑔 × �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑡𝑡�    𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 � < 𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑗𝑗

𝑡𝑡+1 �
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 − 𝑒𝑒 × �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑗𝑗
𝑡𝑡+1 � + 𝑔𝑔 × �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑡𝑡�    𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1 � ≥ 𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑗𝑗

𝑡𝑡+1 �
 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = �
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡+1        𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 � < 𝑓𝑓�𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑡𝑡+1 �

𝑥𝑥𝑠𝑠𝑠𝑠𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖
𝑡𝑡+1       𝑓𝑓�𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡+1 � ≥ 𝑓𝑓�𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
𝑡𝑡+1 �

 

(16) 

In the teacher allocation phase of the algorithm, 
𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 ,  𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 , 𝑥𝑥𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  are the first, second and third 
best students, respectively. In the ability grouping 
phase, the normal distribution of the class is 
presented. In which δ is the standard deviation, x is 
the value of the normal distribution function and u 
indicates the average knowledge of the whole class. 
In the teacher phase of the algorithm, a student 
learns from the teacher. In this phase, N is the 
number of students. t designates the current 
iteration and 𝑥𝑥𝑖𝑖𝑡𝑡 is the ith student at the time t. 𝑇𝑇𝑡𝑡 
and 𝑀𝑀𝑡𝑡 are the teacher and the mean of the students 
at the time t, respectively. a, b, c and d are randomly 
selected from [0, 1] intervals. F is the teaching 

factor which can be either 1 or 2 [30]. In the student 
phase, also, the e and g are randomly selected from 
[0, 1] intervals. For more clarity, the steps of the 
GTOA are given in pseudo-code form in Table 7. 
 
3. Thermo-Economic optimization model 

of the exterior wall of the building 
The thermal part of the thermo-economic model of 
the exterior wall of a residential building is carried 
out using a thermal resistance approach. In this 
respect, the wall is considered as a thermal element. 
As presented in Fig. 1 the layers of the wall are 
assumed as resistances. For a unit wall surface the 
heat losses via conduction are calculated as below: 

 
Table 7. The pseudo-code for GTOA 

Initialize agents 
while (the termination criteria are not met) 
     determining the first three best and calculating Tt from Eq.  (13) 
     dividing the population into two groups according to Eq. (14) 
         for (each group) 
               implementing the teacher phase for the groups by Eq. (15) 
               implementing the student phase for the groups by Eq. (16) 
         end 

         if  

               

         else if  

              

         end 
end 
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Fig. 1. External wall structure 

 

𝑞𝑞𝑥𝑥" = −𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (17) 

where k is the coefficient of thermal conductivity of 
the corresponding material. 
 For each layer of the wall thermal resistance is 
calculated as below [31]: 

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 (18) 

in which x designates the layer thickness. The 
overall heat transfer coefficient for a multilayer 
wall is attained as below: 

𝑈𝑈 =
1

𝑅𝑅𝑙𝑙 + 𝑅𝑅𝑏𝑏 + 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖
 (19) 

 The heating degree-day value is utilized for 
calculating the annual heating load and energy 
demand of a building per unit area of the exterior 
wall as the following [8]: 

𝑞𝑞𝑎𝑎,ℎ = 24 × 3600 × 𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑈𝑈 (20) 

𝐸𝐸𝑎𝑎,ℎ =
86400 × 𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑈𝑈

𝜂𝜂
 (21) 

where η shows the efficiency of the fuel type 
utilized for heating. The Life Cycle Cost Analysis 
(LCCA) technique is applied for developing the 
economic part of the thermo-economic model. For 
the unit surface area of the wall the annual heating 
load is calculated as below: 

𝐶𝐶𝑎𝑎,ℎ =
𝐸𝐸𝑎𝑎,ℎ𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝐻𝐻

 (22) 

where Hu is the heat value of the utilized fuel. The 
required Present Worth Factor (PWF) in the LCCA 
technique is calculated as below: 

⎩
⎪
⎨

⎪
⎧
𝑃𝑃𝑃𝑃𝑃𝑃 =

(1 + 𝑟𝑟)𝑁𝑁 − 1
(1 + 𝑟𝑟)𝑁𝑁 × 𝑟𝑟          

⎩
⎨

⎧𝑟𝑟 =
𝑖𝑖 − 𝑔𝑔
1 + 𝑔𝑔      𝑖𝑖 > 𝑔𝑔

𝑟𝑟 =
𝑔𝑔 − 𝑖𝑖
1 + 𝑖𝑖      𝑖𝑖 < 𝑔𝑔

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁

1 + 𝑖𝑖
                                                    𝑖𝑖 = 𝑔𝑔  

     (23) 

where, g and i designate the inflation and interest 
rates, respectively. N shows the lifetime for the 
economic assessment. In the current study g=7.91 
%, i=8.25 %, and N=10 years [32]. 

The insulation cost of the wall is the 
investment cost and is calculated as below: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖. = 𝑥𝑥 𝐶𝐶𝑚𝑚 (24) 

Consequently, according to the given information 
the total heating cost of an insulated building based 
on the LCCA approach is mathematically presented 
as below: 

𝐶𝐶𝑡𝑡,ℎ = 𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝑎𝑎,ℎ + 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖.   (25) 

 It is targeted to minimize the total heating cost 
of insulated buildings using different optimization 
algorithms. The objective function of the 
considered optimization problem is mathematically 
declared as below: 

𝑓𝑓(𝐗𝐗) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐶𝐶𝑡𝑡,ℎ�   (26) 

where the X is the vector of the design variables 
including continuous and discrete components. In 
the current problem, the design variables are 
considered as the fuel type, insulation material and 
insulation thickness. 
 
4. Numerical tests and discussion 
In the current section, for evaluating the 
performance of the selected methods six 
unconstrained mathematical functions and thermo-
economic optimization problems for five cases are 
solved. 

4.1. Unconstrained mathematical functions 
For investigating the performance of the selected 
methods more comprehensively, six different 
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benchmark mathematical functions are tested for 
the optimization problem. The functions are 
selected from CEC 2017 in different categories for 
challenging the methods from different aspects 
[33]. The properties of the functions, their 
formulations and 2D plots are given in Table 8. All 
selected functions are initiated in [-100, 100]D, 

where D is the problem’s dimension which is 
considered as 30 for all functions. 
 Different analyses such as accuracy and 
stability, convergence behavior, complexity, and 
no-parametric statistical analysis are performed for 
comparing the performance of the optimization 
techniques.

 
Table 8. Properties of the selected benchmark functions 
No. Function name 2D Plot Formulation** 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚∗

 

F1 UM, NS, SNR 

 

𝐿𝐿(𝒙𝒙) = 𝑥𝑥12 + 106�𝑥𝑥𝑖𝑖2
𝐷𝐷

𝑖𝑖=2

 

𝑓𝑓(𝒙𝒙) = 𝐿𝐿�M(x − o)� + 100 

100 

F2 MM, NS 

 

𝐿𝐿(𝐗𝐗) = �𝑥𝑥𝑖𝑖2 + ��0.5𝑥𝑥𝑖𝑖

𝐷𝐷

𝑖𝑖=1

�

2

+ �� 0.5𝑥𝑥𝑖𝑖

𝐷𝐷

𝑖𝑖=1

�

4𝐷𝐷

𝑖𝑖=1

 

𝑓𝑓(𝐗𝐗) =  𝐿𝐿�M(x − o)� + 300 
 

300 

F3 MM, NS, LOH 

 

𝐿𝐿(𝐗𝐗) = ��100�𝑥𝑥𝑖𝑖2 − 𝑥𝑥𝑖𝑖+1�
2 + (𝑥𝑥𝑖𝑖 − 1)2�

𝐷𝐷−1

𝑖𝑖=1

 

𝑓𝑓(𝐗𝐗) = 𝐿𝐿 �M�
2.048(x− o)

100 � + 1� + 400 

400 

F4 UM, NS, SNR 

 

𝐿𝐿(𝐗𝐗) = ��𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10�
𝐷𝐷

𝑖𝑖=1

 

𝑓𝑓(𝐗𝐗) = 𝐿𝐿�M(x − o)� + 500 

500 

F5 MM, NS 

 

𝐿𝐿(𝒙𝒙) = 

�

�𝑧𝑧𝑖𝑖2 − 10 cos(2𝜋𝜋𝑧𝑧𝑖𝑖) + 10� −

20 exp

⎝

⎛−0.2�
1
𝐷𝐷
�𝑥𝑥𝑖𝑖2
𝐷𝐷

𝑖𝑖=1
⎠

⎞

− exp�
1
𝐷𝐷� cos(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝐷𝐷

𝑖𝑖=1

� + 20 + 𝑒𝑒

𝐷𝐷

𝑖𝑖=1

 

𝑓𝑓(𝒙𝒙) = 𝐿𝐿 �
5.12(x− o)

100 � + 800 

800 
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Table 8. Cont’d 
No. Function name 2D Plot Formulation** 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

∗
 

F6 MM, NS, LOH 

 

𝐿𝐿(𝒙𝒙) = 418.9829 × 𝐷𝐷 −�𝑔𝑔(𝑧𝑧𝑖𝑖)
𝐷𝐷

𝑖𝑖=1

 

𝑓𝑓(𝒙𝒙) = 𝐿𝐿 �
1000(𝒙𝒙 − 𝒐𝒐)

100 � + 1000 

1000 

*: UM: Uni-Modal, MM: Multi-Modal, NS: Non-Separable, LOH: Local optima’s number is huge, A: Asymmetrical, SP: 
Separable, SNR: Smooth but narrow ridge 
**: Operators of o, z, and M are given in detail in the CEC2017 database in: https://github.com/P-N-Suganthan/CEC2017-
BoundContrained  [33] 

4.1.1. Accuracy and stability analysis 
The accuracy and stability solutions for the selected 
functions attained using different optimization 
methods are reported comparatively in the current 
section. The achieved results for this analysis are 
presented in Table 9. Based on the reported optimal 
outcomes, ISA obtained promising results in both 
accuracy and stability aspects for all cases. iPSO 
comes in the second position after ISA. The reason 
for this observation is that the ISA utilizes both 
local and global search behaviors during the 
optimization process and this prevents the 
algorithm from trapping in any local optima. 

4.1.2. Convergence behavior analysis 
For observing the search performance of the 
selected methods more accurately, the convergence 
rate diagrams for the selected test functions are 
plotted in Fig. 2. According to the illustrated 
diagrams, the ISA technique presented the fastest 
convergence rate than the other methods in 
achieving the optimal result. This fact designates 
that the ISA utilizing the interacting and tracking 
search behaviors simultaneously during the 
optimization process reduces the ineffective 
iterations, expedites the convergence rate of the 
algorithm, and improves the performance of the 
algorithm. 

4.1.3. Complexity analysis 
In the current section, the complexity of the selected 
optimization methods is tested and reported. For 

this aim, four periodic terms (i.e. T0, T1, T2 and 2) 
are calculated [34]. T0 is the required time for 
running following code: 

for i=1:1000000 
 x= 5.55 (x is double); 
 x=x + x; 
  x=x./2;  
 x=x*x;  
 x=sqrt(x);  
 x=ln(x);  
 x=exp(x); 
 y=x/x; 
end 

(27) 

 T1 is the required time for 200000 evaluation of 
the desired function [34]; T2 is the total time 
required for optimizing the selected function with 
distinct dimensions (which are taken as D=30 and 

D=50); 2 is defined as the average of all obtained 
T2 values for the current function and dimension. 
The F6 because of its complexity is selected for the 
current analysis. The acquired results are presented 
in Table 10 and Table 11. According to the given 
outcomes for dimension 30, DE comes before ISA. 
This fact is due to ISA’s search behavior balancing 
process; although it is less time-consuming than 
other selected methods. Considering the 
performance of the ISA from accuracy, stability and 
convergence rate aspects, this little difference will 
be negligible. For dimension 50, ISA exceeds other 
methods. 

 
 

https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/P-N-Suganthan/CEC2017-BoundContrained
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Table 9. Optimal results for selected test functions 

Function Value DE IMO iPSO HHO ISA GTOA 

F1 Mean 4.12E+03 8.91E+04 3.91E+03 6.14E+06 5.19E+02 7.41E+04 

 Std. 2.25E+02 7.20E+03 5.01E+01 7.68E+04 3.45E+01 8.21E+03 

F2 Mean 8.33E+04 5.13E+03 4.55E+03 5.89E+03 3.76E+03 4.99E+03 

 Std. 2.91E+04 6.00E+02 7.19E+01 4.51E+02 6.21E+01 5.88E+02 

F3 Mean 4.96E+02 4.90E+02 4.65E+02 5.01E+02 4.51E+02 4.79E+02 

 Std. 4.48E+01 5.39E+01 2.01E+01 1.22E+02 5.25E+00 2.71E+01 

F4 Mean 6.66E+02 6.15E+02 5.71E+02 6.00E+02 5.51E+02 5.80E+02 

 Std. 6.51E+01 5.01E+01 2.11E+01 4.41E+01 1.81E+01 3.37E+01 

F5 Mean 9.77E+02 9.17E+02 8.41E+02 8.68E+02 8.39E+02 9.01E+02 

 Std. 4.74E+01 3.91E+01 2.69E+01 4.51E+01 2.03E+01 3.66E+01 

F6 Mean 5.45E+03 5.47E+03 4.99E+03 5.35E+03 4.12E+03 4.28E+03 

 Std. 4.78E+02 5.11E+02 4.16E+02 7.45E+02 2.98E+02 4.86E+02 
 

  

F1 F2 

  

F3 F4 

Fig.2. Convergence rate diagrams for selected functions 
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Fig 2. Cont’d 

  

F5 F6 
 
Table 10. Complexity analysis result for selected algorithms for D=30 (F6) 

Algorithm T0 T1 2 ( 2-T1)/T0 Rank 

DE 1.40E-01 1.91E-01 4.54E+02 3.24E+03 1 

IMO 1.40E-01 1.91E-01 6.40E+02 4.57E+03 6 

iPSO 1.40E-01 1.91E-01 4.59E+02 3.28E+03 3 

HHO 1.40E-01 1.91E-01 5.08E+02 3.63E+03 4 

ISA 1.40E-01 1.91E-01 4.58E+02 3.27E+03 2 

GTOA 1.40E-01 1.91E-01 6.05E+02 4.32E+03 5 
 
Table 11. Complexity analysis result for selected algorithms for D=50 (F6) 

Algorithm T0 T1 2 ( 2-T1)/T0 Rank 

DE 1.40E-01 3.06E-01 5.11E+02 3.65E+03 2 

IMO 1.40E-01 3.06E-01 6.71E+02 4.79E+03 6 

iPSO 1.40E-01 3.06E-01 5.19E+02 3.70E+03 3 

HHO 1.40E-01 3.06E-01 6.44E+02 4.60E+03 4 

ISA 1.40E-01 3.06E-01 5.07E+02 3.62E+03 1 

GTOA 1.40E-01 3.06E-01 6.60E+02 4.71E+03 5 

4.1.4. Non-parametric statistical tests for 
unconstrained mathematical functions 

In the current section, to give an exhaustive view of 
the performance of the selected methods, a non-
parametric statistical test (Friedman rank test) is 
implemented over the mean and standard deviation 
values. The achieved results are given in Table 12. 
Presented results indicate that ISA outperforms 
other methods in terms of stability and accuracy. 

4.2. Case studies for thermo-economic 
optimization 

In the current section, the mentioned six well-
established optimization methods are employed for 
thermo-economic optimization for residential 
buildings. For this aim, five different cities from the 
Aegean geographic location of Turkey, as shown in 
Fig. 3, are selected.  
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Table 12. The Friedman rank test for mean and std values for unconstrained functions 

 Test for the optimal mean value  Test for optimal Std. value 

Method Friedman value Normalized value Rank  Friedman value Normalized value Rank 

DE 22 0.181818 6  19 0.210526 4.5 

IMO 20 0.200000 5  19 0.210526 4.5 

iPSO 9 0.444444 2  8 0.5 2 

HHO 17 0.235294 4  21 0.190476 6 

ISA 4 1.000000 1  4 1 1 

GTOA 12 0.333333 3  13 0.307692 3 
 

 
Fig. 3. Selected locations from Turkey 

 
The heating degree-day values of these locations 
are considered in the thermal modeling of the 
system. The total heating cost of the insulated 
building is considered as the objective function of 
the optimization problem. The design variables of 
the optimization problem are from both continuous 
and discrete variable sets, which increases the 
complexity of the search space. The design 
variables, as presented in Table 13, are the fuel 
type, insulation material type and the thickness of 
the insulation layer. It should be mentioned that the 
monetary properties of the fuels and insulation 
material are taken from the government data series 
of 2016 [32]. In addition, the optimization process 
is run with 20 particles in 50 iterations (i.e. 1000 

Objective Function Evaluations (OFEs)) for all 
optimization methods in all cases. 
 The optimal results obtained using different 
optimization techniques are comparatively 
presented in Table 14. To demonstrate the 
performance of the methods in solving the current 
optimization problem the convergence rate 
diagrams of the optimization process are given in 
Fig. 4. It is observed from the achieved results that 
the population-based optimization methods provide 
acceptable performance in solving the current 
problem for all cases. As seen from the convergence 
diagrams the ISA technique is more rapid than other 
techniques.
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Table 13. Design variables of the optimization problem 

Design 
variable 

Var. 
type No. Type 

 Properties 
Hu η Cfuel 

Fu
el

 ty
pe

 
X 1

  

D
is

cr
et

e 

1 Natural gas  34485000 (J/m3) 0.90 0.385 ($/m3) 
2 Coal  25080000 (J/kg) 0.65 0.273 ($/kg) 
3 Fuel-oil  40546000 (J/kg) 0.80 0.766 ($/kg) 
4 LPG  45980000 (J/kg) 0.88 1.921 ($/kg) 
5 Diesel  42911104 (J/kg) 0.84 1.614 ($/kg) 

     k (W/mK) Cm ($/m3) 

In
su

la
tio

n 
m

at
er

ia
l 

 X
2 

D
is

cr
et

e 

1 Extruded polystyrene (XPS)  0.031 180 
2 Expanded polystyrene (EPS)  0.039 120 
3 Glass wool  0.040 75 
4 Rock wool  0.040 80 
5 Polyurethane  0.024 260 

     Interval (m)  

In
su

la
tio

n 
th

ic
kn

es
s  

X 3
 

C
on

tin
uo

us
 

--- --- 

 

[0.0001,1.0] 

 

 
Table 14. Optimal results obtained by different optimization methods 

M
e  

Optimal results 
Uşak 

HDD=2414 
Muğla 

HDD=1879 
Denizli 

HDD=1627 
Manisa 

HDD=1535 
İzmir 

HDD=1118 

D
E 

Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool 
Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591 
THC ($/m2) 15.9608 13.9038 12.8331 12.4217 10.3798 

IM
O

 

Insulation material Glass wool Glass wool Rock wool Glass wool Rock wool 
Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.1062 0.0726 0.0739 0.0924 0.1035 
THC ($/m2) 16.0335 13.9846 13.2046 12.6787 12.0904 

iP
SO

 Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool 
Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591 
THC ($/m2) 15.9608 13.9038 12.8331 12.4217 10.3798 

H
H

O
 Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool 

Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.1082 0.0671 0.0744 0.0601 0.0758 
THC ($/m2) 16.0435 14.1117 12.8340 12.5716 10.5980 

IS
A

 

Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool 
Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591 
THC ($/m2) 15.9608 13.9038 12.8331 12.4217 10.3798 

G
TO

A
 Insulation material Glass wool Glass wool Glass wool Glass wool Glass wool 

Fuel type Natural gas Natural gas Natural gas Natural gas Natural gas 
Opt. ins. thickness (m) 0.0963 0.0826 0.0755 0.0728 0.0591 
THC ($/m2) 15.9608 13.9038 12.8331 12.4217 10.3798 
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Uşak Muğla 

  

Denizli Manisa 

 

İzmir 
Fig 4. Convergence rate for different methods during the optimization process 
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5. Conclusion 
In the current study, the performance of the 
population-based and non-gradient optimization 
techniques in solving the thermo-economic 
optimization model is investigated. For this aim, 
Differential Evolution (DE), Ions Motion 
Optimization (IMO), Integrated Particle Swarm 
Optimization (iPSO), Harris Hawks Optimization 
(HHO), Interactive Search Algorithm (ISA), and 
Group Teaching Optimization Algorithm (GTOA) 
are selected. Notably, testing the performance of the 
population-based techniques in solving the thermo-
economic optimization model clarifies the effective 
feature of these methods and their applicability in 
different engineering optimization problems. In 
addition, to give a wide aspect for the researchers, 
the performance of the selected methods is also 
assessed in solving mathematical function 
problems with different properties. Distinct 
analyses such as accuracy and stability, 
convergence behavior, complexity, and non-
parametric statistical tests are implemented on the 
obtained optimal results. According to the achieved 
outcomes, the performance of the ISA method due 
to its search paradigms outperforms the other 
techniques. The performance of ISA method is 
followed by the iPSO and DE methods.  
 Also, a thermo-economic optimization model is 
carried out for the exterior wall of the residential 
buildings. The total heating cost of the insulated 
building is minimized as the objective function of 
the model. The optimal values for the design 
variables (i.e. fuel type, insulation material, and 
insulation thickness) are obtained using the selected 
optimization methods. It should be noted that the 
inflation rate is assumed to represent the rate of 
increase in fuel prices. However, the rate of 
increase in fuel prices could be slightly different 
from the inflation rate. In the study cases, five 
different cities in the Aegean region of Turkey are 
considered. All selected techniques put forward an 
acceptable performance in solving the proposed 
thermo-economic optimization model. Particularly, 
ISA, iPSO, and DE present superior performance in 
comparison with other techniques in terms of 
accuracy and convergence rate. The optimal results 

for the selected case studies mostly are determined 
glass wool and natural gas as the insulation material 
type and fuel type, respectively. In the future, the 
performance of the different optimization methods 
would be tested on more real-world optimization 
problems and the design of zero-energy buildings. 
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