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Abstract 

In this study, a coupled model based on the boundary element and the finite element methods is used to 

analyze the dynamic responses of two-dimensional model resting on layered soil medium under spatially 

varying ground motion effects. The dynamic response of the soil-structure systems is obtained in the 

frequency domain. The results of the finite element and the coupling finite-boundary element models are 

compared with each local soil conditions. In the seismic analysis of the system, the substructure method is 

employed. In the standard finite element model, both the structure and semi-infinitive soil medium are 

modeled by the finite elements, however, in the coupling finite-boundary element model, the structure and 

the soil medium are modeled respectively by the finite and boundary elements, both. In the last method, the 

special features and advantages of two methodologies are considered. In the coupling of finite-boundary 

element method, the equivalent finite element approach is used in which the boundary element region is 

transformed as an equivalent finite element and the final system is solved as a stiffness problem. Results of 

the study show that the coupling finite-boundary element method can provide realistic and effective modeling 

of soil-structure interaction problems as compared with standard finite element method results. 
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1. Introduction 

One of the significant problems in geotechnical 

engineering is to determine the response of 

structures together with the surrounding soils. 

Therefore, numerical model of the system should 

consider soil-structure interaction effects in the 

analysis and design of structures founded on soil 

medium. Now, the finite element method (FEM) is 

undoubtedly the most popular and useful technique 

for modeling of structures. Boundary element 

method (BEM) is considered as one of the most 
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powerful alternative of the former numerical 

method and at the same time it is the most 

appropriate technique due to seismic wave 

propagation in a complex geological media. These 

methods can be formulated either in time or in 

frequency domain, and each of these methods has 

its own advantages and drawbacks. The good thing 

is that each drawback of one of the both methods 

should be overcome by an advantage of the another. 

The decision of which methods should be 

employed in the modeling and analyzing of 
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structure depends on the properties of the system 

such as geometry, material properties, type of 

loading and boundary conditions. To profit from 

the advantages of each of two methods and by 

evading their respective disadvantages, it seemed to 

be quite promising to develop combined 

formulations. Therefore, in today’s technology a 

combined model of the finite element and the 

boundary element methods is advantageously 

employed in numerical modeling of the infinite or 

semi-infinite domains, material non-linearity and 

region of high stress concentrations where finite 

and boundary elements are not particularly suitable 

on their own. 

 The finite element method is highly convenient 

for non-homogeneous and anisotropic materials as 

well as for dealing with the nonlinear behavior of a 

body. In the finite element method for infinite or 

semi-infinite regions, an extensive mesh to model 

the surrounding soil medium, namely near-field, is 

required and far-field is represented by artificial 

boundaries. Artificial boundaries introduce 

spurious reflections, which contaminate the 

numerical solutions in numerical modeling of wave 

propagation problems. However, the use of the 

boundary element method is more advantageous for 

systems with infinite extension and regions of high 

stress concentration. 

 White et al. [1] developed special boundary 

conditions called non-reflecting viscous boundary 

conditions that absorb the wave energy. However, 

the use of the boundary element method is by far 

more favorable than the non-reflecting viscous 

boundary conditions for systems with infinite 

extension and regions of high stress concentration 

about other methods [2]. The scaled boundary-

finite element method is an alternative and effective 

method for modeling systems with finite and 

infinite extension having non-homogeneous and 

incompressible material properties [3]. More 

details are given, e.g., by Hughes [4], Wolf and 

Song [5] and Bathe [6] for the finite element 

method and by Beskos [7], Becker [8] or 

Dominguez [9] for the boundary element method. 

 Zienkiewicz et al. [10] were among the first 

authors who proposed the coupling of finite and 

boundary elements. Cruse and Wilson [11] used a 

coupled finite-boundary element formulation for 

the solution of two-dimensional elastic fracture 

problems. 

 Brebbia and Georgiou [12] proposed two 

different approaches to couple the finite and 

boundary elements in two dimensional elastic 

problems. They used two different approaches to 

couple the finite and boundary elements. The first 

one treats the boundary element region as a macro 

finite element. This leads to a nonsymmetrical 

stiffness matrix for boundary element region. To 

prevent this hardship, they proposed simple and 

effective way such as the least squares technique. 

The second one treats the finite element region as 

an equivalent boundary element region. They 

studied numerical aspects of two alternative 

approaches for two dimensional elastic problems. 

Brady and Wassyng [13] used the coupled finite-

boundary element technique to determine stress and 

displacement distributions in a rock structure 

caused by underground excavation. Tullberg and 

Bolteus [14] developed different boundary element 

stiffness matrices for two-dimensional elasticity 

problems and seriously studied to choose the best 

one for the coupling of FEM and BEM. It was 

concluded that the direct non-symmetric stiffness 

matrix is the best one and the direct non-symmetric 

stiffness matrix is as good as, or better then finite 

element stiffness matrix. Beer [15] employed the 

details of application of boundary elements into an 

existing finite element software. A computer code 

was examined, and comparison was made between 

the finite element, the boundary element and the 

coupled method as applied to unbounded problems 

in two-dimensional elasticity and plasticity. Beer 

and Swoboda [16] used a combined finite-boundary 

element method for the elasto-plastic analysis of 

shallow tunnels in plain strain. Based on the 

principle of stationary potential energy, the 

equivalent boundary element stiffness matrix was 

given, and it was assembled with the finite element 

stiffness matrix in the usual way. Mitsui et al [17] 

presented coupling scheme for the boundary and 

finite elements using a joint element of Goodman 

in the analysis of several footings. It was obtained 
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that coupling method is better than FEM for a 

structure founded on a multi-layer. Subei et al. [18] 

employed a combined finite-boundary element 

technique for the analysis of distresses in 

pavements subjected to mechanical and 

environmental effects. The non-homogeneity and 

the irregular geometry at the pavement joints are 

modeled by means of the finite elements, while the 

boundary elements are used to model the far field 

region at infinity. Yazdchi et al. [19] presented a 

study on the transient response of an elastic 

structure embedded in an elastic half-plane. The 

coupled finite-boundary element technique was 

employed, and transient dynamic and seismic 

forces were considered in the analysis. The finite 

element method was used for discretization of the 

near field, containing structures and its surrounding 

soil and the boundary element method was used to 

model the semi-infinite far field. These two 

methods were coupled through the equilibrium and 

compatibility conditions at the soil-structure 

interface. As an application of the proposed 

formulation, a gravity dam has been analyzed and 

the results for different foundation stiffness are 

presented. Von Estorff and Firuziaan [20] 

presented a general coupled boundary element-

finite element formulation for the investigation of 

dynamic soil-structure interaction including 

nonlinearities. The structure itself and the 

surrounding soil in the near field were modeled 

with finite elements, whereas the remaining soil 

region is modeled with the boundary elements. 

Thus, wave radiation to infinity was considered in 

the model. It was shown that the method is 

numerically powerful and can be used effectively 

for the nonlinear analyses of complex soil-structure 

interaction problems. Chouw and Hao [21] 

investigated the influence of the spatially varying 

ground excitations and soil–structure interaction on 

the pounding potential of two adjacent bridge 

frames. The bridge frames with their foundations 

and the subsoil were described by using a combined 

finite element and boundary element method. The 

spatially varying ground excitations were simulated 

stochastically based on the Japanese design 

spectrum for soft and medium soil. Genes and 

Kocak [22] presented a coupled model based on 

finite-boundary element methods and scaled 

boundary finite element method for dynamic 

response of two dimensional structures embedded 

in layered soil media. Boundary element method 

was used for modeling the dynamic response of the 

unbounded media (far-field), whereas the standard 

finite element method was used for modeling the 

finite region (near-field) and the structure. 

Dynamic responses of rigid and elastic structures 

belong to the proposed model are investigated. It 

was obtained that the results of the study are in 

accordance with the results presented in the 

literature for the chosen problems. 

 A three-dimensional finite element model with 

viscous boundary was developed to investigate the 

seismic response of the cantilever wall by Cakir 

[23]. Yaseri et al. [24] studied the application of the 

scaled boundary finite-element method to the three-

dimensional analysis of ground vibrations induced 

by underground trains. The surrounding medium 

around the tunnel was simulated by the scaled 

boundary finite element method. The track was 

modeled with the finite-element method. It was 

observed that the method is an accurate approach 

for modeling the large-scale dynamic problems in 

engineering practice such as underground train-

induced ground vibrations. 

 In the present paper, a finite element model and 

a coupled model based on boundary element and 

finite element methods are used to analyze the 

dynamic responses of two-dimensional model 

resting on layered soil medium under spatially 

varying ground motion effects and the results 

obtained are compared. In the finite element model, 

the structure itself and layered soil medium are 

modeled with the finite elements. In the coupled 

model, the structure itself is modeled with the finite 

elements, whereas the layered soil medium is 

modeled with the boundary elements. In the last 

model, these two methods are coupled through the 

equilibrium and compatibility conditions at the 

soil-structure interface. Using this procedure, the 

boundary element region is condensed on the 

interface of finite and boundary element regions 

and the size of the final system of equations is 
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determined from only the finite element region 

only. In the coupled model, equivalent finite 

element approach is used in which boundary 

element region is transformed as an equivalent 

finite element and the final system is solved as a 

stiffness problem. The dynamic response of the 

soil-structure systems subjected to spatially varying 

ground motion is obtained in the frequency domain. 

In the seismic analysis of the system, the 

substructure method is employed to deal with the 

interaction problem. It has been shown that the 

similar results can be achieved with a numerical 

model in validating the developed coupled finite-

boundary element method against the classical 

finite element method. 

 

2. The finite element and boundary element 

methods 

The finite element and the boundary element 

methods have become the two dominant numerical 

methods for solving science and engineering 

problems. The finite element method has been long 

established and is most well known in different 

fields of engineering problems. Thereafter, the 

boundary element method appeared offering new 

computational capabilities with its effectiveness, 

accuracy and low computational cost. The general 

approach in the finite element method is that the 

whole domain is subdivided into many finite 

elements joined together at some points called 

nodes. When the method is used for a solution of 

static problems, we get a set of simultaneous linear 

equations finally, which can be stated in the form 

 

 
 

Fig. 1. Coefficient matrices for FEM and BEM 

Ku f   (1) 

where K is the stiffness matrix of a structure, u is 

the displacement vector and f are the force vector. 

In a FEM model, the coefficient matrices have a 

great form since they are banded and symmetric. 

However, in a BEM model they are fully populated 

and non-symmetric. In addition, the matrices are 

generally of different sizes due to the differences in 

size of the domain mesh (FEM) compared to the 

surface mesh (BEM). This disadvantage of the 

BEM is counterbalanced by the much smaller 

dimensions of its matrices than FEM model. The 

general format of the coefficient matrices for a 

FEM and BEM model is given in Fig. 1. 

 The BEM model reduces the spatial dimension 

of the problem by one since only the boundaries of 

the domain are needed to be discretized as shown 

in Fig. 2. In addition, the data preparation and 

modeling time reduce especially for three 

dimensional problems having complex geometries 

as compared to FEM model. If the region is 

extended to infinity no artificial boundaries are 

required in the BEM, whereas those are required in 

the other methods such as finite difference and 

finite element. Therefore, BEM is very attractive 

for the treatment of linear problems defined in both 

bounded and unbounded domains. 

 The final expression of FEM has a relationship 

displacement at all nodes to nodal forces, whereas 

the final expression of BEM has a relationship 

between nodal displacements and nodal tractions. 

In BEM formulation, the dynamic response of 

homogeneous, isotropic and linear elastic structures 

in frequency domain, is described by the system 

equation as 

H u G t   (2) 

where H and G are the system matrices obtained by 

the integration of the first and second fundamental 

solutions of BEM over the elements. The u and t are 

the displacement and the traction vectors, 

respectively. 

 

 

0 

0 

FEM BEM 
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Fig. 2. Discretization of the domain for FEM and BEM 

 

 
Fig. 3. The domain divided into finite element and boundary element regions 

 

3. Coupling finite-boundary element method 

This part explains the coupling finite-boundary 

element method. There are basically two different 

approaches to couple finite element and boundary 

element methods. The first one is equivalent finite 

element approach in which the boundary element 

region is treated as a large finite element and its 

stiffness is computed and assembled into the global 

stiffness matrix. The second one is equivalent 

boundary element approach in which the finite 

element region are treated as an equivalent 

boundary element region and their stiffness matrix 

is determined and assembled [12, 24]. The choice 

of coupling method depends mainly on the software 

available for the implementation, i.e., if boundary 

element capabilities are to be added to a finite 

element program, or finite element capabilities to a 

boundary element one. In this study, the equivalent 

finite element approach is used for analysis of 

response of structures to spatially varying ground 

motion, including the effects of structure-soil 

interaction and the substructure method is 

employed in which the unbounded soil is modeled 

by BEM and the structure is modeled by a standard 

FEM. 

 In the coupling technique, whole domain is 

divided into two regions F  and B  with 

common interface indicated by dotted line in Fig. 

3. In the figure, F  and B  represent finite 

element and boundary element domains, 

respectively, whereas 
I

F  and 
I

B  represent 

boundaries for common interface domains F  and 

B . To ensure a correct coupling between finite 

element and boundary element meshes, the 

conditions of equilibrium and compatibility must 

be satisfied at the connecting interface. Therefore, 

coupling the two domains at the interface is 

provided using the displacement compatibility and 

the dynamic equilibrium equations at the soil-

structure interface elements. 

 Satisfaction of compatibility conditions gives 

the same 
I

Fu  and 
I

Bu  interface displacements, i.e. 

I Iu u
F B
   (3) 
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and the satisfaction of equilibrium conditions gives 

zero sum of forces along the interface, i.e. 

I If f 0
F B
    (4) 

 In case of equivalent FEM, for B  region, the 

boundary element stiffness matrix is obtained, 

which is summarized with the finite elements of the 

domain F  [12, 14]. In Fig 4, it is 

comprehensively demonstrated how to obtain the 

equivalent stiffness matrix belong to the boundary 

element region. In the figure, the system of 

equations of BEM is simulated to the system of 

equations of FEM.  BK  and  fB  are, 

respectively, boundary element stiffness matrix and 

nodal force vector for domain B .  M  is the 

distribution matrix and it is interconnected to nodal 

tractions with the nodal forces as can be seen in Eq. 

(5). The general expression of transformation 

matrix is defined by Brebbia et al. (1984), i.e. 

T

Γ

M = N N  dΓ   (5) 

 The coefficients of M  depend on the type of 

interpolation functions, denoted by N in Eq. (5). 

For whole region, F B   final system equation 

is given by Brebbia et al. [25] as 

 ' 'K  u f  (6) 

 

 

 

 
 

Fig. 4. Demonstration of obtaining equivalent finite element stiffness matrix for boundary element region 

 

 

 

Fig. 5. General representation of coupled finite-boundary global stiffness matrix 

 

 
FEM BEM 

     B BH u = G t      F F FK u f  

          
1

B B B BM t = f      t M f


   

       
1

B BH u = G M f


 

(multiply both sides by  
1

G


 ) 

           
1 1 1

B BG H u = G G M f
  

 

        
1 1

B BG H u = M f
 

 

        
1

B BM G H  u = f


 

       
1

BK    M  G H


  

    B B BK u = f  
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where 

 

'

'

K + K
F B

f f f
F B

K 

 
 (7) 

 K
F

 and f
F

 are respectively global stiffness 

matrix and nodal force vector for finite element 

domain F . 
'K  and 

'f  are respectively final 

global stiffness matrix of coupled finite-boundary 

elements and nodal force vector for whole domain 

F B  . In general, 
'K  is not symmetric stiffness 

matrix because stiffness matrix obtained K
B

 for 

the boundary element domain is not symmetric. 

This makes it mostly inconvenient to use with the 

symmetric finite element global stiffness matrix. In 

this study, the procedure is used to make symmetric 

the boundary element stiffness matrix suggested by 

Brebbia et al [25]. 

 In case of bounded problems, on the one hand, 

the banded matrix from the boundary element 

region and on the other hand the fully populated 

matrix from the boundary element region are 

coupled which schematically is shown in Fig. 5. It 

is clear from the figure that the size of bandwidth 

of the global matrix depends on the size of 

boundary element region and increases with the 

increase of its size which makes the coupled 

method less effective for these kinds of problems.  

 To avoid the above difficulty and make the 

coupled method effective in this work, the static 

condensation procedure is used which reduces the 

boundary element stiffness matrix along the 

interface and the size of the problem can be 

determined from degrees of freedom of the FE 

region as in the case of the unbounded problem. 

The formulation of this procedure is given in the 

following. 

 In presentation simplicity of the procedure, the 

problem shown in Fig. 3, F  finite and B  

boundary element regions are joined by an interface 

 . Hereby, F  finite region is divided into finite 

elements, whereas B  boundary region is divided 

into boundary elements. For F  region, Eq. (1) 

can be rewritten in the form, 

FF FI F   F

IF II I   IF

K   K u f
=

K    K u f

     
    

     
 (8) 

and for B  region Eq. (2) can be rewritten in the 

form, 

II IB I II IB IB

BI BB B BI BB B

H    H u G     G t
=

H   H u G    G t

       
      

       
  (9) 

In Eq. (8) and Eq. (9), subscripts IB and IF etc. 

denotes interface-finite, boundary-interface and so 

on. In order to obtain equivalent FEM expression 

from Eq. (9), the formulation for the equivalent 

FEM demonstrated in Fig. 4 is used. For boundary 

region, final equivalent FEM expression is 

II IB I  IB

BI BB B  B

K     K u f
=

K    K u f

     
    

     
 (10) 

From Eq. (10), 

   
-1

B BB  B BI Iu = K f - K  u  (11) 

obtained and substituting this into part of the same 

equation 

   
-1 -1

II IB BB BI I  IB IB BB  BK - K K K  u f  - K K f  
 

  (12) 

which can be reduced to 

R  R

B I  IB  BK  u = f - f   (13) 

where 
R

BK  is a condensed boundary element 

stiffness matrix on the interface 
I  and 

 R

 Bf  is the 

condensed force vector. 

 To combine F  and B  regions Eq. (3) 

compatibility and Eq. (4) equilibrium conditions 

must be satisfied on   interface. In the present 

case, 

IF IB I

 IF  IB

u = u = u

f = -f
  (14) 

For the whole region F B    , the final 

expression can be obtained from Eq. (8), Eq. (13), 

and Eq. (14) 
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FF FI

 

IF II  

K         K

K     K + KR R

B B

      
    

     

 FF

I

  fu
=

u  -f
 (15) 

From Eq. (15), unknown 
F
u  and 

I
u  displacements 

can be determined and then for region 

displacements can be received from Eq. (11). As 

can be seen from Eq. (15) the final number of 

equations is determined only from degrees of 

freedom of the finite element domain. 

 

4. Spatially varying ground motion 

The equation of motion of a structural system can 

be written as 

[M]{v} [C]{v} [K]{v} {F}    (16) 

where [M], [C] and [K] are the mass, damping and 

stiffness matrices, respectively; {v}, {v}  and {v}  

are vectors of total accelerations, velocities and 

displacements, respectively and {F} is a vector of 

input forces. 

 The degrees of freedom can be defined as 

known and unknown. The known degrees of 

freedom are associated with those of the structure-

foundation interface. The unknowns are related to 

degrees of freedom of the structure. The former 

degrees of freedom will be denoted hereafter as the 

vector vg, and the latter as vr. Here, the subscript ‘g’ 

denotes the ground degrees of freedom and ‘r’ 

denotes the response degrees of freedom. Eq. (16) 

can be rearranged by separating the degrees of 

freedom into two groups as known and unknown 

[26-28] 

rr rg r rr rg r

gr gg g gr gg g

rr rg r

gr gg g

M M v C C v

M M v C C v

K K v 0

K K v 0

          
      

          

      
     

      

 (17) 

 It is possible to separate the total displacement 

vectors as quasi-static and dynamic components as 

follows: 

sr drr

g sg dg

v vv

v v v

         
      

          
 (18) 

Because of complex nature of the earth crust, 

earthquake ground motions will not be the same at 

distances of the dimensions of long span structure. 

While analyzing large structures, spatially varying 

earthquake ground motions should be considered, 

and total displacements have to be used in 

expressing the governing equation of motion. The 

spatially varying earthquake ground motion 

includes incoherence, wave-passage and site-

response effects. These effects are characterized by 

the coherency function in frequency domain. 

 The spatial variability of the ground motion is 

characterized by the coherency function 
l m

γ (ω) . 

The cross-power spectral density function between 

the accelerations v
lg  and v

mg  at the support points 

l and m is written as [29 30]; 

( ) ( )  ( ) ( )
g g g g g g

m m m
v v v v v vS S S    

l m
l l l

 (19) 

where ( )
g gv vS 

l l

 and ( )
g g

m m
v vS   indicate the 

autopower spectral density functions of the 

accelerations at the support points l and m, 

respectively. In the case of homogeneous ground 

motion for which ( )
g gv vS  

l l

( )
g g

m m
v vS  ( )

gvS  , 

the previous expression can be reduced to 

l m
(ω) γ (ω) (ω)

g g g
m

v v vS S
l

 (20) 

where 
l m

γ (ω)  is the coherency function and 

( )
gvS   is the power spectral density function for 

uniform surface ground acceleration. 

 The power spectral density function for ground 

acceleration is assumed to be of the following form 

of filtered white noise ground motion model 

suggested by Clough and Penzien [28]: 
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g

4 2 2 2 4

f f f

v o 2 2 2 2 2 2 2 2 2 2 2 2

f f f g g g

ω + 4 ξ  ω  ω ω
S (ω)=S

(ω -ω ) + 4 ξ  ω  ω (ω -ω ) + 4 ξ  ω  ω

  
   

  

 (21) 

 

in which oS  is the spectrum of the white-noise 

bedrock acceleration; fω  and fξ  are the resonant 

frequency and damping of the first filter, and gω  

and gξ  are those quantities of the second filter. 

 In this study, soft, medium and firm soil types 

are chosen for the sample. oS  is obtained for each 

soil layer type by equating the variance of the 

ground acceleration to the variance of Kocaeli 

Earthquake in 1999. Calculated values of the 

intensity parameter for each soil type and the filter 

parameters for these soil types which are proposed 

Der Kiureghian and Neuenhofer [31] are utilized as 

shown in Table 1. 

 The record used is that of the DZC270 

component of Duzce, Turkey, Kocaeli Earthquake 

in 1999, which is given in Fig. 6(a) and lasts for 

27.2sec; its power spectral density function, 

acceleration spectral density function and 

displacement spectral density function for different 

soil types are given Fig. 6(b), Fig. 6(c) and Fig. 

6(d), respectively. 

 The coherency function accounting for the 

incoherence, wave passage and site-response 

effects is defined as [31] 

i w s

lm lm lm lmγ (ω)= γ (ω) γ (ω) γ (ω)  (22) 

where 
i

lmγ (ω)  characterizes the incoherence 

effect, 
w

lmγ (ω)  indicates the complex valued 

wave-passage effect and 
s

lmγ (ω)  defines the 

complex valued site-response effect.  

 In respect of the incoherence effect, the model 

which is based on the statistical analysis of strong 

ground motion data and developed by 

Harichandran and Vanmarcke [32] is 

 

i

lm lm2d 2d
γ (ω) =Aexp - (1-A+αA) +(1-A)exp - (1-A+αA)

αθ(ω) θ(ω)lm

   
   
   

 (23) 

-0.5
b

o

ω
θ(ω)=k 1+

2πf

  
  
   

  (24) 

where lmd  is the distance between support points l and m. A,  , k, of  and b are model parameters. 

 

Table 1. Intensity and filter parameter for different soil types 

Type of Soil (rad / sn)
f

  
f
  (rad / sn)g  g  2 3(m /s )oS  

Firm 15.0 0.6 1.5 0.6 0.00171 

Medium 10.0 0.4 1.0 0.6 0.00255 

Soft 5.0 0.2 0.5 0.6 0.00357 
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Fig. 6. DZC270 component of the 1999 Kocaeli earthquake; a) Acceleration time history b) Power spectral density 

function, c) Acceleration spectral density function, d) Displacement spectral density function 

 

 In this study, the values obtained by 

Harichandran et al., [32] were used (A=0.636, 

α=0.0186, k=31200, of  =1.51 Hz and b=2.95). 

 The wave-passage effect resulting from the 

difference in the arrival times of waves at support 

points is defined as 

 

a 

 

b 

 

c 

 

d 
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w L

lm lm appγ (ω) = exp i(-ωd /v )    (25) 

where appv  is the apparent wave velocity and 
Ld
lm

 

is the projection of lmd  on the ground surface along 

the direction of propagation of seismic waves [33].  

 The site-response effect due to the differences 

in the local soil conditions is obtained as 

 
 

l ms -1

lm

l m

Im H (ω) H (-ω)
γ (ω)  = exp i tan

Re H (ω) H (-ω)

 
 
  

 (26) 

where lH (ω)  is the local soil frequency response 

function representing the filtration through soil 

layers and is defined as [33]: 

2

l l l

l 2 2

l l l

ω +2iξ ω ω
H (ω) = 

ω -ω +2iξ ω ω
 (27) 

in which lω  and lξ  represent dominant frequency 

and damping ratio, respectively [31]. 

 

5. Sample Model 

In this study, a single column resting on layered soil 

medium shown in Fig.7 is considered to compare 

the results of the finite element and the coupling 

finite-boundary element models. Width and height 

of the foundation soil medium considered in the 

analysis is 8m and 4m, respectively. 

 The properties of the single column and layered 

soil medium are given in Table 2 and Table 3, 

respectively. 

 

 

 
 

Fig. 7. Selected sample problem 

 

 
Table 2. The column properties 

Cross sectional area 

A (m2) 

Moment of inertia 

Ix-x (m4) 

Young’s 

Modulus 

E (kN/m2) 

Shear Modulus 

G (kN/m2) 

Weight per unit 

length 

W (kN/m) 

0.25 0.0052 32x106 12. 8x106 6.250 
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Table 3. The column properties 

Soil Type 

Young’s 

Modulus,  

E (103kN/m2) 

Shear 

Modulus,  

G (103kN/m2) 

Poisson’s 

Ratio, 

  

s  (kN/m3) s  (%) 

Soft Layer#1 224 80 0.40 20 0.07 

Layer#2 1540 550 0.40 22 0.05 

Medium Layer#1 1080 400 0.35 20 0.04 

Layer#2 7425 2750 0.35 22 0.04 

Firm Layer#1 2430 900 0.30 21 0.02 

Layer#2 16900 6500 0.30 25 0.02 

 In the study, to perform the stochastic dynamic 

finite element analysis of the sample problem the 

program SVEM [34] developed in FORTRAN is 

used. In the coupled finite-boundary element 

model, the program CD2NL [35] is used to obtain 

equivalent finite element stiffness matrix for the 

layered soil medium modeled by constant boundary 

elements. To compare the obtained results the 

sample problem is separately modeled finite 

element method and coupled finite-boundary 

element methods. In the finite element model, a 

single column and layered soil medium, namely all 

system, are modeled with finite elements (Fig. 8). 

In the figure, the column and layered soil medium 

are modeled with beam and plane elements, 

respectively. In the coupled finite-boundary 

element model, the column is modeled with finite 

elements, whereas layered soil medium is modeled 

with constant boundary elements as shown in Fig. 

9. In the last method, equivalent finite element 

stiffness matrix concerning layered soil medium is 

obtained via CD2NL software and this matrix is 

adapted to the spring element defined in SVEM 

software as in Fig 9b. In the finite element model 

whole domain is discretized, whereas in the 

boundary element model only boundaries of the 

domain are discretized as shown in Figs. 8 and 9. 

 
 

Fig. 8. Finite element model of the problem 

 

 Horizontal displacement of the single column 

resting on soft soil medium is comparatively given 

in Fig. 10 for the coupling finite-boundary element 

and the general finite element models concerning 

the sample system. 
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Fig. 9. a) Constant boundary element model of the layered soil medium, b) Coupled finite-boundary element model 

 

 

 

Fig. 10. Horizontal displacements of the column supported on soft soil (cm) 
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Table 4. Horizontal displacements of the column for each soil type (cm) 

Soil Types Column height (m) 

Horizontal displacements (cm) 

Difference 

(%) 
The coupling finite-

boundary element 

model 

Finite element 

model 

Soft 

0 31.64 31.71 0.22 

3 32.56 32.63 0.23 

6 35.70 35.56 0.38 

9 39.45 39.18 0.68 

Medium 

0 11.28 11.28 0.04 

3 11.63 11.60 0.20 

6 13.37 13.25 0.93 

9 15.58 15.35 1.46 

Firm 

0   5.50 5.49 0.02 

3   5.72 5.69 0.42 

6   6.70 6.60 1.31 

9   8.16 7.98 2.21 

 The records of the DZC270 component of 

Duzce, Kocaeli Earthquake recorded in 1999 are 

used and this ground motion is applied in horizontal 

direction for each model. Horizontal displacements 

of the single column of each model concerning the 

sample system are comparatively given for each 

soil medium in Table 4. Soil properties considered 

in the analysis is taken from Table 3. It is observed 

that results obtained of each method are quite close 

to each other for each soil type. 

 

6. Conclusion 

The aim of this study is to compare the results of 

finite element model and the coupling finite-

boundary element model when the sample model 

subjected to spatially varying ground motions 

including the wave-passage, incoherence and site 

response effects. The records of Duzce, Kocaeli 

Earthquake recorded in 1999 are used and these are 

applied in horizontal direction for each model. The 

dynamic response of the soil-structure systems is 

obtained in the frequency domain. In the seismic 

analysis of the system the substructure method is 

employed. In the standard finite element model 

both the structure and layered soil medium are 

modeled by finite elements, but in the coupling 

finite-boundary element model the structure and the 

soil medium are modeled respectively by finite and 

boundary elements. In the coupling of finite-

boundary element method, equivalent finite 

element approach is used in which boundary 

element region is transformed as an equivalent 

finite element and the final system is solved as a 

stiffness problem. The conclusions drawn from this 

study can be written as: 

 Results of the study show that for all the soil 

cases considered the coupling finite-boundary 

element model has shown good agreement 

with the finite element model and can provide 
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realistic and effective modeling of soil-

structure interaction problems as compared 

with standard finite element method results. 

 All soil cases considered in the analysis, it is 

obtained that difference of horizontal 

displacements increases for both methods as 

the column height increases and the biggest 

difference occurs in the top of the column, 

especially for firm soil case. 

 It is shown that the number of elements used in 

mesh is quite close the coupling finite-

boundary element model and classical finite 

element model for this study. As the size of the 

problem, number of elements used in mesh 

rather increases especially finite element 

model in which is required a mesh of whole 

domain. Following this study, the number of 

element and size used in the analysis will 

compare for both methods. 

 It can be concluded that the combination of 

finite element and boundary element method is 

an efficient method of analysis especially for 

soil-structure interaction problems. Therefore, 

using coupled technique efficient numerical 

model for soil-structure interaction problems 

can be treated without compromise in 

accuracy. 
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